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Sonic boom and supersonic airplanes

The pressure disturbance P(σ0, ·) created by
a aircraft flying above the speed of sound

“Augmented Burger equations equation”
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σ = distance of the perturbation
τ = time of the perturbation

Objective : Tailoring the shape of the aircraft to minimize the ground sonic boom effects

The optimal control problem is min
P0∈A

d(P(ξ, ·),P∗(·))

The admissible set A is chosen to ensure feasible aircraft design (for instance aerodynamic lift).

d(·, ·) is chosen to be a robust and realistic metric for boom noises (Perceived loudness (PLdB)

P∗ a desired ground signature and ξ the distance of the propagation

References : [Whitham, 1952 ; Cleveland, 1995 ; Alonso-Colonno,2012 ; Rallabhandi, 2011 ;
Allahverdi-Pozo-Zuazua, 2016]

P(ξ, ·) → Creation of boom noises
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The one-dimensional Burgers equation

The one-dimensional Burgers equation{
ut + f (u)x = 0, (t, x) ∈ R+ × R,
u(0, x) = u0(x). x ∈ R,

(PDE)

The function u is a weak solution to (PDE), for (t, x) ∈ (0,+∞) × R, i.e for all ϕ ∈ C 1
c (R2,R),∫

R+

∫
R

(u∂tϕ+ f (u)∂xϕ)dxdt +

∫
R
u0(x)ϕ(0, x)dx = 0.

The function u is an entropy solution to (PDE) For every k ∈ R, for all ϕ ∈ C 1
c (R2,R+), it holds∫

R+

∫
R

(|u − k |∂tϕ+ sgn(u − k)(f (u)− f (k))∂xϕ)dxdt +

∫
R
|u0 − k|ϕ(0, x)dx ≥ 0.

The flux f : u → u2

2

u0 ∈ BV (R)

uL < uR . A weak solution of (PDE) uL < uR . A weak-entropy solution of (PDE)

x

t

0

uRuL

x = f(uL)−f(uR)
uL−uR

t

x

t

0

uRuL

x = f ′(uR)tx = f ′(uL)t

(f ′)−1(xt )(f ′)−1(xt )
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Optimal control problem

For any initial datum u0 ∈ BV (R) there exists a unique weak-entropy
solution S+

t (u0) ∈ L∞([0,T ] × R) ∩ C 0([0,T ], L1
loc(R)) of (PDE)

Our aim is to solve the following optimal control problem

min
u0∈U0

ad

J0(u0) :=

∫
R

(
uT (x)− S+

T (u0)
)2

dx , (Opt-Pb)

Above uT ∈ BV (R) and the class of admissible initial data is defined by

U0
ad = {u0 ∈ BV (R)/‖u0‖BV (R) < C and Supp(u0) ⊂ K0}.

Objectives :

Construction of a minimizer of (Opt-Pb) via a backward-forward method.

Implementation of an algorithm to find (randomly) all possible minimizers of (Opt-Pb)
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Definition : uT is reachable at time T if there exists u0 ∈ BV (R) such that S+
T (u0) = uT .

If uT is reachable at time T :

If uT is unreachable at time T :

Characterization of reachable uT : [Colombo-Perrollaz, 2019],[Gosse-Zuazua, 2017]

Fully characterization of initial data u0 leading to uT : [Colombo-Perrollaz, 2019]

Notion of weak-differentiability of the cost function J0 in (Opt-Pb) :
[Majda, 1983 ; Bardos-Pironneau, 2005 ; Bouchut-James, 1999 ; Bressan-Marson, 1995]

Implementation of Gradient descent method to solve (Opt-Pb) :
[Castro-Palacios-Zuazua, 2008-2010 ; Allahverdi-Pozo-Zuazua, 2016 ; Gosse-Zuazua, 2017]
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An amuse-bouche

A target uT ∈ {−1, 2}.

Plotting of two minimizers u0 and u1 of (Opt-Pb) such that

S+
T (u0) = S+

T (u1) = u∗T

uT

u∗T
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Wave-front tracking algorithm
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Conservation laws and Riemann solutions

The Burgers equation with Riemann type initial data

∂tρ+ ∂x(f (ρ)) = 0, (t, x) ∈ R+ × R,

u(0, x) =

{
uL if x < 0
uR if x > 0

, x ∈ R.

x

t

0

uRuL

x = f(uL)−f(uR)
uL−uR

t

u

f(u)

0uR uL

Riemann solution when
uL > uR : a shock wave

x

t

0

uRuL

x = f ′(uR)tx = f ′(uL)t

(f ′)−1(xt )(f ′)−1(xt )

u

f(u)

0 uRuL

f ′(uR)

f ′(uL)

Riemann solution when
uL < uR : a rarefaction wave
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A Wave-front tracking method

Assuming that there exists u, ū such that u ≤ u0 ≤ ū.

Construction of a state mesh
Mn = u + (ū − u)2−nN ∩ [0, 1]

We approximate u0 ∈ BV (R) by a piecewise
constant function un0 ∈Mn.

Mn = [−1,−0.25, 0.5, 1.25, 2]
with n = 2.

We solve approximately the Riemann problem at each point of discontinuity (xi )i∈{1,··· ,N}
of un0 .

if un
0 (xi−) > un

0 (xi+)), a shock wave is generated with speed given by the
Rankine-Hugoniot condition.
if un

0 (xi−) < un
0 (xi+)), we decompose the rarefaction wave into a fan of rarefaction shocks

traveling with speed given by Rankine-Hugoniot condition.

u

f(u)

0.25 0.5 1.25−1 2

×

× ×

×

×
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A Wave-front tracking method

We construct an approximate solution
un(t, x) until a time t1, where at least two
wave fronts interact together.

At t = t+
1 a new Riemann problem arises

and we repeat the previous strategy
replacing t = 0 and un0 by t = t1 and
un(t1, ·) respectively.

u0 = 21(−∞,−1) − 1(−1,0) + 21(0,∞)

un(t1, ·)

t1

2

−1

−0.25

0.5

1.25

1.25
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Illustration of a WFT method

Illustration of the “wave-front” objects

Initial datum u0
Construction of an approximate initial

datum un0 : x → Mn of u0 with n = 5
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Wave-front tracking methods VS Godunov scheme

Godunov scheme is a conservative three-point
numerical scheme having the following form

unj+1 = unj −
∆t

∆x
(g(unj , u

n
j+1)− g(unj−1, u

n
j )),

with g a numerical flux and
u(n∆t, j∆x) ≈ unj , n ∈ N, j ∈ Z.

WFT algorithm

Godunov scheme
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Wave-front tracking methods VS Godunov scheme

Godunov scheme :

Discretization in space ∆x and time ∆t,

“Backward uniqueness” because of diffusion effects,

Easy to implement,

A CFL condition has to be satisfied ( ∆t
∆x max

u∈[u,ū]
|f ′(u)| ≤ 1

2 ) → The final time T is small.

Wave-front tracking method :

Discretization in state ∆u,

No Backward uniqueness because shocks may be created,

Hard to implement (creation of objects and find interaction points between objects),

No CFL condition is imposed → The final time T may be large.
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The backward operator S−t
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The backward operator S−t

The backward operator S−t associated to the Burgers dynamic is defined by

S−t (uT )(x) = S+
t (x → uT (−x))(−x),

for every t ∈ [0,T ] and for a.e x ∈ R.

Remark : The solution S−t (uT ) may be regarded as the zero visco-
sity limit of S−,εT (uT ) solution of the following backward equation{

∂tu(t, x) + ∂x f (u(t, x)) = -ε∂2
xxu(t, x), (t, x) ∈ R+ × R,

u(T , ·) = uT (x), x ∈ R.

Using the change of variable (t, x) → (T − t,−x),
we notice that the backward equation above is well-defined.

Thus, S−T (uT ) is also called the backward entropy solution with final target uT .
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S−t (uT ) : (t, x) → S+
t (x → uT (−x))(−x)

uT x → uT (−x)

(t, x) → S+
t (x → uT (−x))

uT (x) =

{
2 if x ∈ (−0.2, 1.1)

⋃
(2, 3.1)

⋃
(4.1, 5.3)

⋃
(6.1, 7.2),

−1 otherwise.
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Main result
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Main result

Our aim is to solve the following optimal control problem

min
u0∈U0

ad

J0(u0) :=

∫
R

(
uT (x)− S+

T (u0)
)2

dx , (Opt-Pb)

with uT ∈ BV (R) and U0
ad = {u0 ∈ BV (R)/‖u0‖BV (R) < C and Supp(u0) ⊂ K0}.

Theorem

For a.e T > 0, the optimal control problem (Opt-Pb) admits multiple
optimal solutions. Moreover, the initial datum u0 ∈ BV (R) is an
optimal solution of (Opt-Pb) if and only if u0 ∈ BV (R) verifies
S+
T (u0) = S+

T (S−T (uT )).

A full characterization of the set of initial data u0 ∈ BV (R) such that
S+
T (u0) = S+

T (S−T (uT )) is given in [Colombo-Perrolaz, 2019].

If there exists an initial datum u0 ∈ BV (R) such that S+
T (u0) = uT then

S+
T (S−T (uT )) = uT .
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uT and x → S+
T (S−T (uT ))(x)

x → S−T (uT )(x) (t, x) → S+
t (S−T (uT ))(x)

uT (x) =

{
2 if x ∈ (−0.2, 1.1)

⋃
(2, 3.1)

⋃
(4.1, 5.3)

⋃
(6.1, 7.2),

−1 otherwise.
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A target uT with finite number of shocks

The two following results are given in [Colombo-Perrolaz, 2019].

There exists an initial datum u0 ∈ BV (R) such that S+
T (u0) = uT iff uT satisfies the

Oleinik condition, means that ∂xu
T ≤ 1

T in the sense of distributions.

A map u0 ∈ BV (R) verifies S+
T (u0) = uT if and only if the two following statements hold :

For every x ∈ R\ ∪N
i=1 [ai , bi ], u0(x−) = S−

T (uT )(x−).
For every x ∈ ∪N

i=1[ai , bi ] ∫ x

ai

u0(s) ds ≥
∫ x

ai

S−
T (uT )(s) ds,∫ bi

ai

u0(s) ds =

∫ bi

ai

S−
T (uT )(s) ds.

with ai := xTi − Tf ′(uT (xTi −)) and bi := xTi − Tf ′(uT (xTi +)) and (xTi )i∈{0,··· ,N} the

N ∈ N ∪ {∞} discontinuous points of uT such that uT (xTi +) < uT (xTi −).
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uT = 1(−∞,0) − 1(0,∞) S−T (uT ) such that S+
T (S−T (uT )) = uT .

(t, x) → S+
t (S−T (uT ))(x) x → γ∗(x) :=

∫ x

−4
S−T (uT )(s) ds.

γ∗
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uT = 1(−∞,0) − 1(0,∞)
S−T (uT ) and u0 such that

S+
T (S−T (uT )) = S+

T (u0) = uT .

(t, x) → S+
t (u0)(x) γ(x) :=

∫ x

−4
u0(s) ds ≥ γ∗(x), ∀x ∈ [−4, 4]

γ∗

γ
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uT = 1(−∞,0) − 1(0,∞)
S−T (uT ) and u0 such that

S+
T (S−T (uT )) = S+

T (u0) = uT .

(t, x) → S+
t (u0)(x) γ(x) :=

∫ x

−4
u0(s) ds ≥ γ∗(x), ∀x ∈ [−4, 4]

γ∗

γ
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uT = 1(−∞,0) − 1(0,∞)
S−T (uT ) and u0 such that

S+
T (S−T (uT )) = S+

T (u0) = uT .

(t, x) → S+
t (u0)(x) γ(x) :=

∫ x

−4
u0(s) ds ≥ γ∗(x), ∀x ∈ [−4, 4]

γ∗

γ
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uT = 1(−∞,0) − 1(0,∞)
S−T (uT ) and u0 such that

S+
T (S−T (uT )) = S+

T (u0) = uT .

(t, x) → S+
t (u0)(x) γ(x) :=

∫ x

−4
u0(s) ds ≥ γ∗(x), ∀x ∈ [−4, 4]

γ∗

γ
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Multiple initial data leading to a shock uT

S+
T (u0) = uT
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Construction of multiple initial data leading to a shock

xx̄− Tf ′(uL) x̄− Tf ′(uR)

γ∗(x̄− Tf ′(uR))

ū

u

γ∗
(Xi, Yi)

Xi+1

×
×
×
×

γn

× Possible values of Yi+1

×•

Assuming that uT =

{
uL if x < x̄ ,
uR if x > x̄ .

Construction of a path γn such that

γn(x) ≥ γ∗(x), ∀x ∈ [x̄ − Tf ′(uL), x̄ − Tf ′(uR)],

γn(x̄ − Tf ′(uL)) = 0,

γn(x̄ − Tf ′(uR)) = γ∗(x̄ − Tf ′(uR)),

γ̇n ∈Mn.

Construction of u0 such that S+
T (u0) = uT :

u0 =

 uL for x < x̄ − Tf ′(uL)
γ̇n for a.e x̄ − Tf ′(uL) ≤ x ≤ x̄ − Tf ′(uL)
uR for x̄ − Tf ′(uR) < x

We construct a state mesh Mn = u + (ū − u)2−nN ∩ [0, 1] such that u ≤ u0 ≤ ū and uL, uR ∈ Mn
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Ideas of the proof

We consider the following optimal control problem

min
u0∈U0

ad

J0(u0) :=

∫
R

(
uT (x)− S+

T (u0)
)2

dx ,

U0
ad = {u0 ∈ BV (R)/‖u0‖BV (R) < C and Supp(u0) ⊂ K0}.

{
∃u0 ∈ BV (R)/S+

T (u0) = q
}

iff
{
q ∈ BV (R)/ ∂xq ≤ 1

T

}

min
q∈U1

ad

J1(q) := ‖uT − q‖L2(R),

U1
ad = {q ∈ BV (R)/ ∂xq ≤

1

T
and ‖q‖BV (R) ≤ C and Supp(q) ⊂ K1}.

S+
T (S−T (uT )) is the unique critical point of (Opt-Pb-2).

Using S−T (S+
T (S−T (uT )) = S−T (uT ) and a full characterization of u0 such that S−T (u0) = S−T (uT )

(Opt-Pb-1)

(Opt-Pb-2)
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Construction of an optimal solution

Plotting of the target uT and x → S+
T (S−T (uT ))(x)

with S−T (uT ) an optimal solution.

We consider the following optimal control problem

min
u0

∫
R

(
uT (x)− S+

T (u0)
)2

dx ,

uT uT

Enrique Zuazua Inverse design of one-dimensional Burgers equation 31



Plotting of multiple optimal solutions

S+
T (u0) = S+

T (S−T (uT ))
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Conclusion

T

t

0•

•

•

×S−
T (uT )

×S+
T (S−

T (uT ))

×S+
t (S−

T (uT ))

L2(R)

L2(R)

L2(R)

×

×

{u0/S
+
T (u0) = S+

T (S−
T (uT ))}

{ut/S
+
T−t(ut) = S+

T (S−
T (uT ))}

U0
ad

×

×

×

uT×
Backward-Forward Method

Optimal problem : min
u0∈U0

ad

∫
R

(
uT (x)− S+

T (u0)
)2

dx (Opt-Pb)

Fully characterization of minimizers for (Opt-Pb)

Construction of the minimizer S+
T (S−T (uT )) of (Opt-Pb) via a backward-forward

method

u0 is a minimizer of (Opt-Pb) iff S+
T (u0) = S+

T (S−T (uT ))

Implementation of a WFT algorithm to pick up ramdomly one of the minimizer of (Opt-Pb)
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Open problems

1 It would be interesting to extend this work to an “augmented Burgers equation” in order
to minimize the sonic boom effects caused by supersonic aircrafts.

2 We may also consider a convex-concave function as a flux function in (PDE) which is for
instance a more realistic choice to describe the flow of pedestrian.

3 We can also investigate systems of conservation laws in one dimension (Euler equations,
Shallow water equations).

4 To finish, it would be interesting to study numerically the inverse design of
multidimensional Burgers equation.
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