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Toy

THE 1-D STRING

A natural way of formulating these problems is as follows:

Can we recover full information about solutions, and the media
in which they evolve out measurements done somewhere on it
(its boundary, for instance)?

Consider the 1− d wave equation with fixed-end conditions:
ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x), 0 < x < 1.

Is it true that???

E (0) ≤ C (T )

∫ T

0
|ϕx(1, t)|2 dt,

where the energy of solutions, which is conserved in time, is

E (t) =
1

2

∫ 1

0

[
|ϕx(x , t)|2 + |ϕt(x , t)|2

]
dx = E (0), ∀0 ≤ t ≤ T .
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Toy

The answer

The inequality holds iff T ≥ 2:

Wave localized at t = 0 near the extreme x = 1 that propagates with
velocity one to the left, bounces on the boundary point x = 0 and reaches
the point of observation x = 1 in a time of the order of 2.
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Toy

WHY?

Explicit D’Alembert’s formula:

ϕ(x , t) = f (x + t) + g(x − t);
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Toy

Fourier series:

Ingham’s Theorem. (1936) Let {µk}k∈Z be a sequence of real
numbers such that

µk+1 − µk ≥ γ > 0, ∀k ∈ Z.

Then, for any T > 2π/γ there exists C (T , γ) > 0 such that

1

C (T , γ)

∑
k∈Z
| ak |2≤

∫ T

0

∣∣∣∣∣∑
k∈Z

ake
iµk t

∣∣∣∣∣
2

dt ≤ C (T , γ)
∑
k∈Z
| ak |2

for all sequences of complex numbers {ak} ∈ `2
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Toy

ϕ(x , t) =
∑
k∈Z

ake
ikπt sin(kπx).

ϕx(1, t) =
∑
k∈Z

(−1)kkake
ikπt

Furthermore, if T > 2,∫ T

0

∣∣∣∑
k∈Z

(−1)kkake
ikπt
∣∣∣2dt ∼∑

k∈Z
k2|ak |2.

On the other hand,
E0 ∼

∑
k∈Z

k2|ak |2.

In fact, in this case, using the orthogonality properties of trigonometric
polynomials we can prove that the same holds if T = 2.
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Toy

Sidewise energy propagation:

[ϕtt − ϕxx = 0] ≡ [ϕxx − ϕtt = 0.]
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Toy

But, except for this case

Proving this kind of inequalities is rarely an easy matter.

In fact, our intuition fails for rough coefficients. These results fail to hold
when coefficients do not have one derivative (say BV -coefficients). In
particular one can build C 0,α coefficients for which the above inequalities
fail because of the existence of localized waves.

ρ(x)ϕtt − (a(x)ϕx)x = 0.
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Toy

F. Colombini & S. Spagnolo, Ann. Sci. ENS, 1989

M. Avellaneda, C. Bardos & J. Rauch, Asymptotic Analysis, 1992.

C. Castro & E. Z. Archive Rational Mechanics and Analysis, 2002.

Similar difficulties appear when dealing with numerical schemes (discrete
media∼ irregular media) and, as we shall see, also for graphs and/or
networks.

E. Zuazua (FAU - AvH) Waves on networks March 31, 2020 10 / 54



Pointwise control

Table of Contents

1 The toy model: 1− d string

2 Pointwise control

3 Planar networks
The problem
The star
The tree
General planar networks

4 Other results

5 Conclusion

6 Open problems

E. Zuazua (FAU - AvH) Waves on networks March 31, 2020 11 / 54



Pointwise control

Pointwise measurements in the interior

Take x0 ∈ (0, 1). How much energy we can recover from measurements
done on x0?

ϕ(x0, t) =
∑
k∈Z

ake
ikπtsin(kπx0).

Furthermore, if T > 2,∫ T

0

∣∣∣∑ ake
ikπtsin(kπx0)

∣∣∣2dt ∼∑ sin2(kπx0)|ak |2.

Obviously, two cases:

The case x0 /∈ Q: sin2(kπx0) 6= 0 for all k and the quantity under
consideration is a norm, i.e. it provides information on all the Fourier
components of the solutions.

The case: x0 ∈ Q, some of the weights sin2(kπx0) vanish an the
quadratic term is not a norm.

But, even if, sin2(kπx0) 6= 0 for all k, the norm under consideration is not
the L2-one we expect!!!!
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Pointwise control

Can we explain this in terms of rays, and the propagation of waves (and
antiwaves)?

If x0 is rational we can build a finite number of rays and anti-rays that
always intersect in x0 for the time interval (0, 2) of periodicity of solutions.
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Pointwise control

The case x0 irrational.

Can we expect that ∣∣∣ sin(kπx0)
∣∣∣ ≥ α > 0, ∀k?

This is impossible!!!!
Indeed, this would mean that∣∣∣kπx0 −mπ| ≥ β

for all k ,m ∈ Z. And this is obviously false.
For suitable irrational numbers x0 we can get∣∣∣kπx0 −mπ| ≥ β/k.

And this is the best we can get.
In this case we get an observation inequality but with a loss of one
derivative.
For some other irrational numbers (Liouville ones, for instance) the
degeneracy may be arbitrary fast.
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Pointwise control

Conclusion: Making measurements in the interior of the domain is a
much less robust process than doing it on the boundary (actually, one
boundary measurement=two measurements in the interior since the
boundary condition adds one).
In some cases we fail to capture all the Fourier components and, even if
we are able to do it, this does not happen in the energy space, but there is
a loss of at least one derivative.

Ex0 ≤ C

∫ T

0
|ϕ(x0, t)|2dt.

Note that, in this case, the answer does not come only by an analysis of
the propagation of characteristics but that the diophantine approximation
theory enters.
Note that the time needed for this to hold is T = 2 and not the
characteristic time one could expect: 2 max(x0, 1− x0). All rays need to
pass through the observation point twice!
Observe finally that the ray + anti-ray argument above can be used to
show the optimality of these results.
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Pointwise control

The same issue can be addressed using D’Alembert’s formula. Then, the
problem reads as follows:

ψ(t + `1)− ψ(t − `1) = f (t) ∈ L2
t ; ψ(t + `2)− ψ(t − `2) = g(t) ∈ L2

t .

Can we get an estimate of the form

||ψ||∗ ≤ C
[
||f ||L2

t
+ ||g ||L2

t

]
????

Again, the answer depends on whether `1/`2 is rational or not, and the
class of irrationality to which it belongs.
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Planar networks The problem

How much energy can we recover from one or several external vertices?
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Planar networks The problem

The model for the vibration of a network:

φixx − φitt = 0 in R× [0, `i ], i = 1, ...,M,

φi(j)(t, vj) = 0 t ∈ R, j = 1, ...,N,
φi (t, v) = φj(t, v) t ∈ R, v ∈VM, i , j ∈ Iv,∑

i∈Iv ∂nφ
i (t, v) = 0 t ∈ R, v ∈VM,

φi (0, x) = φi0(x), φit(0, x) = φi1(x) x ∈ [0, `i ], i = 1, ...,M;

This is simply the wave equation on the network with null Dirichlet
boundary conditions on the external vertices and initial conditions:

Φtt −∆NΦ = 0,Φ = 0 on ∂N.

The energy of the system is conserved and it reads

E (t) =
∑
i

∫ `i

0

[
|φit(x , t)|2 + φix(x , t)|2

]
dt,

where the sum runs over the set of edges in the nework.
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Planar networks The problem

Three examples in increasing complexity:

The star;

The tree;

General planar network.
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Planar networks The star

The star (tripoid).

Generically vibrations excite all components. This means that
measurements done in any of the vertices should give global information on

solutions.

E. Zuazua (FAU - AvH) Waves on networks March 31, 2020 26 / 54



Planar networks The star

The star:

In some cases the possibility of making global measurements from only
single external vertex fails!!!!
This happens, for instance, when `1/`2 is rational.
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Planar networks The star

Assume `1/`2 irrational. How much of the total energy can we recover by
means of measurements done on x = 0?
The answer is exactly the same as for the 1− d string with observation in
some interior point: Even if some irrationality property is imposed one
always looses a number of derivatives in the observation process. The
minimal time is T > 2(`+ `1 + `2).
Why this analogy?

The energy propagates along
the observed string;

We end up getting a single
string composed of `1 and `2

and with information on the
joint.
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Planar networks The star

Similar results hold for general stars:

As soon as two lenghts are
mutually irrational one looses a
number of Fourier components;

One can recover all Fourier
components under irrationality
conditions on the ratio of each pair
of lengths.

The precise energy we recover
depends on diophantine
approximation properties.

The results are sharp, as one can
show by a wave + anti-wave
argument following characteristics.
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Planar networks The tree

What about tress?

It is well known that (Lagnese-Leugering-Schmidt, Avdonin, ...) if one
makes measurements on all but one external vertex, then one can recover
the total energy of solutions.

This is a simple consequence of the sidewise energy estimates, starting
from the observed vertices and covering in an induction argument the
whole tree.

E. Zuazua (FAU - AvH) Waves on networks March 31, 2020 30 / 54



Planar networks The tree
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Planar networks The tree
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Planar networks The tree
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Planar networks The tree
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Planar networks The tree

But this method fails as soon as information is not provided in two
external vertices
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Planar networks The tree

Observation on one single external vertex

The sharp condition is: The spectra of each pair of subtrees with a
common vertex should have empty intersection.
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Planar networks The tree

This condition is sharp. Whenever two spectra have a common point
one can build an isolated eigenfunction with support on those two
subtrees and with the common vertex as a nodal point. This
eigenfunction leaves the rest of the network at rest.

This condition is the natural extension of the one on irrationality for
stars: Note that `1/`2 being irrational is equivalent to σ1 ∩ σ2 = ∅.
This condition is generically true.

The time needed for this to occur is T ∗ = 2L, L being the total
length of the tree. In this sense the behavior is the same as for one
single string of length L controlled from one end. This is so because
the spectral density of these two systems is the same.1

1J. von Below, S. Nicaise,...
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Planar networks The tree

The sharp energy one is able to measure depends on each tree. But,
in all cases, it can be characterized in terms of the Fourier expansion
of solutions:

ϕ(x , t) =
∑
k∈Z

ake
i
√
λk twk ;

∑
k∈Z

ρk |ak |2 ≤ C

∫ T

0

∣∣∣ϕx(O, t)
∣∣∣2dt,

and ρk > 0 for all k ∈ Z if and only if the condition of disjoint
intersection for the spectra of subtrees holds.
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Planar networks General planar networks

Preliminaries on the Theory of Non Harmonic Fourier Series

Given a sequence (µk) of distinct real numbers

R(µk) := sup
{
r :

{∑
cke

iµk t
}

is dense C ([−r , r ])
}

is called its completeness radius.
Haraux and Jaffard (1991) derived the following result, as a Corollary of
the celebrated Beurling-Malliavin Theorem (1967):

1) For every T > 2R(λk),

∫ T

0

∣∣∣∣∣∑
k∈Z

ake
iµk t

∣∣∣∣∣
2

dt ≥
∑
k

ρk |ak |2 , (1)

for any finite sequence (ak), with ρk > 0 independent of (ak).

2) If T < 2R(µk) the previous inequality may not hold whatever the
weights (ρk) are.

E. Zuazua (FAU - AvH) Waves on networks March 31, 2020 45 / 54



Planar networks General planar networks

In the present case, µk =
√
λk , λk being the eigenvalues on the network.

Since the asymptotic density of the eigenvalues of the network coincides
with L, the total length of the network, then R(µk) = L as well.
As a consequence of this we deduce that:

Theorem

The necessary and sufficient condition such that for all T > 2L a suitable
energy (with suitable weights, coding non-trivial information on each
eigencomponent) can be recovered by means of a measurement made on a
single external vertex is that there are no eigenfunctions of the network
vanishing on the corresponding edge.
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Other results

Stabilization: These results can be transfereed into the context of
stabilization. One can ensure a decay rate of smooth solutions (with
data in the domain of the Laplacian) which depends on the strength
of the observability inequality for the homogeneous system, and more
precisely on the rate of degeneracy of the weights in the Fourier series
description (joint work with J. Valein).

Colored networks and multiple measurements: If measurements are
made on the interior nodes how many do we need to measure on?
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Other results

Other models: heat and Schrödinger equations.
Kannai transform allows transfering the results we have obtained for
the wave equation on the network to other models: (Y. Kannai, 1977;
K. D. Phung, 2001; L. Miller, 2004)

et∆Nϕ =
1

4πt

∫ +∞

−∞
e−s

2/4tW (s)ds

where W (x , s) solves the wave equation on the same network with
data (ϕ, 0).

Wss −∆NW = 0 + Kt − Kss = 0 → Ut −∆NU = 0,

Wss −∆NW = 0 + iKt − Kss = 0 → iUt −∆NU = 0.
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Conclusion

CONCLUSIONS:

• Wave propagation on networks needs to combine the classical
methods on the theory of wave propagation, with tools coming from
graph theory and, even from Number Theory. The later makes the
topic extremely subtle and results unstable.

Wave propagation on networks

=

Wave propagation + Graph Theory + Number Theory.
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Open problems

OPEN PROBLEMS

Non planar networks and more complex systems.

Consequences on nonlinear problems. Difficult because of the Number
Theory aspects and the loss of derivatives in estimates.

Numerical approximation issues. Closely related to the theory of
coupled oscillators. Delicate because of the diophantine
approximation issues. Also because of the nodal conditions.

Decomposition arguments for general planar networks?

Characterization of networks with localized modes?

More general joint conditions.
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Open problems

To learn more on this topic:
R. Dáger and E. Z. Wave Propagation, Observation and Control in 1− d
Flexible Multi-Structures. Mathématiques et Applications, 50, 2006.

E. Zuazua (FAU - AvH) Waves on networks March 31, 2020 54 / 54


	The toy model: 1-d string
	Pointwise control
	Planar networks
	The problem
	The star
	The tree
	General planar networks

	Other results
	Conclusion
	Open problems

