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@ Introduction

e Sonic boom minimization
o Presentation of the control optimal problem under consideration

@ Preliminaries and notations

o Wave-front tracking algorithm
o The backward operator S,

© Main result : full characterization of minimizers

@ Find randomly all possible minimizers using

e a backward-forward method
o a wave-front tracking algorithm

© Conclusion and open problems
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Sonic boom and supersonic airplanes

EEm——

The pressure disturbance P(cy, ) created by
a aircraft flying above the speed of sound
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"Augmented Burger equations equation”
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o = distance of the perturbation
7 = time of the perturbation

Far field “ [~——ouo___

.| P(&,-) — Creation of boom noises
Objective : Tailoring the shape of the aircraft to minimize the ground sonic boom effects

The optimal control problem is min d(P(¢, "), P*())
PoEA

The admissible set A is chosen to ensure feasible aircraft design (for instance aerodynamic lift).
d(-,-) is chosen to be a robust and realistic metric for boom noises (Perceived loudness (PLdB)
P* a desired ground signature and £ the distance of the propagation

References : [Whitham, 1952; Cleveland, 1995 ; Alonso-Colonno,2012; Rallabhandi, 2011 ;
Allahverdi-Pozo-Zuazua, 2016]



The one-dimensional Burgers equation

The one-dimensional Burgers equation

U+ F(u)x =0, (t;x) €R* xR, aThequxF:u—>“72
u(0,x) = up(x). x€R, e up € BV(R)
(PDE)

—> The function v is a weak solution to (PDE), for (t,x) € (0,4+c0) x R, i.e for all ¢ € C}(R%,R),

/R ./R(uc’?rgo + f(u)Oxp)dxdt + /R uo(x)p(0, x)dx = 0.

o = Lo fn),

.
y o= lu)t 1T o= [(un)t

()

ur UR ur, upR

0 £ 0 i
ug < ug. A weak solution of (PDE) u < ug. A weak-entropy solution of (PDE)

— The function u is an entropy solution to (PDE) For every k € R, for all ¢ € C}(R? R.), it holds

/ /(\u — k|Orp + sgn(u — k)(f(u) — f(k))Oxp)dxdt + / |up — k|(0, x)dx > 0.
R. JR R
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Optimal control problem

For any initial datum up € BV/(R) there exists a unique weak-entropy
solution S;™ (1) € L°°([0, T] x R) n C°([0, T], L .(R)) of (PDE)

loc

Our aim is to solve the following optimal control problem

min Jo(up) := ./R (u™(x) - 5742(110))2 dx, (Opt-Pb)

uo€UL,

Above uT € BV/(R) and the class of admissible initial data is defined by

Ugy = {uo € BV(R)/||uolsv(ry < Cand Supp(uo) C Ko}-
Objectives :
— Construction of a minimizer of (Opt-Pb) via a backward-forward method.

——> Implementation of an algorithm to find (randomly) all possible minimizers of (Opt-Pb)

Inverse design of one-dimensional Burgers equation6



References

Definition : u” is reachable at time T if there exists up € BV/(R) such that Sf(up) = u”.
If uT is reachable at time T :

— Characterization of reachable uT : [Colombo-Perrollaz, 2019],[Gosse-Zuazua, 2017]

—>  Fully characterization of initial data ug leading to u” : [Colombo-Perrollaz, 2019]

If uT is unreachable at time T :

—>  Notion of weak-differentiability of the cost function Jy in (Opt-Pb) :
[Majda, 1983 ; Bardos-Pironneau, 2005; Bouchut-James, 1999, Bressan-Marson, 1995]

— Implementation of Gradient descent method to solve (Opt-Pb) :
[Castro-Palacios-Zuazua, 2008-2010; Allahverdi-Pozo-Zuazua, 2016; Gosse-Zuazua, 2017]
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An amuse-bouche

2 uT o A target u” € {-1,2}.

Plotting of two minimizers ug and u; of (Opt-Pb) such that

57 (uo) = S7(u) = uy

u(T, x)
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Wave-front tracking algorithm




Conservation laws and Riemann solutions

The Burgers equation with Riemann type initial data

Oep+ 0x(f(p)) =0, (t,x) € R xR,
if x<0
u(0, x) { i x>0 x €R.

S ()

U u

t x = f'(ugr)t
N—1(z
(=)
ur UR ur, UR
0 T 0 2
Riemann solution when Riemann solution when
up > ug : a shock wave up < ug : a rarefaction wave
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A Wave-front tracking method

flu)

Assuming that there exists u, i such that u < uy < .

o Construction of a state mesh
My =u+(d—u)2="Nno,1]

o We approximate ug € BV(R) by a piecewise
constant function ug € M,

1 0.25 1\‘3 \"_)7 2 u
M, = [~1,-0.25,0.5,1.25,2]
with n = 2.

@ We solve approximately the Riemann problem at each point of discontinuity (Xi)ie{l,--- N}
of ug.
o if ug(x;—) > ug(xi+)), a shock wave is generated with speed given by the
Rankine-Hugoniot condition.
o if ug(xi—) < ug(xi+)), we decompose the rarefaction wave into a fan of rarefaction shocks
traveling with speed given by Rankine-Hugoniot condition.
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A Wave-front tracking method
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@ We construct an approximate solution 15
u"(t,x) until a time t;, where at least two
wave fronts interact together. 1
e At t = t; a new Riemann problem arises 05
and we repeat the previous strategy
replacing t =0 and uf by t = t; and 0
u"(ty,-) respectively. o5
T2 -1 0 1 2 3
u"(t1,)

: = 5 -1 7]
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[llustration of a WFT method

A

Construction of an approximate initial
datum uf : x — M, of up with n =5
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imensional Burgers equation 13




Godunov scheme is a conservative three-point
numerical scheme having the following form

At
n . ..n n n n n
Uiy = Uy — 7Ax(g(uj » Uj+1) - g(uj—lv uj )
with g a numerical flux and WFT algorithm
u(nAt,jAx) ~ u’,n € N,j € Z -
( ) I ' — Godunov scheme
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Godunov scheme :
Discretization in space Ax and time At,
“Backward uniqueness” because of diffusion effects,
Easy to implement,

A CFL condition has to be satisfied (&£ mix]|f’(u)\ < 1) — The final time T is small.
u€[u,d|

Wave-front tracking method :
Discretization in state Au,
No Backward uniqueness because shocks may be created,

Hard to implement (creation of objects and find interaction points between objects),

No CFL condition is imposed — The final time T may be large.
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The backward operator S;




The backward operator S,

The backward operator S;” associated to the Burgers dynamic is defined by
St (uT)(x) = 5 (x = uT (=x))(—x),

for every t € [0, T] and for a.e x € R.

Remark : The solution S; (u”) may be regarded as the zero visco-
sity limit of S7'°(uT) solution of the following backward equation

Oru(t, x) + Oxf(u(t, x)) = -ed2 u(t,x), (t,x) €RT xR,
{ u(T, ) =u'(x), x €R.

Using the change of variable (t,x) — (T — t,—x),
we notice that the backward equation above is well-defined.

Thus, S (uT) is also called the backward entropy solution with final target u”.
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if x € (=0.2,1.1) J(2,3.1) U(4.1,5.3) |J(6.1,7.2),

—1 otherwise.

2

uT(x) = {

-10

x = uT(—x)

2

1.5

0.5

suiy

-0.5

-1

Position

(t,x) = SF(x = uT(—x))

S (6 x) = ST(x = uT(=x))(—x)

(uT)

t

S
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Main result
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Main result

Our aim is to solve the following optimal control problem

min Jo(up) := /R (u(x) - 57Jf(u0))2 dx, (Opt-Pb)

o eugd

with u” € BV(R) and U = {up € BV(R)/|luollgv(ry < Cand Supp(ug) C Ko}

For a.e T > 0, the optimal control problem (Opt-Pb) admits multiple
optimal solutions. Moreover, the initial datum uy € BV (R) is an
optimal solution of (Opt-Pb) if and only if uy € BV/(R) verifies
S7(uo) = SH(S7(uT)).

@ A full characterization of the set of initial data up € BV/(R) such that
SF(uo) = SF(S7(uT)) is given in [Colombo-Perrolaz, 2019].

o If there exists an initial datum up € BV/(R) such that S3(ug) = u” then
SH(S7(uT)) = T

: = 5 2D
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2 ifxe(=02,1.1)J(23.1)J(4.1,5.3)J(6.1,7.2),

T
u'(x .
) { —1 otherwise.
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uT and x — SE(S7(uT))(x)
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A target u” with finite number of shocks

The two following results are given in [Colombo-Perrolaz, 2019].

o There exists an initial datum up € BV/(R) such that SF(up) = u” iff u” satisfies the

Oleinik condition, means that dyu” < % in the sense of distributions.

o A map up € BV(R) verifies S} (up) = u” if and only if the two following statements hold :

o For every x € R\ U,ﬂNzl [ai, bi], uo(x—) = 5;(”7—)()(*)-
o For every x € UP/:1[ai, bi]

[ wtse= [ S7(u")(s) ds,

i

/abi uo(s) ds = /Qb’ Sy (u")(s) ds.

with a; := xT — Tf'(u” (x7=)) and b; := xT — Tf'(u" (x+)) and (X,-T);e{o.’..‘,N} the
N € NU {co} discontinuous points of u” such that u” (x"+) < uT (x ).

: = 5 =)
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: = A .23
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uT = S7(u") and ug such that
S7(57(uT)) = SF(uw) = uT.
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: = A .05
Inverse design of one-dimensional Burgers equation <>



Time
n

0
Position

(tx) = S (w0)(x)
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S7(57(uT)) = SF(uw) = uT.
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Multiple initial data leading to a shock u”
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Construction of multiple initial data leading to a shock

. u  if x<Xx
Assuming that u7 = Lt <%
ug if x>x.

We construct a state mesh M, = u+ (7 — u)2 "N N [0,1] such that u < up < & and ug,ugp € M,

Construction of a path 4" such that

° V"(x) > v*(x), Vx € [x — Tf'(ur), X — Tf'(ur)],
° »),n()—( _ Tf'(UL)) =0, ”- L . X Possible values of Vi,
° (% = Tf'(ug)) = 7*(% — Tf'(ur)), e
o 4" e M,. Lo X s (@~ T (ur))
b X o |
P S R :
. u v
Construction of ug such that Sf(u) = u” : ! 1 1
up for x<x—Tf'(u) // 3 3
=< A" forae x—Tf(u)<x<x—TF(u) |/ | |
x—Tf' | 1
ug for X — Tf'(ug) < x - X TTreg h

: = 3 P
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Ideas of the proof

We consider the following optimal control problem ‘

min, luo) = [ (070~ St (Opepb1) |

up€U?

Z/{aod = {uo € BV(R)/|luo|lsv(r)y < Cand Supp(up) C Ko} ‘

{3uw € BV(R)/S7(w) = q} ifl{q € BV(R)/ d.q < 1}

. PN e, T
rg&?d J1(q) = lu” = qlli2r), (Opt-Pb-2) ‘

1
Upg={q € BV(R)/ dxq < + and llallsvry < Cand Supp(q) C Ki}. ‘
1
Using S7(S$(S7(uT)) = S7(u") and a full chara%terization of up such that Sy (up) = S7(u”)
¥
SE(S7(uT)) is the unique critical point of (Opt-Pb-2).
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Construction of an optimal solution

We consider the following optimal control problem

min/R(uT(x)fs-f—(uo))zdx,

[

Plotting of the target u” and x — SF(S7(u"))(x)
with S (u") an optimal solution.
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Plotting of multiple optimal solutions
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(T, z)
u(T, z)
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: = 5 .32
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Conclusion

Optimal problem : min
P P wel, Jr

(uT(x) — SH(uo))*dx  (Opt-Pb)

0
Backward-Forward Megfiod M(nl
o (o T
T uT*——KS7 (S5 (u"))
L 1z
o (T s
t S8y (uT)) == B
| frrfS i) = S(67 (u"))}
&
— X
T
K x
0 Sy (u”) 4
{uo/S (uo) = S7(S7 (u™))}

(R

—> Fully characterization of minimizers for (Opt-Pb)

o Construction of the minimizer S;
method

(S7(uT)) of (Opt-Pb) via a backward-forward

e up is a minimizer of (Opt-Pb) iff SF(u) = SF(S7(u"))

—> Implementation of a WFT algorithm to pick up ramdomly one of the minimizer of (Opt-Pb)
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Open problems

© It would be interesting to extend this work to an “augmented Burgers equation” in order
to minimize the sonic boom effects caused by supersonic aircrafts.

@ We may also consider a convex-concave function as a flux function in (PDE) which is for
instance a more realistic choice to describe the flow of pedestrian.

© We can also investigate systems of conservation laws in one dimension (Euler equations,
Shallow water equations).

@ To finish, it would be interesting to study numerically the inverse design of
multidimensional Burgers equation.
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