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Motivation

Control problems for PDE are important for at least two reasons:

They emerge in most real applications:

PDE as the models of Continuum and Quantum
Mechanics.

Control and/or Optimization as essential step in all
processes.

They demand a better master of the standard PDE models
and new analytical tools.

This need of new analytical tools is enhanced when facing
numerical simulation problems!

Furthermore, these kind of techniques are of application in some
other fields, such as inverse problems, optimal shape design
and parameter identification problems.
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Topics to be addressed:

1 The wave equation

2 The heat equation

3 Perspectives
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http://www.ind.rwth-aachen.de/research/noise reduction.html
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Is it true that
CONTROL + NUMERICS = NUMERICS + CONTROL ?

Continuous versus discrete approaches....

An issue that is relevant in amy other contexts as well, for
instance, control of conservation laws in the presence of
shocks (S. Ulbrich, M. Giles, C. Bardos & O. Pironneau, A.
Bressan & A. Marson, E. Godlewski & P. A. Raviart, C. Castro, F.
Palacios & E. Z., ...)
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Control of 1− d vibrations of a string

The 1-d wave equation, with Dirichlet boundary conditions,
describing the vibrations of a flexible string, with control on one
end:





ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y0(x), yt(x , 0) = y1(x), 0 < x < 1

y = y(x , t) is the state and v = v(t) is the control.
The goal is to stop the vibrations, i.e. to drive the solution to
equilibrium in a given time T : Given initial data {y0(x), y1(x)} to
find a control v = v(t) such that

y(x ,T ) = yt(x ,T ) = 0, 0 < x < 1.
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The dual observation problem

The control problem above is equivalent to the following one, on
the adjoint wave equation:





ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E (t) =
1

2

∫ 1

0

[
|ϕx(x , t)|2 + |ϕt(x , t)|2

]
dx = E (0), ∀0 ≤ t ≤ T .

The question is then reduced to analyze whether the folllowing
inequality is true. This is the so called observability inequality:

E (0) ≤ C (T )

∫ T

0
|ϕx(1, t)|2 dt.
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The answer to this question is easy to gues: The observability
inequality holds if and only if T ≥ 2.

E(0) ≤
� T

0
|ϕx(1, t)|2dt

Wave localized at t = 0 near the extreme x = 1 that propagates
with velocity one to the left, bounces on the boundary point x = 0
and reaches the point of observation x = 1 in a time of the order
of 2.
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Construction of the Control

Once the observability inequality is known the control is easy to
characterize. Following J.L. Lions’ HUM (Hilbert Uniqueness
Method), the control is

v(t) = ϕx(1, t),

where u is the solution of the adjoint system corresponding to
initial data (ϕ0, ϕ1) ∈ H1

0 (0, 1)× L2(0, 1) minimizing the functional

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
,

in the space H1
0 (0, 1)× L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1)× L2(0, 1) is

guaranteed by the fact that ϕx(1, t) ∈ L2(0,T ) (hidden regularity).
Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY.
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The continuous numerical approach: Gradient algorithms

The control was characterized as being the minimizer over
H1

0 (0, 1)× L2(0, 1) of

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
.

We produce an algorithm in which:

We replace J by some numerical approximation Jh with an
order hθ.

We apply a gradient iteration algorithm to Jh.
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The following holds:

Theorem

(S. Ervedoza & E. Z., 2011)
In

K ∼ C | log(h)|
iterations, the controls vKh obtained after applying K iterations of
the gradient algorithm to Jh fulfill:

||v − vKh || ≤ C | log(h)|max(θ,1)hθ.

Note that for the classical Finite Difference and Finite Element
methods for the wave equation the convergence order is θ = 2/3.

We have developed the continuous program successfully!
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Note that the error estimate deteriorates if K >> C | log(h)|!!!
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Error Vs Iterations

... and, therefore, the method has to be used with much care
since, after all, we are dealing with an unstable, non-robust
algorithm....
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But one might want to take a shortcut controlling a
finite-dimensional reduced dynamics.

Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1,

which divides [0, 1] into N + 1 subintervals

Ij = [xj , xj+1], j = 0, ...,N.

Finite difference semi-discrete approximation of the wave equation:





ϕ′′j − 1
h2 [ϕj+1 + ϕj−1 − 2ϕj ] = 0, 0 < t < T , j = 1, . . . ,N

ϕj(t) = 0, j = 0, N + 1, 0 < t < T
ϕj(0) = ϕ0

j , ϕ
′
j(0) = ϕ1

j , j = 1, . . . ,N.
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From finite-dimensional dynamical systems to infinite-dimensional
ones in purely conservative dynamics.....
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Then it should be sufficient to minimize the discrete functional

Jh(ϕ0, ϕ1) =
1

2

∫ T

0

|ϕN(1, t)|2
h2

dt+h
N∑

j=1

ϕ1
j y

0
j − h

N∑

j=1

ϕ0
j y

1
j ,

which is a discrete version of the functional J of the continuous
wave equation since

−ϕN(t)

h
=
ϕN+1 − ϕN(t)

h
∼ ϕx(1, t).

Then

vh(t) = −ϕ
?
N(t)

h
.
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A NUMERICAL EXPERIMENT

Plot of the initial datum to be controlled for the string occupying
the space interval 0 < x < 1.
Plot of the time evolution of the exact control for the wave
equation in time T = 4.
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The control diverges as h→ 0.
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WHY?

The Fourier series expansion shows the analogy between
continuous and discrete dynamics.
Discrete solution:

~ϕ =
N∑

k=1


ak cos

(√
λhkt

)
+

bk√
λhk

sin

(√
λhkt

)
 ~wh

k .

Continuous solution:

ϕ =
∞∑

k=1

(
ak cos(kπt) +

bk
kπ

sin(kπt)

)
sin(kπx)
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Recall that the discrete spectrum is as follows and converges to the
continuous one:

λhk =
4

h2
sin2

(
kπh

2

)

λhk → λk = k2π2, as h→ 0

wh
k = (wk,1, . . . ,wk,N)T : wk,j = sin(kπjh), k, j = 1, . . . ,N.

The only relevant differences arise at the level of the dispersion
properties and the group velocity. High frequency waves do not
propagate, remain captured within the grid, without never reaching
the boundary. This makes it impossible the uniform boundary
control and observation of the discrete schemes as h→ 0.
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Graph of the square roots of the eigenvalues both in the
continuous and in the discrete case. The gap is clearly independent
of k in the continuous case while it is of the order of h for large k
in the discrete one.
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A numerical phamtom

~ϕ = exp
(
i
√
λN(h) t

)
~wN − exp

(
i
√
λN−1(h) t

)
~wN−1.

Spurious semi-discrete wave combining the last two
eigenfrequencies with very little gap:

√
λN(h)−

√
λN−1(h) ∼ h.

h = 1/61, (N = 60), 0 ≤ t ≤ 120.
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Fourier filtering

To filter the high frequencies, i.e. keep only the components of the
solution corresponding to indexes: k ≤ δ/h with 0 < δ < 1. This
guarantees that the group velocity remains uniformly bounded
below and allows observing uniformly filtered solutions in time
T (δ) > 2 such that T (δ)→ 2 as δ → 0.
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Relaxed controls:

Then, the filtering algorithm can be implemented as follows:

Minimize Jh over the class of filtered solutions with filtering
parameter 0 < δ < 1 and T > T (δ);

This yields controls v δh such that

vδ
h → v as h→ 0;

The corresponding states ~yh satisfiy:

πδ(~yh) ≡ πδ(~yh
′) ≡ 0.

This is a relaxed version of the controllability condition.
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Numerical experiment, revisited, with filtering

graficas/filt_99_40.jpg

With appropriate filtering the control converges as h→ 0.
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The discrete approach when applied directly fails, but it can cured
borrowing ideas from the continuous analysis. The bonus is that:

We compute numerical approximations of the controls that
perform well, in an identified manner, controlling a Fourier
projection of solutions at the discrete level.

The algorithm converges is stable and robust, an the error
diminishes as the number of iterations →∞.
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Controls in multi-d may develop complex and unexpected patterns,
in view of the laws of Geometric Optics.

G. Lebeau and M. Nodet, Experimental Study of the HUM Control
Operator for Linear Waves, Experimental Mathematics, 2010.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesThe control problem Approximate control Null control A first attempt to the numerical approximation of controls The Kannai transform Numerics through Kannai transform

1 Motivation

2 The control of waves
Why?
What?
A toy model
The discrete approach
Remedies

3 The heat equation
The control problem
Approximate control
Null control
A first attempt to the numerical approximation of controls
The Kannai transform
Numerics through Kannai transform

4 Conclusions and Perspectives

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesThe control problem Approximate control Null control A first attempt to the numerical approximation of controls The Kannai transform Numerics through Kannai transform

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain
of Rn with smooth boundary Γ, Q = (0,T )× Ω and
Σ = (0,T )× Γ:





yt −∆u = v1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(1)

1ω denotes the characteristic function of the subset ω of Ω where
the control is active.
We assume that y0 ∈ L2(Ω) and v ∈ L2(Q) so that (4) admits an
unique solution

y ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

y = y(x , t) = solution = state, v = v(x , t) = control

Goal: To produce prescribed deformations on the solution u by
means of suitable choices of the control function v .
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Goal: Given any target y1 ∈ L2(Ω) and any ε > 0 to find a control
f such that the solution t = T at the final time satisfies:

||y(T )− y1||L2(Ω) ≤ ε.

This is nothing else than the density of the set of reachable states.
By Hanhn-Banach Theorem this is equivalent to the unique
continuation for the adjoint system:




−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(x ,T ) = ϕT (x) in Ω.

(2)

ϕ = 0 in ω × (0,T ) =⇒ ϕ ≡ 0, i.e. ϕT ≡ 0. (3)

This UCP is a consequence of Holmgren’s uniqueness Theorem.
This is so for all ω and all T > 0.
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The control can actually be computed by minimizing the
functional:

J(ϕ0) =
1

2

∫ T

0

∫

ω
ϕ2dxdt + ε||ϕT ||L2(Ω) +

∫

Ω

[
ϕ(0)y0 − ϕT y1

]
dx .
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The model: 



yt −∆y = v1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(4)

Objective:
y(T ) ≡ 0.

This corresponds to taking ε = 0 in the approximate control
problem above.
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The control can be built as follows: Consider the functional

J(ϕ0) =
1

2

∫ T

0

∫

ω
ϕ2dxdt +

∫

Ω
ϕ(0)y0dx . (5)

J : L2(Ω)→ R is continuous, and convex.
But, is it coercive?
If yes, the minimizer ϕ̂0 exists and the control

v = ϕ̂

where ϕ̂ is the solution of the adjoint system corresponding to the
minimizer is the control such that

y(T ) ≡ 0.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesThe control problem Approximate control Null control A first attempt to the numerical approximation of controls The Kannai transform Numerics through Kannai transform

For coercivity the following observability inequality is needed:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫

ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (6)

This estimate was proved by Fursikov and Imanuvilov (1996) using
Carleman inequalities.1

In view of this, the null control can be obtained by minimizing

J0(ϕ0) =
1

2

∫ T

0

∫

ω
ϕ2dxdt +

∫

Ω
ϕ(0)y0dx (7)

in the space H = {ϕT : s. t. ||ϕ0||H =

[∫ T

0

∫

ω
ϕ2dxdt

]1/2

<∞}.
What about H?

1Pioneering work was done by H. Fattorini, D. L. Russell, T. I. Seidman in
the 70’s in 1− d .
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Of course,

C1||ϕ(0)||L2(Ω) ≤ ||ϕ0||H ≤ C2||ϕ0||L2(Ω)

but there is a gap of exponential order in the two norms of the left
and right hand side terms of these inequalities:

C1

∑

j≥1

e−λjT |ϕ̂0
j |2 ≤ ||ϕ0||H ≤ C2

∑

j≥1

|ϕ̂0
j |2.

Accordingly
L2(Ω) ⊂ H ⊂ H−∞(Ω).

As we shall see, this will make the effective numerical
approximation issue hard.
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Recall that for the continuous heat equation the null control was
obtained by minimizing

J(ϕ0) =
1

2

∫ T

0

∫

ω
ϕ2dxdt +

∫

Ω
ϕ(0)y0dx (8)

in the space H and that

C1||ϕ(0)||L2(Ω) ≤ ||ϕ0||H ≤ C2||ϕ0||L2(Ω)

Warning! We are dealing with a severely ill-posed
problem.
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When descent algorithms are applied to J over VM , the space
generated by the first M eigenfunctions of the Laplacian,
convergence is very slow.
Condition number with respect to M for various ω ⊂ Ω and
ω = Ω = (0, 1): T = 1.
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As a consequence of this, even if the control is in L2, the data ϕ0

of the adjoint system at time T (which is surely in H) tend not to
be in any reasonable space, thus making computations very hard.
T = 1, ω = (0.2, 0.8) : ϕ0,M for M = 80 on Ω (Left) and on ω
(Right).
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T = 1, ω = (0.2, 0.8) : ‖ϕM(·, x)Xω(x)‖L2(Ω) for M = 80 on
[0,T ] (Left) and on [0.92T ,T ] (Right).
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The continuous approach has failed. We did not succeed on
building an efficient algorithm to compute the controls.
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Several remedies have been derived in the literature, starting with
the pioneering work by R. Glowinski and J. L. Lions. One of them
is based on Tychonnoff regularization. It consists on adding a
regularizing term to the functional to be minimized (or its discrete
version):

Jε0(ϕ0) =
1

2

∫ T

0

∫

ω
ϕ2dxdt+

ε

2
||ϕ0||2L2+

∫

Ω
ϕ(0)u0dx . (9)

One can prove that, whenever the minimizer of the original
functional J belongs to L2, then the regularized controls converge
polynomially as ε tends to zero.
But, as the numerical experiments show, the minimizer does not
belong to L2 not even to any H−s . 2

2S. Micu & E. Z. Regularity issues for the null-controllability of the linear
1-d heat equation, Systems and Control Letters, 2011.
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Kannai transform allows transfering the results we have obtained
for the wave equation to other models and in particular to the heat
equation (Y. Kannai, 1977; K. D. Phung, 2001; L. Miller, 2004)

et∆ϕ =
1√
4πt

∫ +∞

−∞
e−s

2/4tW (s)ds

where W (x , s) solves the corresponding wave equation with data
(ϕ, 0).

Wss −∆W = 0 + Kt − Kss = 0 → Ut −∆U = 0,

Wss −∆W = 0 + iKt − Kss = 0 → iUt −∆U = 0.

This can be actually applied in a more general abstract context
(Ut + AU = 0) but not when the equation has time-dependent
coefficients.
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This can also be used in the context of control:

[Control of the wave equation in Ω]
+

[1− d controlled fundamental solution of the heat equation]
=⇒

[Control of the heat equation in Ω].
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In a recent paper in collaboration with A. Münch we propose a
different strategy based on the following facts:3

A lot of work has been done to build efficient algorithms to
compute exact controls for the wave equation.

The Kannai transform allows to construct the control of the
heat equation by convolution of the wave one with a 1− d
heat kernel.

The method is laborious to be developed numerically but turns out
to be efficient.

3A. Münch and E. Z. Numerical approximation of null controls for the heat
equation through transmutation, J. Inverse Problems, 2010.
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L2(ω)-norm of the control v vs time t for
(y0(x),T , c) = (sin(πx), 1, 1/10) (Left) and
(y0(x),T , c) = (sin(3πx), 1, 1/5) (Right).
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Standard L2-control vs Kannai control.
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Once more the wining strategy is a smart combination of the
continuous and discrete approaches.
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Conclusions

Efficient and rigorous numerical computation of controllers
can be built but often combining tools from the continuous
and the discrete approaches.

Plenty is still to be done in the interfaces between PDE,
Control, Numerics, Harmonic Analysis,...
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Perspectives

Multi-resolution filtering techniques.

Numerical control of waves in random media and in the
presence of noise.

Robust controllers.

Discrete version of Geometric Optics?

Efficient solvers of the ill-posed heat equation

Multiphysics systems: thermoelasticity, fluid-structure
interaction,...

Multiscale control (micro/macro),...
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