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Collective behavior models

Describe the dynamics of a system of interacting individuals.
Applied in a large spectrum of subjects such as collective behavior,
synchronization of coupled oscillators, random networks, multi-area
power grid, opinion propagation,...

Figure: Fitz-Hugh-Nagumo

oscillators [Davison et al.,

Allerton 2016]

Figure: Yeast’s protein

interactions [Jeong et al.,

Nature, 2001]

Figure: German electric

network
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Some basic references on the Dynamics and Control on

networks and graphs

[1] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence.
Springer-Verlag Berlin Heidelberg.
[2] Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and
cooperation in networked multi-agent systems. IEEE Proc. 95, 1 (2007),
215–233.
[2] Y.-Y Liu, J.-J. Slotine & A.-L. Barabási, Controllability of Complex
Networks, Nature, 473, 167–173 (12 May 2011).
[3] T. Vicsek & A. Zafeiris, Collective motion, Physics Reports 517
(2012) 71–140.
[4] S. Motsch & E. Tadmor. Heterophilious dynamics enhances
consensus. SIAM Review 56, 4 (2014), 577–621.
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Complex behavior by simple interaction rules

Systems of Ordinary Differential Equations (ODEs) in which each agent’s
dynamics follows a prescribed law of interactions:

First-order consensus model

ẋi (t) =
1
N

NX

j=1

ai,j(xj(t)� xi (t)), i = 1, . . . ,N

It describes the opinion formation in a group of N individuals.
xi 2 Rd , d � 1, represents the opinion of the i-th agent.

[J. R. P. French, A formal theory of social power, Psychol. Rev.,
1956].
It applies in several fields including information spreading of social
networks, distributed decision-making systems or synchronizing
sensor networks, ...
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From random to consensus

Figure: Opinions over a network : random versus consensus states
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Linear versus Nonlinear

Linear networked multi-agent models: ai,j are the elements of the
adjacency matrix of a graph with nodes xi

ai,j :=

(
aj,i > 0, if i 6= j and xi is connected to xj

0, otherwise.

This leads to the semi-discrete heat equation on the graph.

Nonlinear alignment models:

ai,j := a(|xj � xi |), where a : R+ ! R+,

a � 0 is the influence function. The connectivity depends on the
contrast of opinions between individuals.
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Limitation of the mean-field representation

As the number of agents N ! 1, ODE ! PDE.
Nonlinear alignment models:

ẋi =
1
N

NX

j=1

a(|xj � xi |)(xj � xi ), i = 1, . . . ,N, a : R+ ! R+.

Classical mean-field theory: Define the N-particle distribution
function2

µN = µN(x , t) :=
1
N

NX

i=1

�xi (t).

and let N ! +1.
2P. A. Raviart, Particle approximation of first order systems, J. Comp. Math., 4 (1)

(1986), 50-61.

By particle methods of approximation of time-dependent problems in PDE, we mean

numerical methods where, for each time t, the exact solution is approximated by a

linear combination of Dirac measures...
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The limit µ of the empirical measures µN solves the the nonlocal
transport equation3

@tµ(x , t) = @x
⇣
µ(x , t)V [µ(x , t)]

⌘

V [µ](x , t) :=

Z

Rd

a(|x � y |)(x � y)µ(y , t)dy .

The convolution kernel describes the mixing of opinions by the
interaction of agents along time.
In other words:4

@tµ = @x

✓
µ(x , t)

Z

Rd

a(|x � y |)(x � y)µ(y , t) dy

◆
.

3The system of ODEs describing the agents dynamics defines the characteristics of

the underlying transport equation. The coupling of the agents dynamics introduces

the non-local effects on trasport.
4Motsch and Tadmor, SIAM Rev., 2014
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The mean field model does not track individuals!

The mean-field equation involves the density µ, which does not contain

the full information of the state.

The density µ does not keep track of the identities of agents (label i).5

Different configurations xi with the same distribution µ

Figure: x1 = (�1, 0, 1) (left) and x2 = (�2, 3,�1) (right) generate the

same density function.

5µN(x) := 1
N

PN
i=1 �xi
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Graph limit method: finite-difference approach

Based on the theory of graph limits (Medvedev, SIAM J. Math.
Anal., 2014).
Considering the phase-value function x

N(s, t) defined as

x
N(s, t) =

NX

i=1

xi (t)�Ii (s, t), s 2 (0, 1), t > 0,
N[

i=1

Ii = [0, 1].

Figure: Opinion (N = 20) and its finite-difference function z20
on [0, 1]
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Let (xNi )Ni=1
be the solution of the following consensus model:

ẋ
N
i =

1
N

NX

j=1

a
N
i,j (x

N
j � x

N
i ),

where a
N
i,j are constant and  represents nonlinearity.

According to the graph limit theory6, if

W
N(s, s⇤) =

NX

i,j=1

a
N
i,j1[ i

N , (i+1)
N )

(s)1
[ j
N , (j+1)

N )
(s⇤)

is uniformly bounded and converges to W , then in the limit N ! 1
we get the non-local diffusive equation,

@tx(s, t) =

Z

[0,1]
W (s, s⇤) (x(s⇤, t)� x(s, t))ds⇤.

6G. S. Medvedev. SIAM J. Math. Anal. 46, 4 (2014), 2743–2766.
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Nonlinear subordination

U. Biccari, D. Ko & E. Z., M3AS, 2019

ẋi =
1
N

NX

j=1

a(|xj � xi |)(xj � xi ).

The Graph limit model:

xt(s, t) =

Z

[0,1]
a(|x(s⇤, t)� x(s, t)|)(x(s⇤, t)� x(s, t))ds⇤.

The mean-field limit:

µt(x , t)+rx(V [µ]µ) = 0, where V [µ] :=

Z

X
a(x⇤�x)µ(x⇤, t)dx⇤.

Subordination transformation
From non-local "parabolic" to non-local "hyperbolic":
µ(x , t) =

R
S �(x � x(s, t))ds.

7

7Kinetic / conservation laws: Lions-Perthame-Tadmor, JAMS, 1994
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Comparison with the linear Kannai transform

Note that this seems to go in the opposite sense of other subordination
principles, such as the Kannai transform, that transmutes wave-like
(hyperbolic) equations into heat-like (parabolic)ones:

e
tA' =

1
4⇡t

Z +1

�1
e
�s2/4t

W (s)ds

solves the parabolic equation

Ut + AU = 0

with initial datum ' when W (s) solves the wave-like one equation with
data (', 0):

Wss + AW = 0 + Kt � Kss = 0 ! Ut + AU = 0,
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Motivation: Sheepdogs and sheep

Herding Problem: One or several sheepdogs steer a herd of sheep to a
final destination.

Objective: Guide the evaders in the right direction and confine them in a
given area.

16 / 40



Consensus model Two limit models Guiding problem Optimal Control Random Batch Method The LQR setting (Daniel Veldman) Summary

Motivation: "Guidance by repulsion" model

Drivers try to guide the evaders to a given final destination

One driver + one evader
8

The driver induces a repulsive force on the evader.

The driver is attracted by the evader.

The driver guides the evader combining elementary motions: stop,

move forward and rotate (left and right).

The driver (sheepdog) acts following the instructions of a shepherd
(control).

One driver + multiple evaders.

The single driver interacts with the center of the flock of evaders.
Evaders are mutually attracted.

Multiple drivers + multiple evaders
9

Each driver interacts with each evader.
The shepherd coordinates the motion of all drivers.

8R. Escobedo, A. Ibañez, E. Zuazua, 2016
9D. Ko, E. Zuazua, 2020.
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True herding
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Virtual herding
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Multiple drivers/evaders model

xi , vi : the position, velocity of the ith evader (i = 1, . . . ,N) in R2,
yj : the position of the jth driver (j = 1, . . . ,M) in R2.
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ẋi = vi , i = 1, . . . ,N,

v̇i =
1

N � 1

NX

k=1,k 6=i

a(xk � xi )(vk � vi )  velocity alignment

+
1

N � 1

NX

k=1,k 6=i

g(xk � xi )(xk � xi )  position flocking

� 1
M

MX

j=1

f (yj � xi )(yj � xi ), i = 1, . . . ,N,  evading from drivers

ẏj = uj(t), j = 1, . . . ,M  drivers are directly controlled
xi (0) = x

0

i , vi (0) = v
0

i , yj(0) = y
0

j .

Independent of how strongly the driver is attracted towards the evader,
the shepherd can control its instinct to steer the driver according to the
control strategy. This simplifies the equation for the driver.
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Optimal control

Goal: Simulate the locomotion of drivers controlling an ensemble of evaders?

MINIMISE!!!!

J(u) :=

Z T

0

2

4 1
N

NX

k=1

|xk � xf |2 +
10�4

M

MX

j=1

|uj |2 +
10�4

M

MX

j=1

|yj � xf |2
3

5 dt.

Note that we penalize the position of the drivers as well. This is known
to lead to less oscillatory control strategies (Turnpike)

Some (very few) references:
Problems on sheep gathering:
Well-posedness of optimal control [Burger, Pinnau, Roth, Totzeck,
Tse, 2016] and its simulations [Pinnau, Totzeck, 2018].
Repelling birds from airports: [Gade, Paranjape, Chung, 2015],
Hunting strategies: [Muro, Escobedo, Spector, Coppinger, 2011 and
2014],
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Simulation

A numerically simulated optimal control with 36 evaders and 2 drivers
toward the target (0.5, 0.5) in the time horizon [0, 4]:
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Figure: Left: trajectories in 2D space, Right: control function along time.

Two drivers starting from (0,�1) and (�1, 0).
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Dynamic simulation
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Accelerating simulations

The computational complexity increases rapidly when the number of
evaders N grows.
We propose an approximate control design combining:

1 Random Batch Methods (RBM) to approximate dynamics.10

2 Model Predictive Control (MPC) to correct the deviation
introduced by the RBM11.

10S. Jin, L. Li, J-G Liu, 2020.
11L. Grüne, J. Pannek, 2017.
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Approximative dynamics: Random Batch Methods (RBM)

Divide [0,T ] into subintervals

[0,T ] =
M[

m=1

[tm�1, tm], 0 = t0 < t1 < · · · < tM = T .

We split the set of particles into N/P small random subsets (batches)
with P particles:

{1, 2, . . . ,N} = Bm
1
[ Bm

2
[ . . . [ Bm

n , |Bm
i | = P for 8i .

The model is reduced considering only interactions within each

batch:

1
N � 1

NX

k=1,k 6=i

a(xk�xi )(vk�vi ) ! 1
P � 1

X

k2[i ]m,k 6=i

a(xk�xi )(vk�vi ),

where [i ]m denotes the batch containing i for t 2 [tm�1, tm],

We then control this reduced dynamics, which leads to a stochastic
mini-batch gradient descent method.
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Simulations using the RBM

Simulations show that the RBM properly approximates the distribution of
evaders (better than the trajectory of individual evaders). The
convergence analysis is to be done to a large extent.
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Figure: Simulation along t 2 [0, 4] (left) and at t = 10 (right). Red: positions

from original system, Blue: positions from RBM, Colored region: 95%
confidence region with 200 simulations.

An added tool is need to reduce the error in the control of the dynamics,
which increases in long time-horizons.
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Model Predictive Control (MPC)

MPC adapts the control obtained through the reduced dynamics to the
full system in an iterative manner. This is achieved by optimizing a finite

time-horizon, but only implementing the current timeslot and then
optimizing again, repeatedly.

MPC leads to a semi-feedback strategy.

Figure: Iterative control by MPC.
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Simulations: MPC + RBM

Results are almost as successful as when controlling the full system,
but at a lower computational cost.
We observe a more complex dynamics of the controllers at the final
time. This is due to the anticipative effect that MPC introduces.

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a
te

Position error = 0.65375

Drivers
Evaders

0 1 2 3 4

Time

-30

-20

-10

0

10

20

30

C
o
n
tr

o
ls

Control cost = 11.7005

(1,1)-directional velocity
(1,-1)-directional velocity

30 / 40



Consensus model Two limit models Guiding problem Optimal Control Random Batch Method The LQR setting (Daniel Veldman) Summary

Failure of classical opren-loop control strategies in the

presence of noise

When an unexpected noise perturbs the dynamics of the system, the
classical open-loop strategy fails to regulate the system successfully.
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The optimal open-loop control is not able to compensate the
perturbation introduced by the noise.
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The cure of the combined MPC-RBM strategy

The combined MPC-RBM strategy is able to cope with unexpected noisy
events.
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More drivers are welcome
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The RBM in an LQR-problem

We apply the RBM to approximate the minimizer u⇤(t) of

min
u2L2(0,T )

J(u) =

Z T

0

�
|x(t)� xd(t)|2 + |u(t)|2

�
dt, (1)

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (2)

Step 1 Decompose the matrix A as

A =
MX

m=1

Am. (3)

Step 2 Enumerate the 2M subsets of {1, 2, . . . ,M} as S1, S2, . . . S2M . Assign
to each subset S` a probability p`.

Step 3 Divide [0,T ] into subintervals [tk�1, tk) of length  h. Randomly
choose an index `(k) 2 {1, 2, . . . , 2M} in each [tk�1, tk) according to
the probabilities p`.
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The RBM in an LQR-problem

Step 4 Define the matrix Ah(t)

Ah(t) =
X

m2S`(k)

Am

⇡m
, t 2 [tk�1, tk), (4)

where ⇡m is the probability that m is an element of the selected
subset, i.e.

⇡m =
X

{`|m2S`}

p`. (5)

Step 5 Compute the minimizer u⇤h (t) of the ‘simpler’ LQR problem

min
u2L2(0,T )

Jh(u) =

Z T

0

�
|xh(t)� xd(t)|2 + |u(t)|2

�
dt, (6)

ẋh(t) = Ah(t)xh(t) + Bu(t), x(0) = x0. (7)
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Convergence results

Is it likely that u⇤h (t) is a good approximation of u⇤(t)?

Theorem
There exists a constant C > 0 such that

E[|Jh(u⇤h )� J(u⇤)|]  Ch, E[|J(u⇤h )� J(u⇤)|]  Ch. (8)

By Markov’s inequality, also

P[|J(u⇤h )� J(u⇤)| > �]  Ch

�
(9)

Theorem
There exists a constant C > 0 such that

E[|u⇤h � u
⇤|2L2(0,T )]  Ch. (10)

Conclusion: u
⇤
h (t) is likely a good approximation of u⇤(t) when the

spacing of the temporal grid h is small enough.
37 / 40



Consensus model Two limit models Guiding problem Optimal Control Random Batch Method The LQR setting (Daniel Veldman) Summary

Table of Contents

1 Dynamics and control of discrete networks

2 Two limit models for the infinite-agents dynamics

3 A guiding problem: drivers + evaders

4 Herding through optimal control

5 Random Batch Methods (RBM) on interacting particle systems

6 The LQR setting (Daniel Veldman)

7 Summary and perspectives

38 / 40



Consensus model Two limit models Guiding problem Optimal Control Random Batch Method The LQR setting (Daniel Veldman) Summary

Summary and perspectives

The algorithm combines MPC and RBM, to compute a reliable
control strategy reducing computational cost.

RBM reduces the computation cost on the forward and adjoint
dynamics, from order O(N2) to O(NP).

MPC allows to correct the control variations introduced by the
RBM.

In a computational experiment 36 evaders and 2 drivers, the
computation cost is reduced to 16%, while the performance of
control J differs only about 0.5%.

Plenty to be done towards a complete rigorous analysis of the
convergence of the whole process.

The error analysis of RBM has been developed mainly for contractive
systems [Jin, Li, Liu, 2020, JCP], though numerical simulations show
good performances [Carrillo, Jin, Li, Zhu, 2019], [Ha, Jin, Kim, 2019].
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More complex models

From a computational perspective: Interesting possible
extensions for models in non-flat topographies and 3-d models.
From the analysis perspective: Plenty to be done to rigorously
analyze the actual controllability properties of these systems.
Existing results are limited to the Linear Quadratic Regulator (LQR)
model.

Thank you for your kind invitation and attention!
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