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Motivation

Motivation: noise reduction

Acoustic noise reduction
Active versus passive controllers.
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Motivation

And many others...

Noise reduction in cavities and vehicles.

Laser control in Quantum mechanical and molecular systems.

Seismic waves, earthquakes.

Flexible structures.

Environment: the Thames barrier.

Optimal shape design in aeronautics.

Human cardiovascular system: the bypass

Oil prospection and recovery.

Irrigation systems.

........
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Motivation

The mathematical theory needed to understand these issues combines:

Partial Differential Equations (PDE)

Networks and graph theory

Control Theory

Optimal Design

Optimization

Spectral analysis

Microlocal analysis

Numerical analysis

. . .

In this talk we aim to present some toy models and problems, together
with some key results and research perspectives.

E. Zuazua (FAU-AvH) 1-d Waves March 31, 2020 5 / 37



Numerics of control
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Numerics of control

Control of 1− d vibrations of a string

The 1-d wave equation, with Dirichlet boundary conditions, describing the
vibrations of a flexible string, with control on one end:





ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y0(x), yt(x , 0) = y1(x), 0 < x < 1

y = y(x , t) is the state and v = v(t) is the control.
The goal is to stop the vibrations, i.e. to drive the solution to equilibrium
in a given time T : Given initial data {y0(x), y1(x)} to find a control
v = v(t) such that

y(x ,T ) = yt(x ,T ) = 0, 0 < x < 1.
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Numerics of control
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Numerics of control

The dual observation problem

The control problem above is equivalent to the following one, on the
adjoint wave equation:





ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E (t) =
1

2

∫ 1

0

[
|ϕx(x , t)|2 + |ϕt(x , t)|2

]
dx = E (0), ∀0 ≤ t ≤ T .

The question is then reduced to analyze whether the folllowing inequality
is true. This is the so called observability inequality:

E (0) ≤ C (T )

∫ T

0
|ϕx(1, t)|2 dt.

E. Zuazua (FAU-AvH) 1-d Waves March 31, 2020 9 / 37



Numerics of control

The answer to this question is easy to gues: The observability inequality
holds if and only if T ≥ 2.

E(0) ≤
� T

0
|ϕx(1, t)|2dt

Wave localized at t = 0 near the extreme x = 1 propagating with velocity
one to the left, bounces on the boundary point x = 0 and reaches the
point of observation x = 1 in a time of the order of 2.
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Numerics of control

Construction of the Control

Following J.L. Lions’ HUM (Hilbert Uniqueness Method), the control is

v(t) = ϕx(1, t),

where ϕ is the solution of the adjoint system corresponding to initial data
(ϕ0, ϕ1) ∈ H1

0 (0, 1)× L2(0, 1) minimizing the functional

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
,

in the space H1
0 (0, 1)× L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1)× L2(0, 1) is

guaranteed by the fact that ϕx(1, t) ∈ L2(0,T ) (hidden regularity).
Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY. 1

1Norbert Wiener (1894–1964) defined Cybernetics as the science of control and
communication in animals and machines
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Numerics of control The discrete approach: Discretize and then control
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Numerics of control The discrete approach: Discretize and then control

Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1,

which divides [0, 1] into N + 1 subintervals

Ij = [xj , xj+1], j = 0, ...,N.

Finite difference semi-discrete approximation of the wave equation:





ϕ′′j − 1
h2

[ϕj+1 + ϕj−1 − 2ϕj ] = 0, 0 < t < T , j = 1, . . . ,N

ϕj(t) = 0, j = 0, N + 1, 0 < t < T
ϕj(0) = ϕ0

j , ϕ
′
j(0) = ϕ1

j , j = 1, . . . ,N.
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Numerics of control The discrete approach: Discretize and then control

From finite-dimensional dynamical systems to infinite-dimensional ones in
purely conservative dynamics.....
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Numerics of control The discrete approach: Discretize and then control

Then it should be sufficient to minimize the discrete functional

Jh(ϕ0, ϕ1) =
1

2

∫ T

0

|ϕN(1, t)|2
h2

dt+h
N∑

j=1

ϕ1
j y

0
j − h

N∑

j=1

ϕ0
j y

1
j ,

which is a discrete version of the functional J of the continuous wave
equation since

−ϕN(t)

h
=
ϕN+1 − ϕN(t)

h
∼ ϕx(1, t).

Then

vh(t) = −ϕ
?
N(t)

h
.
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Numerics of control The discrete approach: Discretize and then control

A NUMERICAL EXPERIMENT

Plot of the initial datum to be controlled for the string occupying the
space interval 0 < x < 1.
Plot of the time evolution of the exact control for the wave equation in
time T = 4.
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Numerics of control The discrete approach: Discretize and then control

The control diverges as h→ 0. 2

2E. Z. Propagation, observation, and control of waves approximated by finite
difference methods. SIAM Review, 47 (2) (2005), 197-243.
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Numerics of control The discrete approach: Discretize and then control

WHY?

The Fourier series expansion shows the analogy between continuous and
discrete dynamics.
Discrete solution:

~ϕ =
N∑

k=1


ak cos

(√
λhkt

)
+

bk√
λhk

sin

(√
λhkt

)
 ~wh

k .

Continuous solution:

ϕ =
∞∑

k=1

(
ak cos(kπt) +

bk
kπ

sin(kπt)

)
sin(kπx)
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Numerics of control The discrete approach: Discretize and then control

Recall that the discrete spectrum is as follows and converges to the
continuous one:

λhk =
4

h2
sin2

(
kπh

2

)

λhk → λk = k2π2, as h→ 0

wh
k = (wk,1, . . . ,wk,N)T : wk,j = sin(kπjh), k, j = 1, . . . ,N.

The only relevant differences arise at the level of the dispersion properties
and the group velocity. High frequency waves do not propagate, remain
captured within the grid, without never reaching the boundary. This
makes it impossible the uniform boundary control and observation of the
discrete schemes as h→ 0.
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Numerics of control The discrete approach: Discretize and then control

Nπ

1 2 3

Discrete problem

Continuous problem
λ

k
1/2

... N k

Graph of the square roots of the eigenvalues both in the continuous and in
the discrete case. The gap is clearly independent of k in the continuous
case while it is of the order of h for large k in the discrete one.
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Numerics of control The discrete approach: Discretize and then control

A numerical phamtom

~ϕ = exp
(
i
√
λN(h) t

)
~wN − exp

(
i
√
λN−1(h) t

)
~wN−1.

Spurious semi-discrete wave combining the last two eigenfrequencies with
very little gap:

√
λN(h)−

√
λN−1(h) ∼ h.

h = 1/61, (N = 60), 0 ≤ t ≤ 120.
E. Zuazua (FAU-AvH) 1-d Waves March 31, 2020 21 / 37



Numerics of control A remedy: Fourier filtering
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Numerics of control A remedy: Fourier filtering

Fourier filtering

Nπ

1 2 3 ... kN

Discrete problem

Continuous problem
λ

k
1/2

To filter the high frequencies, keeping the components k ≤ δ/h with
0 < δ < 1. Then the group velocity remains uniformly bounded below and
uniform observation holds in time T (δ) > 2 such that T (δ)→ 2 as δ → 0.
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Numerics of control A remedy: Fourier filtering

Numerical experiment, revisited, with filtering

graficas/filt_99_40.jpg

With appropriate filtering the control converges as h→ 0.
E. Zuazua (FAU-AvH) 1-d Waves March 31, 2020 24 / 37



Numerics of control A remedy: Fourier filtering

CONCLUSION

The minima of Jh diverge because its coercivity is vanishing as h→ 0;

This is intimately related to the blow-up of the discrete observability
constant Ch(T )→∞, for all T > 0 as h→ 0:

Eh(0) ≤ Ch(T )

∫ T

0

∣∣∣∣
ϕN(t)

h

∣∣∣∣
2

dt

This is due to the lack of propagation of high frequency numerical
waves due to the dispersion that the numerical grid produces.

Actually it is known that Ch(T ) diverges exponentially: S. Micu,
Numerische Math., 2002.

E. Zuazua (FAU-AvH) 1-d Waves March 31, 2020 25 / 37



Numerics of control A remedy: Fourier filtering

WELL KNOWN PHENOMENA FOR WAVES IN HIGHLY
OSCILLATORY MEDIA

ϕtt − (α(x)ϕx)x = 0.
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Numerics of control A remedy: Fourier filtering

F. Colombini & S. Spagnolo, Ann. Sci. ENS, 1989

M. Avellaneda, C. Bardos & J. Rauch, Asymptotic Analysis, 1992.

C. Castro & E. Z. Archive Rational Mechanics and Analysis, 2002.
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Numerics of control A remedy: Fourier filtering

DISCRETE MULTIPLIERS

The proof of uniform observability of discrete filtered solutions can
developed in various ways:

Using Ingham inequality in their Fourier series representation since
filtering guarantess an uniform gap condition;

Discrete multipliers:

The multiplier xϕx for the wave equation yields:

TE (0) +

∫ 1

0
xϕxϕt dx

∣∣T
0

=
1

2

∫ T

0
|ϕx(1, t)|2 dt.

and this implies, as needed,

(T − 2)E (0) ≤ 1

2

∫ T

0
|ϕx(1, t)|2 dt.
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Numerics of control A remedy: Fourier filtering

The multiplier j(ϕj+1 − ϕj−1) for the discrete wave equation gives:

TEh(0) + Xh(t)
∣∣T
0

=
1

2

∫ T

0

∣∣∣∣
ϕN(t)

h

∣∣∣∣
2

dt+
h

2

N∑

j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt,

Note that

h

2

N∑

j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt ∼

h2

2

∫ T

0

∫ 1

0
|ϕxt |2dxdt.

Filtering is needed to absorb this higher order term: For 1 ≤ j ≤ δN
∣∣∣∣∣
h

2

N∑

j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt

∣∣∣∣∣ ≤ γ(δ)TE (0),

with 0 < γ(δ) < 1.
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2-grids

TWO-GRID ALGORITHM (R. Glowinski, M. Asch-G. Lebeau, M.
Negreanu, L. Ignat, E. Z.)

To develop on the physical space a different remedy to Fourier filtering.
High frequencies producing lack of gap and spurious numerical solutions
correspond to large eigenvalues

√
λhN ∼ 2/h.

When refining the mesh

h→ h/2,

√
λ
h/2
2N ∼ 4/h.

Refining the mesh h→ h/2 produces the same effect as filtering with
parameter 1/2.
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2-grids

Solutions on the fine grid of size h corresponding to slowly oscillating data
given in the coarse mesh (2h) are no longer pathological:

ϕ = ϕl + ϕh, ϕl =

(N−1)/2∑

k=1

ck ~wk , ϕh =

(N−1)/2∑

k=1

ck
λk

λN+1−k
~wN+1−k ,

||ϕh|| ≤ ||ϕl ||.
1− d

• M. Negreanu & E. Z., 2004. The two-grid algorithm converges for
control times T > 4. Multipliers techniques.

• M. Mehrenberger & P. Loreti, 2005. Same result for T > 2
√

2 using
Ingham inequalities.
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2-grids

SUMMARY:

The most natural numerical methods for computing the controls
diverge.

Filtering of the high frequencies is needed. This may be done on the
Fourier series expansion or on the physical space by a two-grid
algorithm.

Convergence of the controls is guaranteed by minimizing the discrete
functional Jh over the class of slowly oscillating data. This produces a
relaxation of the control requirement: only the projection of the
discrete state over the coarse mesh vanishes.
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Conclusion

CONCLUSIONS:

• CONTROL AND NUMERICS DO NOT COMMUTE

• FOURIER FILTERING, MULTI-GRID METHODS ARE GOOD
REMEDIES IN SIMPLE SITUATIONS: CONSTANT
COEFFICIENTS, REGULAR MESHES.

• MUCH REMAINS TO BE DONE TO HAVE A COMPLETE
THEORY AND TO HANDLE MORE COMPLEX SYSTEMS. BUT
ALL THE PATHOLOGIES WE HAVE DESCRIBED WILL
NECESSARILY ARISE IN THOSE SITUATIONS TOO.

• THE MATHEMATICAL THEORY NEEDS TO COMBINE TOOLS
FROM PARTIAL DIFFERENTIAL EQUATIONS, CONTROL
THEORY, CLASSICAL NUMERICAL ANALYSIS AND
MICROLOCAL ANALYSIS.

E. Zuazua (FAU-AvH) 1-d Waves March 31, 2020 35 / 37



Conclusion

OPEN PROBLEMS

Complex geometries, variable and irregular coefficients, irregular meshes,
the system of elasticity, nonlinear state equations, ...
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Conclusion

To learn more on this topic:

E. Z. Propagation, observation, and control of waves approximated by
finite difference methods. SIAM Review, 47 (2) (2005), 197-243.

S. ERVEDOZA and E. Z., The Wave Equation: Control and
Numerics, in “Control and stabilization of PDE’s”, P. M. Cannarsa
and J. M. Coron, eds., ‘Lecture Notes in Mathematics”, CIME
Subseries, Springer Verlag, to appear.

A. MARICA and E. Z., Symmetric discontinuous Galerkin
approximations of 1− d waves: High frequency propagation and
observability, Springer Briefs, to appear.

L. IGNAT & E. Z., Dispersive Properties of Numerical Schemes for
Nonlinear Schrödinger Equations, Proceedings of FoCM’2005,
Santander, June-July 2005.
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