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Often the mathematical treatment of real life problems not only involves
Modelling
Analysis
Simulation
but also
Design
Optimisation
Parameter identification
A Uncertainty quantification

B Control (passive or active)

Nowadays this fact is enhanced by the frequent need of data driven
modelling.
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Motivation

Our original motivation: multilinguism

23

A Game-Theoretic Analysis of e ag L0N¥
Minority Language Use in T e :
Multilingual Societies

José-Ramon Uriarte

The Palgrave Handbook of Economics and Language, 2016 - Springer

Why, often, minority languages are used less than expected, in view of
the percentage of population that masters them?

A “politeness equilibrium" emerges as a consequence of a variety of
factors, including the fact we try not to annoy the other.
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This and many other problems in social sciences require a significant
mathematical effort and a variety of modelling paradigms can be
employed:

ODE

Stochastic systems of interacting particles
Reaction-diffusion equations

A Mean Field games

H Kinetic models

@ PDEs on networks
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Allee optimal control of a system in ecology

E. Trélat, J. Zhu & E. Zuazua, M3AS, 2018

1 Y

The bistable Cauchy problem: ™~

.yt_.yXX:a.y(]'_.y)(.y_e)7 Y(Oa'):)/o-

m The state 0 < y < 1 represents the = density of individuals (or of
some of their features).

m a > 0: reproductive rate (a = 1 without loss of generality).

m 0 c(0,1) : local critical density or Allee threshold ! that determines
the sign (positive or negative) the population growth.

m Applications : spread of invading organisms in ecology,? population
genetics (biology), propagation of nerve tension (neurobiology),
waves in chemical reactors (chemistry), etc.

1Warder Clyde Allee, 30's
2M.A. Lewis and P. Kareiva, 1993
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Allee optimal control of a system in ecology

Allee effect regulation

| Y — Yo = ay(1 — y)(y — 0).
m Allee effect (ODE Mechanism):
m Negative population growth (leading to the extinction) when y < 6
m Population grows towards carrying capacity when y > 0.

Regulation :

m increase 0, by the sterile male technique, the mating disruption (pest
management technique), etc.

m decrease 6, providing protection (e.g. vaccines, feeding, suppressing
natural enemies)

Distinguished solutions of the system :

m Steady state constant solutions: y =0 or 6 or 1.

m Traveling wave (TW) solutions : link two of the three steady state
constant solutions, 0 and 1, through a front that propagates in space
with a constant velocity.
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Allee optimal control of a system in ecology

Traveling waves (TW)

m solution of the form

y(t,x) = U(x — ct), U(xoo) = Ug, U(£o) =0

where U(x) is the wave profile and c¢ is the wave speed.

m sign of the wave speed : signc = — fol f(t)dt
|

Ulx — ct)
c<0f ¢>0
&ls
> >
1y 0

o_l\/ f .
Traveling wave

m The profile U is independent of 6: U(x) = li\/j/T;—sz

m [he Allee parameter 0 determines the wave speed:
c=+/a/2(20 — 1).
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Allee optimal control of a system in ecology

‘La ola" / The wave

10 / 46



Allee optimal control of a system in ecology

Operator splitting and TWs

y' =yl —-y)y—0)

Yt = Yxx
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Allee optimal control of a system in ecology

Control through known dynamical properties

Actively and dynamically controlling a system requires, first, to

understand its fundamental dynamical properties, and their dependence
on the control parameters.

Learn about the response to parameter changes = sensitivity analysis. 3*

3D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics,

combustion, and nerve pulse propagation, in PDE and Related Topics, Lecture Notes
in Math., vol. 446, Springer, Berlin, 1975, pp. 5-49.

4P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion =y
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equations to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977)
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Allee optimal control of a system in ecology

Invasion

m 0 =0.1: invasion of the population
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Allee optimal control of a system in ecology

Extintion

m 0 = 0.7 : extinction of the population
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Allee optimal control of a system in ecology

Attractiveness of TW

(D.G. Aronson, H.F. Weinberger & P.C. Fife, J.B. McLeod)

If the initial datum yy is such that yy(x) € [0, 1] and

liminf yo(x) > 6, limsup yo(x) < 6 (1)

X—>=+00 X——00

the solution approaches a the traveling wave U(x — ct — xq) for some xi,
uniformly in x and exponentially in time for c = c(60), i.e.

||y(t,X) — U(X — Cl — X1)||Loo < Ke™ 7%,




Allee optimal control of a system in ecology

Formulation of the control problem: Two grids!

Control /Optimisation problem P
Find 0(t) € [0,1], t € [0, T] such that the solution of

Yt = Yxx = y(l _ y)(y _ 9(1’)),

)/(07 ) — )/0(')
develops into a Travelling Wave solution U(-) at the given time T,
minimizing

J(0) = [Iy(T,") = U|I*

Even if the minimum exists, how close do we get to the target? °

°P. M. Cannarsa, G. Floridia, A.Y. Khapalov, Multiplicative controllability Fomymmm
semilinear reaction-diffusion equations with finitely many changes of sign, JMPA,

ron Humboldt .:'.:'iérc
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Allee optimal control of a system in ecology

For initial data that are well behaved at infinity,

lim yo(x) < lim yo(x),

X— — 0O X—+00

we can get arbitrarily close to the TW target in long time horizons

Two step strategy :
m Step 1. Asymptotic attractiveness of the TW. Choose 6; within

and keep it long enough [0, T;] until the solution approximates a
traveling wave profile.

m Step 2. Shift. The location of the profile can be tuned by choosing
0>, in the time interval [Tl, 11+ T2]

Y=




Allee optimal control of a system in ecology

Computational optimisation: Two-grids

m A fine time-mesh is employed to get a fine approximation of the

state y.
m A coarser one suffices to approximate the control 6.

Often times optimisation (shape optimisation, control) problems are
two-scale ones. This is however hard to see. We just see the scale of the
PDE but not the one of the hidden pattern that emerges when solving

the optimisation problem.?
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Allee optimal control of a system in ecology

Conclusion

m Bang-bang time-dependent regulation of the Allee parameter —
control towards a TW

m Mild effect: long time, approximately
m Weakness of the Allee threshold as control parameter

m Boundary control : The dynamics is confined to a bounded region
and the control is applied by regulating the density of population or
its flux on the boundary

m This mimics the invasion of an external population with specific
characteristics.
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Boundary control

C. Pouchol, E. Trélat, E. Zuazua. Nonlinearity, 2019.

The density of individuals 0 < y(t,x) < 1 obeys the PDE

yt_yXX:y(l_y)(y_9)7
y(O):y07
y(t,0) = u(t), y(t,L) = v(t).

with 0 < 1/2, x € (0, L). Constrained controls : 0 < u(t), v(t) < 1.

For a (=0, 6 ou 1), we say that

m [ he system is controllable to o in finite time if for all 0 < yp <1,
there exist T, and controls u, v s.t.

y(T7°) — Q.

m /n infinite time when the same occurs asymptotically as t — +oc.
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Boundary control

Control to 0: Lack of obstructions / L small

The static strategy to control to 0, L small:

Yt — VYxx = f(y)a
y(O) — Y0,
y(t,0) =0, y(t,L) =0.

with f(y) =y(1 —y)(y —0),0=1/3, o =09, L =7.°




Control to

0: Obstructions /

Boundary control
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Boundary control

Known facts

The static strategy to reach a = 0, 0, or 1 consists on keeping the
time-independent control «:

Yt — Yxx = f(y)v
y(O) — Yo,
y(t,0) =, y(t, L) = «a.

Matano’s Theorem (1978) :
y(t,-) converges towards a steady state solution 0 < w < 1:

(—WXX = f(w),

w(0) =a, w(l) =«

A

w = « is a steady state solution for « = 0,6 and 1. The only one?
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Boundary control

P. L. Lions’s Theorem (1982) : There exists a threshold L, such that

mlf L <L, w= «is the unique steady-state solution.

mIf L > L,, there is another non-trivial steady state solution.

Conclusion

mIf L < L,, the system is asymptotically controllable towards «.

mIf L > L., there is a barrier function making this impossible.

This issue is closely related to the question of whether the minimiser of

ol L
5/ ’yX’2dX_/ F(y)dx
0 0

in H3 (0, L) is the trivial one y = 0 or not.

the functional

Obviously, large L implies the first Dirichlet eigenvalue to be small, this
weakens the coercivity of the H&—norm, and facilitates the existence of

non-trivial solutions.




Boundary control

Some non-trivial steady-states

Solutions for A = 267.54

Space

A = L2 (by scaling), large
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Boundary control

Application

-NTIFIC REPQRTS

N The minimum area requirements
(MAR) for giant panda: an empirical
study

Received: 28 July 2015 - JingQing"**, ZhisongYang"*, Ke He!, Zejun Zhang?, Xiaodong Gu*, XuyuYang*, Wen Zhang?,
Accepted: 01 November 2016 : BjaoYang®, Dunwu Qi’ & Qiang Dai?

Published: 08 December 2016 _ . o _ - _ A
: Habitat fragmentation can reduce population viability, especially for area-sensitive species. The

Minimum Area Requirements (MAR) of a population is the area required for the population’s long-term
persistence. In this study, the response of occupancy probability of giant pandas against habitat patch % 5
size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of S o {"if/

the global distribution of giant panda habitat. The probability of giant panda occurrence was positively e L
associated with habitat patch area, and the observed increase in occupancy probability with patch size

102°00"E 103°00"E 104°0'0"E 105°00"E

Mingshan Mountains
(MS Mountains)

33°00"N
33°0'0"N

32°00"N
32°00"N

))L/: ®C ‘hengdu

31°00"N
31°00"N

was higher than that due to passive sampling alone. These results suggest that the giant pandais an Z x’f‘k Buximglingfountaing £
area-sensitive species. The MAR for giant panda was estimated to be 114.7 km? based on analysis of its i W da b g
occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain g ’NL A\ £
ranges, while they are large and more continuous in the other two. Establishing corridors among : Wg&; :
habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in e[ (Asmpyos R -
mountain ranges where fragmentation is most intensive. A

Figure 3. Distribution of habitat patches in the five mountain ranges. Yellow regio
the mountain ranges. Habitat patches greater than MAR are green and patches smalle
map is made by ArcGIS 9.1 software, http:/wwiwarcgis.com/features.
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Boundary control

Control to the Allee threshold €

m For « = 0 and o = 1, because of the comparison principle, under the
constraints 0 < y < 1, the static strategy is the best possible one.

m When controlling towards the Allee threshold (politeness
equilibrium) z(x) = 6 steady state controls u(t), v(t) may oscillate
around 6 within the bounds: 0 < u(t), v(t) <1

m Would that help?
Note that z(x) = 6 is an unstable equilibrium when L is large

enough. But controls can cope with unstability too.
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Boundary control

Local controllability: dynamic strategy

m Carleman estimates
m Linearisation

m Fixed point

Fix T =1 and the target a(x) = 6. Then, if

[|yo — ‘9HL2(O,L) < €

with e > 0 small enough, then there exist controls 0 < u(t),v(t) < 1s. t.

y(t=1)=q.
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Boundary control

Global control: L < L,. Two step strategy (Turnpike)

L < Ly — z(x) = 0 is the unique steady state.
All initial data can be driven to 0 in finite time.

Two step strategy:
m Step 1: [0, T], with T >> 1, keep u(t) =v(t) =60 —

(ot = T) ~0lliz0.0) < e

m Step 2: In [T, T 4 1] apply the previous local control —

y(t=T+1)=0.

Can we get close to z =0 for L > Ly with a more complex strategy and
this for all initial data?

30/ 46



Boundary control

Which barriers can be broken 7

Solutions for A = 267.54

Space

Note that, although, one can not expect to decrease monotonically
large data to 6, in principle, one could first go down to then go up*™a
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Boundary control

Hidden complexity of control patterns




Boundary control

The global control to 0 is possible even when Ly < L < Lg.

m [he result is sharp. The barrier corresponding to the nontrivial
steady state with zero Dirichlet b. c. cannot be broken.
m [wo steps strategy
m First step: Keep u = v =0, to cool down.
m Second step: Increase again following a stair-case strategy.
Build a path of steady states and follow it slowly, so to guarantee
that solutions oscillate very little. This imposes the time of control

to be long.

given path of controls

control determined

neighborhood of the path of
controls of width 2o

lexander von Humboldt .:'.:.:::?rc
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Boundary control

Phase portrait for —w"” = f(w)

We set F(y fo z) dz, and suppose that F(1) > 0 (< 6 < % with
fly) = y(l —y)(y 9))
[y - Y%+ F(y)=F(1)
~—  3Y?+F(y)=0
v2F() - »-> Trajectory linking a and a
Z_Z Region I

—/2F(1) -

46



Boundary control

Case a = 0: Ly < o0

w = 0 is the unique steady state solution if L < Ly = L™,

. 7 dy
. _Bel(gf,l)\ﬁ/o VF(B) - F(y)

V2F(1) |

—2F(1)
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Boundary control

of steady states connecting 0 and ¢

Construction of the paths in the phase portrait

Control Strategy in the Phase Portrait 06 Control Strategy in [0,L]

01 r
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= 0% |
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Boundary control

Numerical experiment: Minimal time control (IPOPT
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Boundary control

Conclusion

m [ he optimal control strategies are not necessarily simple or intuitive.

m The landscape of the set of steady states can be complex.

m There might be unexpected bridges indicating the path to follow for
control.
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of steady states linking 0 and &, multi-d

Stationary solution for R=30 a=0.0012
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Heterogeneous drifts
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Heterogeneous drifts

The model

Consider a distribution of population NN > 0. Consider that the
population is divided between two traits. We model the evolution of the
proportion of one trait by’:

up — Au— YNOG, = f(u) (x,t) €Qx (0, T)

N(x)
u = a(x,t) (x,t) € 9002 x (0, T)
0 <u(x,0) <1
we will also use the notation Vb(x) = %)(3)

7l. Mazari, D. Ruiz-Balet, and E. Zuazua, Constrained control of bistable
reaction-diffusion equations: Gene- flow and spatially heterogeneous models, Erp—
Preprint (2019)
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Stftng/Foundtion ++£ 5+

41 / 46



Heterogeneous drifts

examples

m For N(x)=e =, ut—uXX—F%XuX:f(u)

m For N(x) = e Up — Usy — = f(u)

Population N and drift effect

2
0.5
Drift Drift Drift —— <«—| Drift
0.5 i
0 L
0 \
-0.5 ‘ -0.5
-10 -5 0 5 10 -5 0 5
X
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Heterogeneous drifts

New Upper Barriers

X2 . .
Take N(x) = e~ = . We observe that new barriers can exist.

(—uXX +2%u, = f(u)
u(—L)=u(l)=1 (3)

A

state
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Perspectives

Perspectives

m Significant work to be done from a modeling perspective, to get
closer to real social or biological issues.

m Plenty still to be done to gain understanding of these models from a
control perspective.

m Extensions to multi-d® and to systems (gene-flow®) raises interesting
new questions about the nature of set of steady state solutions, their
stability, etc.

m The great challenge: Making our analysis to be, not only
qualitatively sound, but quantitatively efficient.

8Work in progress with Domenec Ruiz
YWork in progress with Idriss Mazari and Domenec Ruiz
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