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Classical steepest descent

J : H— R. Two main assumptions:
< VJ(u)=VI(v),u—v>>alu—vl]?, |VJI(u)—=VIW)]? < Mlu—-v]°

Then, for
Upr1 = ux — pVJ(uy),

we have
ue — u*| < (1 = 2pa + p? MK uy — u?|.

Convergence is guaranteed for 0 < p < 1 small enough.

Compare with the continuous marching gradient system

u' (1) = =V J(u(1)).
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LaSalle’s invariance principle

Consider the dynamical system

u'(t) = —VJ(u(t))

Multiply it by VJ(u(t)) and then
dJ(u(t))/dt = —|VJ(u(t))|>.

Thus, for the gradient system, J(u(t)) constitutes a Lyapunov function whose value
diminishes along trajectories.

Assume that J is bounded below. This is typically the case when searching the
minimizers of J under the standard coercivity and continuity assumptions.

Then, necessarily, J(u(t)) has a limit / as t — oo.

Furthermore, when J is coercive, this necessarily means that the trajectory {u(t)}:>0 is
bounded. In the finite-dimensional context this means that the trajectory is precompact.
In the infinite-dimensional case this requires further analysis of the dynamical properties
of the evolution system under consideration.
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Let us then define the w-limit set. Given the initial datum ug of the
solution of the gradient system, w(up) is the set of accumulation points of
the trajectory as t — co. Obviously J(z) = [ for all z € w(ug). On the
other hand, if we denote by z(t) the trajectory of the same gradient
system starting at z at time t = 0, by the semigroup property, as J is
convex, we also deduce that J(z(t)) =/ for all t > 0. This implies, in
particular, that z is a critical point of J: J(z) = 0. In case J has an unique
minimizer, as it happens when J is strictly convex, then z is this minimizer.
aking into account that the accumulation point is unique, we deduce that
w(ug) = {z}. This implies that the whole trajectory u(t) converges to z.
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As we mentioned above, in the infinite-dimensional case, the boundedness
of trajectories does not necessarily imply that they are relatively compact.
The compactness of trajectories is normally achieved by imposing further
monotonicity properties.

Indeed, when J is convex, distances diminish along trajectories. Indeed, if
u and v are two trajectories of the same system then |u(t) — v(t)]
diminishes as time evolves.

According to this it is sufficient to prove convergence towards equilibrium
for a dense set of initial data. This dense set is chosen normally to ensure
compactness through the compactness of the embedding into the phase
space, and the boundedness of the trajectories in that subspace.
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The Direct Method of the Calculus of Variations (DMCV)

Consider a continuous, convex and coercive functional J: H — R in a
Hilbert space H. Then, the functional achieves its minimum in at least one
point:

dhe H: J(h) = grrnEiIrLll J(g). (1)

This can be easily proved in a systematic manner by means of the DMCV:
Step 1. Define the infimimum

| = inf J
inf, (&)

that, by the coercivity of J, necessarily satisfies | > —oc.
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Step 2. Consider the minimizing sequence

(8n)nen C H = J(gn) (/. (2)
By the coercivity of the functional J we deduce that (gp),cn is bounded in
H.

Step 3. H being a Hilbert space, there exists a weakly convergent

subsequence (gn)nen
gn — g en H. (3)

Step 4. J being continuous in H and convex it is lower semicontinuous
with respect to the weak topology. Therefore,

J(g) < lLim J(gn). (4)

n— oo

We deduce that J(g) < I which, by the definition of infimum, implies that
J(g) = I, which shows that the minimum is achieved.
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Abstract

We present new linear convergence results for iterative methods for solving the variational inequality problem.
The methods include the extragradient method, the proximal point method, a matrix splitting method and a
cenain feasible descent method. The proofs of the results are based on cenain error bounds related (0 the
algorithmic mappings. Moreover, we show that all these error bounds held if a projection-type crror bound
holds.
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Tiy1 = Ty + 7G(xy)

Tyil = + 7G(zy)

A | dg. L -+ TG((L'H_%)

|Korpelevich, 1976]
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