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Abstract. We prove that the viscosity solution to a Hamilton-Jacobi equation with a smooth

convex Hamiltonian of the form H(x, p) is differentiable with respect to the initial condition.

Moreover, the directional Gâteaux derivatives can be explicitly computed almost everywhere in
RN by means of the optimality system of the associated optimal control problem. We also prove

that these directional Gâteaux derivatives actually correspond to the unique duality solution to

the linear transport equation with discontinuous coefficient, resulting from the linearization of the
Hamilton-Jacobi equation. The motivation behind these differentiability results arises from the

following optimal inverse-design problem: given a time horizon T > 0 and a target function uT ,
construct an initial condition such that the corresponding viscosity solution at time T minimizes

the L2-distance to uT . Our differentiability results allow us to derive a necessary first-order

optimality condition for this optimization problem, and the implementation of gradient-based
methods to numerically approximate the optimal inverse design.

1. Introduction

We consider the initial-value problem associated to a Hamilton-Jacobi equation of the form

(1)

{
∂tu+H(x,∇xu) = 0 in (0, T )× RN
u(0, ·) = u0 in RN .

where T > 0, u0 ∈ Lip(RN ) is the given initial condition, and H is the given Hamiltonian

H : RN × RN → R,

which will be assumed to satisfy the following hypotheses:

(H1) H ∈ C2(R2N ), c0IN ≤ Hpp(x, p) ∀x, p ∈ RN , for some constant c0 > 0,

(H2) H(x, p) ≥ −C0 ∀x, p ∈ RN and H(x, 0) ≤ C0 ∀x ∈ RN , for some constant C0 ≥ 0,
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and that H satisfies the two following Lipschitz estimates: there exists CLip > 0 such that

(H3) |Hx(x, p)| ≤ CLip ∀(x, p) ∈ RN × RN ,

and for every R > 0, there exists CR > 0 such that

(H4) |Hp(x, p)| ≤ CR, ∀(x, p) ∈ RN × RN , s.t. |p| ≤ R.

In (H1), IN denotes the N×N identity matrix, and the inequality is understood in the usual partial
order of squared symmetric matrices, i.e. A ≥ B means that A−B is definite positive.

The study of Hamilton-Jacobi equations such as (1) arises in the context of optimal control
theory and problems in calculus of variations, in which the so-called value function satisfies an
associated dynamic programming equation, also known as Bellman equation [9], which, in the
deterministic continuous setting, happens to be equivalent to a first-order non-linear partial dif-
ferential equation of the form (1), see for instance [31, Chapter 10] or [32]. We also mention
that Hamilton-Jacobi equations are intimately connected, via the dynamic programming principle,
to problems in reinforcement learning [11], where many algorithms consist in approximating the
value function associated to an optimal control problem by exploiting the fact that it satisfies the
associated dynamic programming equation (the Bellman equation).

By the classical theory of viscosity solutions [26, 27, 35], it is well-known that, for any initial
condition u0 ∈ Lip(RN ), there exists a unique solution u ∈ Lip([0, T ] × RN ) which satisfies (1)
in the viscosity sense. Moreover, the convexity hypothesis (H1) on the Hamiltonian induces a
regularizing effect on the viscosity solution, which makes it be semiconcave with respect to (t, x)
(see [8, 13, 20, 21, 36] for results concerning the regularity of viscosity solutions to Hamilton-Jacobi
equations). In this work, we study the differentiability of the viscosity solution to (1) with respect
to the initial condition u0. In particular, we shall address the following issues concerning the
initial-value problem (1):

1. Our main goal is to establish the differentiability of the viscosity solution to (1) with
respect to the initial condition u0. More precisely, for any T > 0 and u0, w ∈ Lip(RN ), we
are interested in the existence of the directional Gâteaux derivative of the solution u(t, x)
at the initial condition u0, in the direction w, that we shall denote by ∂wu, and is defined
as the limit

∂wu(t, ·) := lim
δ→0+

uδ(t, ·)− u(t, ·)
δ

as δ → 0+, for t ∈ [0, T ],

where, for each δ > 0, uδ and u are the viscosity solutions to (1) with initial conditions
u0 + δw and u0 respectively.

2. The motivation behind the previous point arises in the context of inverse-design problems
associated to (1), for which differentiability results may allow us to derive first-order op-
timality conditions and the implementation of gradient-based algorithms to numerically
approximate an optimal inverse design. In particular, we address the following inverse-
design problem: for a given time horizon T > 0 and a target function uT ∈ Lip(RN ),
construct an initial condition u0 such that the corresponding viscosity solution to (1) at
time T minimizes the L2-distance to the target function uT . This problem can also be cast
as the orthogonal projection of uT onto the reachable set RT , that we define as

(2) RT :=
{
uT ∈ Lip(RN ) : ∃u0 ∈ Lip(RN ) s.t. the solution u to (1) satisfies u(T, ·) = uT

}
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i.e., the set of functions uT such that there exists at least an initial condition u0 for which
the viscosity solution to (1) coincides with uT at time T .

The inverse-design problem described in the second point above can be seen as an optimal control
problem subject to the dynamics given by the Hamilton-Jacobi equation (1), where the control is the
initial condition u0. Optimal control problems associated to first-order Hamilton-Jacobi equations
such as (1) are much less studied in the literature compared to optimal control problems subject
to other type of PDEs as for instance second-order parabolic and elliptic equations. This is mostly
due to the fact that the adjoint formulation to compute the gradient of the functional presents
difficulties when the gradient of the solution develops discontinuities, and the solution ceases to
exist in the classical sense.

For the case of scalar conservation laws in dimension 1, optimal control problems have been
considered in [19, 24, 38, 39]. In their approach, the variation of the functional with respect to the
control is computed by using the notion of shift differentiability, introduced by Bressan and Guerra
in [17], and extended to the multidimensional case in [12, 18]. The notion of shift derivative on
the space BV of integrable functions of bounded variation provides differentiability for the solution
operator associated to scalar conservation laws by carefully measuring the sensitivity of the shock
discontinuities. Despite the close relation between scalar conservation laws and Hamilton-Jacobi
equations [23], we do not make use of the notion of shift derivative since it requires a precise
description of the singular set, which turns out to be rather complicated, specially in the multi-
dimensional case, and might lead us to make further regularity assumptions. Instead, we establish
the differentiability of the solution operator associated to (1) by using the fact that the viscosity
solution can be written as the value function of an associated problem in calculus of variations.
Then, we use the differentiability result to provide a dual (or adjoint) formulation of the gradient
of the functional. A similar approach to ours, which is based on the adjoint equation (and does not
make use of the notion of shift differentiability) is used in [15, 25] for scalar conservation laws in
dimension 1.

1.1. Contributions. The main results in this work concern the differentiability of the viscosity
solution to (1) with respect to the initial condition u0. In view of the well-posedness of the initial
value problem (1), for any t ∈ (0, T ], we can define the nonlinear operator

(3)
S+
t : Lip(RN ) ←→ Lip(RN )

u0 7−→ u(t, ·),

which associates, to any initial condition u0, the viscosity solution to (1) at time t. Our goal is there-
fore to establish the differentiability of the operator S+

t . Here we sum up our main contributions
concerning this issue:

(i) In Theorem 1, we prove that for any t ∈ (0, T ], the operator S+
t is Gâteaux differentiable

at any u0 ∈ Lip(RN ), in any direction w ∈ Lip(RN ), with respect to the L1
loc–convergence.

Namely, we prove that for any u0, w ∈ Lip(RN ), there exists a function ∂wS
+
t u0 ∈ L∞loc(RN )

such that

S+
t (u0 + δw)− S+

t u0
δ

−→ ∂wS
+
t u0, as δ → 0+, in L1

loc(RN ).
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Moreover, the function ∂wS
+
t u0 can be explicitly computed almost everywhere in RN by

means of the optimality system of the optimal control problem associated to the Hamilton-
Jacobi equation (1).

(ii) Next, we prove in Theorem 3 that the function v : (0, T ]× RN −→ R, defined as

v(t, x) := ∂wS
+
t u0(x) ∀(t, x) ∈ (0, T ]× RN

is the unique duality solution [14, 16] to the linear transport equation

(4)

{
∂tv +Hp(x,∇xu) · ∇xv = 0 (t, x) ∈ (0, T )× RN
v(0, ·) = w x ∈ RN ,

where u is the viscosity solution to (1). Note that, due to the low regularity of the viscosity
solution u, the transport coefficient in (4) might have discontinuities.

Remark 1 (Transport equations with one-sided-Lipschitz coefficient). In particular, the conclu-
sions of Theorem 3 establish the existence and uniqueness of a duality solution for the linear trans-
port equation (4), for any initial condition w ∈ Lip(RN ). In this case, due to the uniform convexity
of the Hamiltonian H and the semiconcavity of the viscosity solution (see Proposition 2) the trans-
port coefficient

(5) a(t, x) = Hp(x,∇xu) ∈
[
L∞((0, T )× R)

]N
satisfies the one-sided Lipschitz condition (OSLC)

(6) 〈a(t, y)− a(t, x), y − x〉 ≤ α(t)|y − x|2 for a.e. (t, x, y) ∈ (0, T )× RN × RN ,

with α(t) = C/t for some constant C = C(u0, H) > 0 depending on u0 and H. Observe that (6)
implies only an upper bound for divx a, and thus, divx a may not be absolutely continuous with
respect to the Lebesgue measure, preventing us from using the approach by DiPerna-Lions in [29]
or by Ambrosio in [2]. The notion of duality solution, as introduced by Bouchut and James in
[14] for the one-dimensional case, and by Bouchut-James-Mancini in [16] for the N -dimensional
case, provides existence, uniqueness and stability for the initial-value problem associated to linear
transport equations under a OSLC condition slightly stronger than (6). Their proof relies on the
well-posedness of the backward dual problem (which is a conservative transport equation), in the
sense of reversible solutions (see subsection 3.3 for further details). However, in [14, 16], it is
assumed that the function α in (6) satisfies α ∈ L1(0, T ), which is not fulfilled in our case. In
Theorem 3, we are able to overcome this difficulty and prove existence and uniqueness of a duality
solution for linear transport equations, when the transport coefficient a(t, x) has the form (5) for
some Hamiltonian H satisfying (H1), (H2), (H3), and when the initial condition is continuous.
Our proof relies on the possibility of uniquely extending the reversible solutions to the backward
dual problem by a measure at time t = 0 (see Proposition 4 in subsection 3.5). The fact that the
backward solutions can only be extended at t = 0 by a measure restricts the well-posedness result for
the forward equation to the case of continuous initial conditions.

Let us now turn our attention to the second goal of this work, which concerns the optimal
inverse-design problem associated to (1). This problem can be formulated as an optimal control
problem in which the dynamics are given by the Hamilton-Jacobi equation (1), and the control is,
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precisely, the initial condition u0, i.e.

(7)

minimize
u0∈Lip0(RN )

JT (u0) := ‖u(T, ·)− uT (·)‖2L2(RN )

s.t. u is the viscosity solution to (1),
with initial condition u0.

Here, T > 0 and uT ∈ Lip0(RN ) are the given time-horizon and target function respectively. The
notation Lip0(RN ) stands for the space of Lipschitz functions with compact support in RN .

In this case, the assumptions on the Hamiltonian are (H1) and (H3) just as before, but this time,
assumption (H2) is assumed to hold with C0 = 0. This choice guarantees that the operator S+

T

satisfies

S+
T u0(·) ∈ Lip0(RN ) ∀u0 ∈ Lip0(RN ),

which, along with the fact that the target uT is compactly supported, ensures that the set of
admissible controls (initial conditions u0 such that JT (u0) <∞) is nonempty (see Remark 4). Our
conclusions concerning the optimal control problem (7) are as follows:

(i) In Theorem 2, we use the differentiability result from Theorem 1 to derive a first-order
optimality condition for the optimization problem (7), which can be expressed by means
of the gradient of the functional JT , i.e. the linear functional

DJT (u0) : w ∈ Lip(RN ) 7−→ ∂wJT (u0),

which defines a Radon measure in RN . In Theorem 2, the gradient of JT is given explicitly
by using the optimality system of the optimal control problem associated to the Hamilton-
Jacobi equation (1).

(ii) Then, we prove in Theorem 4 that, for any u0, w ∈ Lip(RN ), the directional derivative of
the functional JT at u0 in the direction w can be given by duality as

(8) ∂wJT (u0) = 2

∫
RN

w(x)dπ0(x),

where π0 ∈ M(RN ) is the unique Radon measure which continuously1 extends at t = 0
the unique reversible solution to the backward conservative transport equation

(9)

{
∂tπ + divx(a(t, x)π) = 0 in (0, T )× RN ,
π(T, x) = S+

T u0(x)− uT (x) in RN ,

where the transport coefficient a is defined as in (5). This allows us to derive the same first-
order optimality condition as in Theorem 2, but this time the gradient of the functional
JT is given by the Radon measure DJT (u0) = 2π0.

(iii) For completeness purposes, in Theorem 8, we prove that the inverse design problem (7)
admits at least one solution. We point out that uniqueness of a minimizer is not true in
general due to the lack of backward uniqueness of the Hamilton-Jacobi equation (1), see
[23, 30]. The proof of the existence result relies on a compactness argument and utilizes the
so-called backward viscosity operator [8], denoted by S−T , which is defined in an analogous

way to S+
T .

1In Proposition 4, we prove that the unique reversible solution π ∈ C((0, T ]; L1
loc(RN ) to (9) converges, as t→ 0+,

to a Radon measure π0 in the weak∗ topology in the space of measures.
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(iv) Finally, we look at the related optimization problem of the orthogonal projection of uT ∈
Lip0(RN ) onto the reachable set RT , which can be formulated as

minimize
ϕ∈RT

HT (u0) := ‖ϕ− uT ‖2L2(RN ).

For this problem, under the assumption that the Hamiltonian H is x-independent and
quadratic, we are able to prove, in Theorem 9, existence and uniqueness of a minimizer.
In this case, the proof uses Hilbert’s projection Theorem, that we can apply since, for
x-independent quadratic Hamiltonians, the reachable set RT can be fully characterized
by means of a sharp semiconcavity estimate from [30], that allows us to prove that the
set RT ∩ L2(RN ) is closed and convex in L2(RN ). Note that, although the orthogonal
projection of uT onto RT is unique, the solution to the inverse design problem (7) is not
expected to be unique, not even for x-independent quadratic Hamiltonian. In Corollary 1
we give a full characterization of the solutions to (7) when H is quadratic and independent
of x.

Remark 2 (Gradient-based methods). A popular method to numerically approximate a solution to
optimal control problems such as (7) is the so-called gradient-descent algorithm, which consists in
repeatedly updating the control parameter (in this case u0) in the opposite direction to the gradient
of the functional to be minimized (in this case JT ). Note however that, in view of Theorems 2 and
4, the gradient DJT (u0) is a Radon measure in RN , and then, the process of updating the initial
condition in the opposite direction to the gradient might not be possible, as it would exit the space
Lip(RN ). We can nonetheless implement an approximate version of the gradient descent algorithm,
in which at each step, the initial condition is updated, not in the exact opposite direction to the
gradient, but in a Lipschitz approximation of it, v̂, making sure that the directional derivative, as
defined in (8), satisfies ∂v̂JT (u0) > 0.

The method is initialized with some initial condition u
(0)
0 ∈ Lip0(RN ), and then, it is updated at

each step by means of the following formula:

(10) u
(n+1)
0 := u

(n)
0 − γn

v̂n
‖v̂n‖∞

,

where v̂n is a Lipschitz approximation of the Radon measure DJT (u
(n)
0 ), and ‖v̂n‖∞ stands for

the sup-norm of v̂n. The step-size parameter γn ∈ (0, 1) can be chosen in an adaptive manner
depending on n to ensure the convergence of the algorithm. Besides, it is to be pointed out that,
since the functional

u0 7−→ JT (u0) = ‖S+
T u0(·)− uT (·)‖2L2(RN )

is not necessarily convex, the gradient descent algorithm might converge to a local minimum instead
of a global one.

In Figure 1, we illustrate the application of the approximate gradient descent algorithm described
in Remark 2, to the functional JT , when the target uT is unreachable. As initialization, we have
chosen the initial condition given by the backward viscosity operator applied to the target uT , i.e.

u
(0)
0 := S−T uT , which is represented in the plot at the left. In the center, we plotted the initial

condition û0, obtained after several steps of the approximate gradient descent algorithm (10). The
picks of the function û0 pointing downward arise since, at each step, we are approximating the
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Figure 1. Different inverse designs for an unreachable target. At the left we see
the inverse design obtained as the backward viscosity solution to (1) with terminal
condition uT . In the center we have the initial condition after several iterations of
the approximate gradient descent algorithm described in Remark 2. At the right,
we see the function S−T (S+

T û), which is a regularized version of the (approximately)
optimal inverse design depicted in the center.

gradient DJT (u
(n)
0 ), which is in general a Radon measure, by a Lipschitz function. In the plot at

the right, we see the function

ũ0 := S−T (S+
T v̂0),

which, in view of the well-known property S+
T (S−T (S+

T u0)) = S+
T u0, which holds for all u0 ∈ Lip(RN ),

see [8, 37], we have that

JT (ũ0) = JT (û0).

Then, the function ũ0 can be seen as a regularized version of the (approximately) optimal inverse
design û0. This picture also shows how the minimizers for the optimal control problem (7) are not
expected to be unique. In Figure 2, we see the image by S+

T of the three initial conditions depicted

in Figure 1: in the plot at the left, we see the function S+
T (S−T uT ), whereas the plot at the right

represents the functions S+
T û0 and S+

T ũ0, which are indeed equal.

1.2. Previous related results on inverse design for Hamilton-Jacobi equations. One of
the main motivations of the present work arises in the context of inverse-time design problems
associated to (1), in which, for a given (possibly noisy) observation uT of the solution at some
time T > 0, one aims at reconstructing the corresponding initial condition. In the recent works
[23, 30], it is shown that this inverse problem is highly ill-posed. In one hand, the given observation
uT might not be reachable, meaning that there exists no initial condition for which the viscosity
solution coincides with uT at time T . On the other hand, when an inverse design for uT exists, it
might not be unique.
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In [30], we treated the case of x-independent Hamiltonians H(x, p) = H(p) satisfying the follow-
ing properties

(11) H ∈ C2(RN ), Hpp(p) > 0 ∀p ∈ RN and lim
|p|→∞

H(p)

|p|
= +∞.

We showed that, in this case, existence and uniqueness of inverse designs are intimately related to
the regularity of the target uT . More precisely, the existence of at least an inverse design depends
on the semiconcavity properties of uT , whereas the uniqueness is related to its differentiability.

In the case when there exists no initial condition u0 ∈ Lip(RN ) such that S+
T u0 = uT , the

question that arises naturally is that of constructing an initial condition û0 ∈ Lip(RN ) such that
S+
T û0 is “as close as possible” to uT . Of course, one can consider different criteria to measure the

closeness of S+
T û0 to the target uT . In this work we consider the L2-distance, but other choices can

be considered. We refer to [33, 34] for similar results for the one-dimensional Burgers equation with
convex flux, and to [6] for a one-dimensional conservation law with a discontinuous space-dependent
flux.

For the case of x-independent Hamiltonians satisfying (11), we studied in [30] the reachable
function u∗T obtained after a backward-forward resolution of (1) with terminal condition uT . This
method gives rise to the smallest element in RT which is bounded from below by uT , the so-called
semiconcave envelope of uT . Hence, the inverse design u0 = S−T uT , is optimal if one wants to
approximate uT with functions lying above uT . Moreover, for the case of x-independent quadratic
Hamiltonians of the form

H(p) =
〈Ax, x〉

2
with A being any positive definite matrix,

we proved in [30] that the function u∗T := S+
T (S−T uT ), obtained after a backward-forward resolu-

tion of (1) in the time interval [0, T ], actually coincides with the unique viscosity solution to the
degenerate elliptic obstacle problem

min

{
ϕ− uT , −λN

[
D2ϕ− A−1

T

]}
= 0,

where, for an N ×N symmetric matrix X, we denote by λN [X] the greatest eigenvalue of X.

In the present work, for a given target uT ∈ Lip(RN ) with compact support and a p-convex
Hamiltonian H(x, p) which may depend also on the space-variable x, instead of approximating uT
by the backward-forward method, we consider the problem of finding a reachable function u∗T ∈ RT
that minimizes the L2-distance to uT . In Figure 2, we can see an illustration of the semiconcave
envelope of an unreachable target function uT , compared with the L2-projection of uT onto RT .
Observe that, since the semiconcave envelope always lies above the target, the projection obtained
by the operator S+

T ◦ S
−
T is different to the L2-projection of uT onto RT , unless the target uT is

reachable.

The rest of the paper is structured as follows. In Section 2, we present and prove the main
results concerning the differentiability of the forward viscosity operator S+

T with respect to the
initial condition. The proof of Theorem 1 is postponed to the subsection 2.3. In subsection 2.2,
we compute the gradient of the functional JT and derive a first-order optimality condition for the
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Figure 2. At the left we see the semiconcave envelope of a function uT ∈ Lip(R),
obtained by a backward-forward resolution of (1), i.e. the smallest reachable func-
tion bounded from below by uT . At the right we see the L2-projection of uT onto
the reachable set RT , i.e. the reachable function which minimizes the L2-distance
to uT .

optimal control problem (7). In section 3, we identify the directional Gâteaux derivatives obtained
in Section 2, with duality solutions to the transport equation (4). The main result of this section is
stated in subsection 3.1, and its proof is postponed to subsection 3.5. In subsection 3.2, we represent
the gradient of the functional JT , defined in (7), by means of the unique backward solution at time
t = 0 to the dual equation to (4), which is the backward conservative equation (9). In subsection
3.3, we recall the main definitions and properties of duality solutions, as presented in [16]. In
subsection 3.4, we give a proof of a semiconcavity estimate, necessary in the proof of Theorem 3.
Finally, in Section 4 we give the proof of the existence of minimizers for the optimal control problem
7. In addition, for the case when the Hamiltonian is x−independent and quadratic, we prove that
the L2-projection of any uT ∈ Lip(RN ) onto the space of reachable targets RT is unique.

2. Differentiability with respect to the initial condition

The goal in this section is to prove that the forward viscosity operator S+
T defined in (3) is

differentiable with respect to the L1
loc-convergence. Then, we use this differentiability result to

compute the gradient of the functional JT defined in (7), which allows us to derive a first-order
optimality condition for the optimization problem (7).

It is well known (see for instance [31, Chapter 10] or [32, Section I.10]) that, under the hypotheses
(H1),(H2), (H3) and (H4), for any initial condition u0 ∈ Lip(RN ), the unique viscosity solution to
(1) can be given by the value function of an associated problem in the calculus of variations as
follows:

(12) u(t, x) = inf
ξ∈W 1,1((0,t);RN )

ξ(t)=x

{∫ t

0

H∗(ξ(s), ξ̇(s))ds+ u0(ξ(0))

}
, ∀(t, x) ∈ [0, T ]× RN
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where H∗ : RN × RN → R denotes the Legendre-Fenchel transform of H(x, ·), i.e.

H∗(x, q) = max
p∈RN

{p · q −H(x, p)} ∀x, q ∈ RN .

In view of the representation formula (12), for any t ∈ (0, T ], the forward viscosity operator S+
t

introduced in (3) can be given by the expression

(13) S+
t u0(x) := inf

ξ∈W 1,1((0,t);RN )
ξ(t)=x

{∫ t

0

H∗(ξ(s), ξ̇(s))ds+ u0(ξ(0))

}
, ∀x ∈ RN .

One can readily prove that the operator S+
t satisfies the semigroup property

(S+
t1 ◦ S

+
t2)u0 = S+

t1+t2u0, ∀t1, t2 > 0.

2.1. Differentiability of the forward viscosity semigroup. The main result of this section
is the following theorem, which states that the operator S+

t is Gâteaux differentiable at any u0 ∈
Lip(RN ), in any direction w ∈ Lip(RN ). The proof of this theorem is postponed to subsection 2.3.

Theorem 1. Let T > 0, u0 ∈ Lip(RN ), and let H be a Hamiltonian satisfying (H1),(H2), (H3)
and (H4). Let S+

t be the forward viscosity operator defined in (13). Then, for any w ∈ Lip(RN )
and t ∈ (0, T ] we have

S+
t (u0 + δw)(·)− S+

t u0(·)
δ

−→ ∂wS
+
t u0(·) as δ → 0+, in L1

loc(RN ),

where ∂wS
+
t u0(·) ∈ L∞loc(RN ) is defined almost everywhere in RN in the following way:

At any point x ∈ RN where S+
t u0(·) is differentiable, we have

(14) ∂wS
+
t u0(x) = w(ξt,x(0)),

with (ξt,x(·), pt,x(·)) ∈ C1([0, t];RN ) being the unique solution to the backward system of ODEs

(15)


ξ̇t,x(s) = Hp(ξt,x(s), pt,x(s)) s ∈ (0, t)

ṗt,x(s) = −Hx(ξt,x(s), pt,x(s)) s ∈ (0, t)

ξt,x(t) = x pt,x(t) = ∇S+
t u0(x).

(Note that, since S+
t u0(·) ∈ Lip(RN ), by means of Rademacher’s Theorem we have that S+

t u0(·)
is differentiable almost everywhere in RN . Hence, the expression (14) uniquely determines ∂wS

+
t u0(·)

as an element of L∞loc(RN )).

The function ∂wS
+
t u0(·) ∈ L∞loc(RN ) defined a.e. as in (14) can be interpreted as the Gâteaux

derivative of the operator S+
t at u0 in the direction w. Now, for any u0 ∈ Lip(RN ) and t ∈ (0, T ]

fixed, let us define the function Φtu0
(·) ∈ L∞loc(RN ;RN ) as

(16) Φtu0
(x) := ξt,x(0), for a.e. x ∈ RN ,

where ξt,x(0) is the unique solution to (15). Then, the operator

DS+
t (u0) : Lip(RN ) −→ L∞loc(RN )

w(·) 7−→ ∂wS
+
t u0(·) := w(Φtu0

(·)) a.e. in RN
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is linear and continuous in its domain, and can be seen as the gradient of the operator S+
t at u0.

This proves that for any t ∈ (0, T ], the operator S+
t defined in (13) is differentiable with respect to

the L1
loc-convergence.

Remark 3 (Lipschitz continuity). Note moreover that, for any u0 ∈ Lip(RN ), the norm of the
linear operator DS+

t (u0) above defined, restricted to Lip(RN )∩L∞(RN ), is equal to 1. This implies
that, for any t ∈ (0, T ], the forward viscosity operator S+

t , restricted to Lip(RN ) ∩ L∞(RN ), is
Lipschitz with constant 1, i.e.

‖S+
t u0 − S+

t u1‖L∞(RN ) ≤ ‖u0 − u1‖L∞(RN ) for all u0, u1 ∈ Lip(RN ) ∩ L∞(RN ).

This inequality is also proved in (27) as part of the proof of Theorem 1.

2.2. First-order optimality condition for inverse designs. In this subsection, for a given
time horizon T > 0 and a target function uT ∈ Lip0(RN ), we consider the optimization problem
(7), presented in the introduction, of constructing an initial condition for which the corresponding
viscosity solution to (1) at time T minimizes the L2-distance to uT . Using the forward viscosity
operator S+

T introduced in (3), and given explicitly by the expression (13), the problem can be
formulated as

(17) minimize
u0∈Lip0(RN )

JT (u0) := ‖S+
T u0(·)− uT (·)‖2L2(RN ).

Remark 4 (Assumptions on the Hamiltonian). We address the optimization problem (17) under
the assumption that the Hamiltonian H satisfies the hypotheses (H1), (H3), (H4), and (H2) with
C0 = 0. This choice guarantees that the operator S+

T defined in (13) satisfies

(18) S+
T u0 ∈ Lip0(RN ) ∀u0 ∈ Lip0(RN ).

Indeed, it is easy to check that condition (H2) with C0 = 0 implies the same property on the
Legendre-Fenchel transform H∗, i.e.

H∗(x, q) ≥ 0 ∀x, q ∈ RN and H∗(x, 0) = 0 ∀x ∈ RN .
This property implies in particular that S+

T 0 = 0, and then, by using the compactness estimates
from [5, Corollary 1] (see also [4]), we deduce that, if u0 ∈ Lip0(RN ), there exists a constant l > 0
such that supp(S+

T u0) ⊂ [−l, l]N . Finally, since Lip0(RN ) ⊂ L2(RN ), property (18) follows. Having
property (18) in hand, we deduce that the set of admissible initial conditions for the optimization
problem (17), i.e. u0 ∈ Lip(RN ) satisfying JT (u0) <∞, is nonempty.

Remark 5 (Existence of minimizers). Note that, due to the lack of backward uniqueness of the
Hamilton-Jacobi equation (1), the functional JT (·) is not expected to be coercive. Indeed, in view
of the results in [23, 30], the preimage by S+

T of any reachable function ϕT ∈ RT consists of a
convex cone in Lip(RN ), which might be unbounded in L2(RN ). The existence of a minimizer for
the problem (17) can however be justified by using the backward viscosity operator S−T defined in
(56). We shall prove, in Theorem 8 in Section 4, the existence of at least one minimizer for the
optimization problem (17).

In the following theorem, we derive a first-order optimality condition for the problem (17). This
is done by using the differentiability result from Theorem 1, which allows one to compute the
directional derivatives of the functional

JT : Lip0(RN ) −→ R
u0 7−→ ‖S+

T u0(·)− uT (·)‖2L2(RN ).
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Theorem 2. Let T > 0 and let H be a Hamiltonian satisfying (H1), (H3), (H4), and (H2) with
C0 = 0. Let S+

T be the forward viscosity operator defined in (13), and let uT ∈ Lip0(RN ) be a given
function with compact support. Then, any u0 ∈ Lip0(RN ) solution to the optimization problem (17)
satisfies

(19)

∫
RN

(S+
T u0(x)− uT (x))w(ΦTu0

(x))dx = 0 ∀w ∈ Lip(RN ).

This condition can also be expressed, in terms of the gradient of the functional JT , as

DJT (u0) = 0,

where DJT is the continuous linear functional

(20)
DJT (u0) : Lip(RN ) → R

w(·) 7→ ∂wJT (u0) := 2

∫
RN

(S+
T u0(x)− uT (x))w(ΦTu0

(x))dx

with ΦTu0
(·) being the map defined a.e. as in (16). Note that, by the density of Lipschitz functions

in C0
c (RN ), we can extend the functional DJT (u0) to C0

c (RN ), and we then deduce that DJT (u0)
defines a Radon measure in RN .

Proof. Using the conclusions of Theorem 1, and the fact that u0, uT ∈ Lip0(RN ) are compactly
supported, we can compute

lim
δ→0+

JT (u0 + δw)− JT (u0)

δ
= lim

δ→0+
2

∫
RN

(S+
T u0(x)− uT (x))

S+
T (u0 + δw)(x)− S+

T u0(x)

δ
dx

= 2

∫
RN

(S+
T u0(x)− uT (x))∂wS

+
T u0(x)dx,

where ∂wS
+
T u0 ∈ L∞loc(RN ) is given by (14). Hence, using the map ΦTu0

defined a.e. in (16), we can
write the directional derivative of JT at u0 in the direction w as

∂wJT (u0) = 2

∫
RN

(S+
T u0(x)− uT (x))w(ΦTu0

(x))dx.

This gives the first-order optimality condition (19).

Finally, note that the functional DJT defined in (20) is clearly linear and continuous with respect
to the sup-norm in C0

c (RN ). Then, by the density of Lip(RN ) in the space of continuous functions
with compact support, we can identify DJT (u0) with a Radon measure in RN . �

2.3. Proof of Theorem 1. Let us give the proof of Theorem 1. As a first step we provide, in
Proposition 1, an explicit expression for the limit

lim
δ→0+

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
.

at the points x ∈ RN where S+
t u0 is differentiable. As it is well-known, the viscosity solution to

(1) is Lipschitz continuous, and then, by Rademacher’s Theorem, S+
t u0 is differentiable for a.e.

x ∈ RN . Therefore, Proposition 1 is sufficient to explicitly identify a unique candidate in L∞loc(RN )
for the directional Gâteaux derivative ∂wS

+
t u0(·).
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Proposition 1. Let T > 0, u0 ∈ Lip(RN ) and H be a Hamiltonian satisfying (H1),(H2), (H3) and
(H4). For any t ∈ (0, T ], let S+

t be the forward viscosity operator defined in (13). For any x ∈ RN
such that S+

t u0(·) is differentiable at x, let ξt,x ∈ C1([0, t];RN ), together with pt,x ∈ C1([0, t];RN ),
be the unique solution to the terminal value problem

(21)


ξ̇t,x(s) = Hp(ξt,x(s), pt,x(s)) s ∈ (0, t)

ṗt,x(s) = −Hx(ξt,x(s), pt,x(s)) s ∈ (0, t)

ξt,x(t) = x pt,x(t) = ∇S+
t u0(x).

Then, for any w ∈ Lip(RN ), we have

lim
δ→0+

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
= w(ξt,x(0)).

Remark 6. This result proves that, for any x ∈ RN fixed, the map

u0(·) ∈ Lip(RN ) 7−→ S+
t u0(x) ∈ R

is differentiable at any u0 ∈ Lip(RN ) where S+
t u0(·) is differentiable. However, it does not directly

prove the differentiability of the operator S+
t . Indeed, Proposition 1 proves that the limit

S+
t (u0 + δw)(·)− S+

t u0(·)
δ

→ ∂wS
+
t u0(·) as δ → 0+.

holds in the sense almost everywhere in RN , and represents the first step of the proof of Theorem
1. The second step will consist in justifying that the convergence actually holds in L1

loc(RN ).

In the proof of Proposition 1, we use the following well-known result concerning the minimizers
of the right-hand-side of (13) at the points where S+

t u0(·) is differentiable.

Lemma 1. Let T > 0, u0 ∈ Lip(RN ) and H be a Hamiltonian satisfying (H1),(H2), (H3) and
(H4). For any (t, x) ∈ (0, T ]× RN fixed, let ξt,x(·) be any minimizing trajectory for the right-hand
side of (13), and let pt,x(·) be its associated dual arc. Then, the following statements hold true:

(i) For all s ∈ (0, t), the function S+
s u0(·) is differentiable at ξt,x(s), and

∇S+
s u0(ξt,x(s)) = pt,x(s).

(ii) If S+
t u0(·) is differentiable at x, then the minimizer ξt,x of the right-hand-side in (13) is

unique and is given by the unique solution to (21).

Proof. The result is well-known and is a direct consequence of the results in Chapter 6 in [22]. Let
us give a brief sketch of the proof for the reader’s convenience. The first statement follows directly
from [22, Theorem 6.4.8]. For the second statement, sing [22, Theorem 6.4.10], the differentiability
of S+

t u0(·) at x implies that (t, x) is a regular point in the sense of [22, Definition 6.3.4], i.e. the
minimizer ξx of the right-hand-side in (13) is unique. Then the proof can be concluded by using
Theorems 6.3.3 and 6.4.8 in [22]. �

We can now proceed to the proof of Proposition 1.
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Proof of Proposition 1. Let (t, x) ∈ (0, T ]× RN be such that S+
t u0(·) is differentiable at x, and let

ξt,x(·) ∈ C1([0, t];RN ) be the solution to (21). We first note that, in view of (13) and Lemma 1, we
have

S+
t u0(x) =

∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0))

and

S+
t (u0 + δw)(x) ≤

∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) + δw(ξt,x(0)),

which combined together imply

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
≤ w(ξt,x(0)) ∀δ > 0.

Hence, we have

(22) lim sup
δ→0+

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
≤ w(ξt,x(0)).

Let us now prove that

(23) lim inf
δ→0+

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
≥ w(ξt,x(0)).

We argue by contradiction. Let us suppose that there exists α > 0 and a sequence {δn}n∈N such
that δn ∈ (0, 1), δn → 0 and

(24)
S+
t (u0 + δnw)(x)− S+

t u0(x)

δn
≤ w(ξt,x(0))− α ∀n ∈ N.

For each n ∈ N, let ξn ∈ C1(0, t;RN ) be such that

S+
t (u0 + δnw)(x) =

∫ t

0

H∗(ξn(s), ξ̇n(s))ds+ u0(ξn(0)) + δnw(ξn(0)).

Using (13), we deduce

S+
t u0(x) + δnw(ξn(0)) =

∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) + δnw(ξn(0))

≤
∫ t

0

H∗(ξn(s), ξ̇n(s))ds+ u0(ξn(0)) + δnw(ξn(0))

= S+
t (u0 + δnw)(x),

which combined with (24) implies

(25) w(ξn(0)) ≤ S+
t (u0 + δnw)(x)− S+

t u0(x)

δn
≤ w(ξt,x(0))− α ∀n ∈ N.

Using the fact that the function u0 + δnw is globally Lipschitz with a Lipschitz constant inde-
pendent of n, we deduce from Lemma 1, and using the hypothesis (H3), that there exists a constant
CT > 0 such that the viscosity solution un ∈ Lip([0, T ]×RN ) to (1) with initial condition u0 + δnw
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is Lipschitz continuous with Lipschitz constant CT independent of n ∈ N. This implies in particular
that the dual arc pn(·) associated to each optimal trajectory ξn(·) satisfies

|pn(s)| ≤ CT ∀s ∈ [0, t].

We then deduce, using (H4), that there exists another constant C ′T > 0, also independent of n,
such that

|ξ̇n(s)| ≤ C ′T ∀s ∈ [0, t] ∀n ∈ N.
Hence, by Arzéla-Ascoli Theorem, there exists ξ∞(·) ∈ W 1,1(0, T ;RN ) such that ξn(·) → ξ∞(·)
uniformly in (0, t).

Now, in view of (25), we deduce that ξ∞(·) 6= ξt,x(·), which combined with the fact that, by
means of Lemma 1 (ii), ξt,x(·) is the unique minimizer for the right-hand-side of (13), implies that
there exists β > 0 such that∫ t

0

H∗(ξ∞(s), ξ̇∞(s))ds+ u0(ξ∞(0)) =

∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) + β.

On the other hand, since H∗(x, q) is continuous with respect to both variables and convex in q,
we deduce that the right-hand-side of (13) is weakly lower semicontinuous, and then

lim inf
n→∞

∫ t

0

H∗(ξn(s), ξ̇n(s))ds+ u0(ξn(0)) ≥
∫ t

0

H∗(ξ∞(s), ξ̇∞(s))ds+ u0(ξ∞(0))

=

∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) + β,

which implies that we can extract another subsequence δn → 0 such that∫ t

0

H∗(ξn(s), ξ̇n(s))ds+ u0(ξn(0)) ≥
∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) +
β

2
∀n ≥ 1.

Finally, using the optimality of ξn for each n, we have in addition that∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) + δnw(ξt,x(0)) ≥
∫ t

0

H∗(ξn(s), ξ̇n(s))ds+ u0(ξn(0))

+δnw(ξn(0))

for all n ≥ 1, and adding the last two inequalities we obtain

δn (w(ξt,x(0))− w(ξn(0))) ≥ β

2
> 0,

which leads to a contradiction since δn → 0. The inequality (23) then follows, and together with
(22), implies the conclusion of the theorem. �

Let us finish the section with the proof of Theorem 1.

Proof of Theorem 1. In one hand, since S+
t u0(·) is Lipschitz continuous, and then differentiable

almost everywhere in RN , by means of Proposition 1 we have

(26)
S+
t (u0 + δw)(x)− S+

t u0(x)

δ
→ ∂wS

+
t u0(x) for a.e. x ∈ RN .
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Now, let K ⊂⊂ RN be any compact set. We claim that there exists another compact set K ′ ⊂⊂ RN
such that, for any δ > 0, it holds that

(27)

∣∣∣∣S+
t (u0 + δw)(x)− S+

t u0(x)

δ

∣∣∣∣ ≤ ‖w‖L∞(K′) ∀x ∈ RN .

Indeed, by the definition of S+
t in (13), for any x ∈ K there exists ξ1 ∈ C1(0, t;RN ) such that

S+
t u0(x) =

∫ t

0

H∗(ξ1(s), ξ̇1(s))ds+ u0(ξ1(0)),

which then implies that

S+
t (u0 + δw)(x)− S+

t u0(x) ≤
∫ t

0

H∗(ξ1(s), ξ̇1(s))ds+ u0(ξ1(0)) + δw(ξ1(0))

−
∫ t

0

H∗(ξ1(s), ξ̇1(s))ds− u0(ξ1(0))(28)

= δw(ξ1(0)).

Moreover, using the hypotheses (H3) and (H4), we deduce that the trajectory ξ1(·) is contained in
a compact set K ′ ⊂⊂ RN independent of x ∈ K, which in turn implies, combined with (28), that

S+
t (u0 + δw)(x)− S+

t u0(x) ≤ δ‖w‖L∞(K′).

Using a similar argument, with an arc ξ2 ∈ C1(0, t;RN ) minimizing the right-hand-side of (13) with
u0 + δw instead of u0 we obtain

S+
t (u0 + δw)(x)− S+

t u0(x) ≥ δw(ξ2(0)) ≥ −δ‖w‖L∞(K′),

and then (27) follows.

Now, in view of (26) and (27), we can use Lebesgue’s dominated convergence Theorem to deduce

lim
δ→0+

∫
K

∣∣∣∣S+
t (u0 + δw)(x)− S+

t u0(x)

δ
− ∂wS+

t u0(x)

∣∣∣∣ dx = 0, for all compact set K ⊂⊂ RN ,

which implies that

S+
t (u0 + δw)− S+

t u0
δ

−→ ∂wS
+
t u0, as δ → 0+ in L1

loc(RN ).

�

3. Gâteaux derivatives and linear transport equations

The goal in this section is to prove that, for any u0, w ∈ Lip(RN ), the directional Gateaux
derivative ∂wS

+
T u0, that we proved to exist in Theorem 1, is actually the unique duality solution

to the following linear transport equation:

(29)

{
∂tv + a(t, x) · ∇xv = 0 (t, x) ∈ (0, T )× RN
v(0, x) = w(x) x ∈ RN ,

where the transport coefficient a(t, x) is given by

(30) a(t, x) := Hp(x,∇x[S+
t u0(x)]).
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The precise definition and the main properties of duality solutions for the equation (29) are given
in subsection 3.3. We refer to [14, 16] for further details concerning the theory of duality solutions
for transport equations with discontinuous transport coefficient satisfying a one-sided-Lipschitz
condition.

As it is well-known, when t > 0 is sufficiently large, the solution to (1) eventually looses regularity
and its gradient develops jump-discontinuities. This in turn implies that the transport coefficient
(30) is no longer continuous, and therefore, the equation (29) cannot be solved by the classical
method of characteristics. A key-feature to establish well-posedness for (29) is the fact that the
convexity assumption (H1) on the Hamiltonian, which yields a semiconcavity estimate for the
forward viscosity semigroup S+

t u0 (see Proposition 2 below) implies that the transport coefficient
a(t, x) defined in (30) satisfies the following one-sided Lipschitz condition (OSLC)

(31) 〈a(t, y)− a(t, x), y − x〉 ≤ C

t
|y − x|2 for a.e. (t, x, y) ∈ (0, T )× RN × RN ,

where C > 0 is a positive constant. In the work by Bouchut-James-Mancini [16], existence, unique-
ness and stability is established for linear transport equations as (29) with a transport coefficient
satisfying the OSLC condition. However, we are not able to directly apply the results in [16] since
the function α(t) = C/t does not belong to L1(0, T ).

3.1. Directional Gâteaux derivatives as duality solutions. Let us state the main result of
this section, which ensures that the directional Gâteaux derivative of the forward viscosity operator
S+
T at u0 in the direction w is the unique duality solution to the linear transport equation (29).

Theorem 3. Let T > 0, u0, w ∈ Lip(RN ), and let H be a Hamiltonian satisfying (H1), (H2), (H3)
and (H4). Then we have

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
→ v(t, x) in C([0, T ], L1

loc(RN ))

where v(t, x) is the unique duality solution to the linear transport equation (29) with transport
coefficient a(t, x) given by (30) and initial condition v(0, ·) = w(·).

The proof of this theorem is postponed to subsection 3.5, and relies on the well-posedness of the
dual equation to (29), which is the backward conservative equation

(32)

{
∂tπ + divx(a(t, x)π) = 0 in (0, T )× RN ,
π(T, x) = πT (x) in RN .

where the coefficient a(t, x) is given by (30), and πT ∈ L∞(RN ) is any given terminal condi-
tion. Using the results in [16], we can deduce that there exists a unique reversible2 solution
π ∈ C((0, T ], L∞ − w∗) to the terminal value problem (32). However, the fact that the right-
hand-side of (31) does not belong to L1(0, T ), prevents us from extending by continuity3 π at
t = 0 by a L∞ function. This allows us to prove, in Proposition 3, that the Gâteaux derivative
v(t, x) = ∂wS

+
T u0 is a duality solution to the forward equation (29). However, in order to ensure

that this duality solution is actually the unique duality solution, we need to use Proposition 4,
where we prove that the reversible solutions to (32) can be uniquely extended by continuity at

2See Definition 2 and Theorem 5.
3with respect to the weak∗ topology in L∞(RN ).
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t = 0 by a Radon measure in RN . This unique extension result uses in a crucial manner the fact
that the coefficient a(t, x) is of the form (30), for some Hamiltonian satisfying (H1),(H2), (H3) and
(H4).

3.2. First-order optimality condition by means of the dual equation. Here, we use the
differentiability result from Theorem 3 to compute the gradient of the functional JT defined in the
optimization problem (17), that we recall here

minimize
u0∈Lip0(RN )

JT (u0) := ‖S+
T u0(·)− uT (·)‖2L2(RN ),

in terms of the dual equation to the linear transport equation (29), which is the backward conserva-
tive equation (32), which will be proved to be well-posed in Proposition 4, in the class of reversible
solutions (see [14, 16]), for any terminal condition πT ∈ L∞(RN ) with compact support.

Theorem 4. Let T > 0, u0 ∈ Lip0(RN ), and let H be a Hamiltonian satisfying (H1), (H3), (H4),
and (H2) with C0 = 0. Then, the gradient of the functional JT is given by the linear functional

(33)
DJT (u0) : Lip(RN ) −→ RN

w(·) 7−→ ∂wJT (u0) := 2

∫
RN

w(x)dπ0(x),

where π0 ∈M(RN ) is the unique Radon measure which extends4 by continuity in M(RN )−w∗, at
time t = 0, the unique reversible solution to the conservative transport equation (32) with terminal
condition

πT (x) = S+
T u0(x)− uT (x) ∀x ∈ RN .

Hence, any initial condition u0 ∈ Lip0(RN ), solution to the optimization problem (17) , satisfies
DJT (u0) = 0, where DJT (u0) is the Radon measure defined in (33).

Proof. We prove the Theorem 4, assuming that Theorem 3 (that we will prove later) is true. We
need to prove that the linear functional DJT (u0) defined in (33) satisfies

DJT (u0)[w] = ∂wJT (u0) := lim
δ→0+

JT (u0 + δw)− JT (u0)

δ
, ∀w ∈ Lip(RN ).

Using the definition of JT and Theorem 2, together with Theorem 3 and the fact that S+
T u0−uT

is compactly supported, we can compute

∂wJT (u0) = 2

∫
RN

(
S+
T u0(x)− uT (x)

)
∂wS

+
T u0(x)dx

= 2

∫
RN

(
S+
T u0(x)− uT (x)

)
v(T, x)dx,

where v(T, ·) is the unique duality solution to (32) at time t = T , with initial condition w. Now,
using the definition of duality solution (see Definition 3), we have that the map

t 7−→
∫
RN

v(t, x)π(t, x)dx is constant in(0, T ],

4The uniqueness of the extension at t = 0 is shown in Proposition 4.
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where π ∈ C((0, T ], L∞−w∗) is the unique reversible solution to the conservative transport equation
(32) with terminal consition πT (·) = S+

T u0(·)−uT (·) (see Definition 2 and Theorem 5). Finally, by
Proposition 4, we conclude that

∂wJT (u0) = 2

∫
RN

w(0, x)dπ0(x),

where π0 is the unique measure that extends the reversible solution π by continuity inM(RN )−w∗,
at t = 0. �

3.3. Duality solutions. In this subsection, we briefly recall the definition and main properties of
duality solutions to linear transport equations with a coefficient satisfying the one-sided-Lipschitz
condition. We refer to [16] for a more detailed presentation and the proofs of the results presented
in this subsection.

We consider the linear transport equation

(34)

{
∂tv + a(t, x) · ∇v = 0 in (0, T )× RN

v(0, x) = v0(x) in RN ,

where the initial condition satisfies v0 ∈ BVloc(RN ), and the vector field a ∈ L∞((0, T )× RN ;RN )
is the so-called transport coefficient, that can have discontinuities, but is assumed to satisfy the
OSLC condition

(35) 〈a(t, y)− a(t, x), y − x〉 ≤ α(t)|y − x|2 for a.e. (t, x, y) ∈ (0, T )× RN × RN ,

for some function α ∈ L1(0, T ).

Note that (35) implies only an upper bound on divxa, and thus, divxa may not be absolutely con-
tinuous with respect to the Lebesgue measure, preventing us from using the renormalized approach
by DiPerna-Lions in [29]. The framework that we have chosen to deal with transport equations
with discontinuous coefficients a ∈ L∞((0, T ) × RN ) satisfying OSLC condition (35) is the one of
duality solutions, established by Bouchut-James [14] for the one-dimensional case in space, and by
Bouchut-James-Mancini in [16] for the multidimensional case.

The main idea in [16] to establish well-posedness for the problem (34) consists in solving the
dual (or adjoint) equation to (34), which is a conservative transport equation of the form

(36)

{
∂tπ + divx(a(t, x)π) = 0 in (0, T )× RN ,
π(T, x) = πT (x) in RN .

Following the approach by Bouchut-James-Mancini in [16], we define the reversible solutions to
(36) by using the notion of transport flow.

Definition 1 (Transport Flow). Let T > 0, and a(·, ·) ∈ L∞((0, T ) × RN ) be given. We say that
the Lipschitz map

XT : [0, T ]× RN −→ RN

is a backward flow in [0, T ]× R associated to a(·, ·) if{
∂tX

T (t, x) + a(t, x) · ∇xXT (t, x) = 0 a.e. in (0, T )× RN

XT (T, x) = x in RN .
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and satisfies det(∇xXT ) ≥ 0 for all t ∈ [0, T ], where ∇xXT is the distributional Jacobian of the
vector field XT .

With the notion of transport flow, we can now define the notion of reversible solution for the
conservative transport equation (36).

Definition 2 (Reversible solution). We say that π ∈ C([0, T ], L∞loc(RN )−w∗) is a reversible solution
to (36), if for some transport flow XT one has

π(t, x) = π(T,XT (t, x))det(∇xXT (t, x))

for all 0 ≤ t ≤ T and a.e. x ∈ RN .

In [16], it is proved that for any transport coefficient a satisfying (35), there exists at least a
transport flow, however, uniqueness cannot be ensured in the multi-dimensional case. Nonetheless,
the property that yields uniqueness for the problem (36) is the fact that any transport flow associated
to a have the same Jacobian determinant. Indeed, it can be proved that det(∇xXT (t, x)) actually
vanishes in the regions where XT is not uniquely determined. Let us state the existence and
uniqueness result for the backward conservative problem (36), whose proof can be found in [16].

Theorem 5 (Theorem 3.10 from [16]). Let T > 0, and a(·, ·) ∈ L∞((0, T ) × RN ) satisfying (35)
be given. For any πT ∈ L∞loc(RN ), there exists a unique reversible solution π to (36) such that
π(T, ·) = πT . Moreover, the solution can be given by

π(t, x) = πT (XT (t, x))det(∇xXT (t, x)).

Let us now go back to the nonconservative transport problem (34). Due to the low regularity
of the transport coefficient a(t, x), we can only expect to have solutions of bounded variation in x.
Let us define the space

SBV = C([0, T ], L1
loc(RN )) ∩ B([0, T ], BVloc(RN )),

where B stands for the space of bounded functions. Let us now give the definition of duality solution
for the transport equation (34).

Definition 3. We say that v ∈ SBV is a duality solution to (34) if for any 0 < τ ≤ T and for any
reversible solution π ∈ C([0, τ ], L∞loc(RN )− w∗) to (36) with compact support in x, it holds that

t 7−→
∫
RN

v(t, x)π(t, x)dx is constant in [0, τ ].

A relevant feature of duality solutions is the following property, which corresponds to Lemma
4.2 in [16].

Lemma 2 (Lemma 4.2 in [16]). Let p ∈ Liploc([0, T ]× RN ) solve

∂tp+ a∇xp = 0 a.e. in (0, T )× RN .

Then p is a duality solution.

We end this subsection with the statements of the results from [16] concerning the main properties
of duality solutions to the problem (34), namely, existence uniqueness and stability.
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Theorem 6 (Theorem 4.3 from [16]). Let T > 0, and let a(·, ·) ∈ L∞((0, T )×RN ) satisfy (35). For
any v0 ∈ BVloc(RN ), there exists a unique duality solution v ∈ SBV to (34) such that v(0, ·) = v0.

In order to state the stability result, let us consider a sequence of coefficients an such that

(37) an is uniformly bounded in L∞((0, T )× RN ),

and

(38) an satisfies the OSLC condition (35) for some αn bounded in L1(0, T ).

Note that (37) and (38) imply that, after the extraction of a subsequence, we have that there exists
a ∈ L∞((0, T )× RN ) such that

(39) an ⇀ a in L∞((0, T )× RN )− w∗.

Moreover, in view of Lemma 2.1 in [16], we deduce that the limit coefficient a also satisfies the
OSLC condition (35).

Theorem 7 (Theorem 5.2 from [16]). Let T > 0, assume (37)–(39), and let v0n be a bounded
sequence in BVloc(RN ) such that v0n → v0 in L1

loc(R
N ). Then the duality solution vn to

∂tvn + an · ∇xvn = 0 in (0, T )× RN , vn(0, ·) = v0n

converges in C([0, T ], L1
loc(RN )) to a duality solution to

∂tv + a · ∇xv = 0 in (0, T )× RN , v(0, ·) = v0.

3.4. Semiconcavity estimate. In this subsection we recall a fundamental property of the vis-
cosity solutions to Hamilton-Jacobi equations of the form (1), which implies that the solution is
semiconcave with linear modulus and constant C/t, for some C > 0. This property implies in
particular that the transport coefficient a defined in (30) satisfies the OSLC condition (31), which
is a key feature in the proof of Theorem 3. Let us recall that, under the hypotheses (H1),(H2), (H3)
and (H4) on H, for any initial condition u0 ∈ Lip(RN ), there exists a unique viscosity solution to
(1) satisfying u(0, ·) = u0, and moreover, this solution actually coincides with the value function of
an optimal control problem as follows:

(40) u(t, x) = inf
ξ∈W 1,1(0,t;RN )

ξ(t)=x

{∫ t

0

H∗(ξ(s), ξ̇(s))ds+ u0(ξ(0))

}
,

where H∗ : RN × RN → R is defined as the Legendre-Fenchel transform of H(x, ·), i.e.

H∗(x, q) = max
p∈RN

{p · q −H(x, p)} ∀x ∈ RN .

It is also well-known (see for instance Theorem A.2.6 and Corollary A.2.7 in [22]) that the hypotheses
(H1), (H2) and (H3) on H imply the following properties on H∗:

H∗ ∈ C2(RN × RN ), 0 < H∗qq(x, q) ≤
1

c0
∀x, q ∈ RN , lim

|q|→∞

H∗(x, q)

|q|
= +∞, ∀x ∈ RN(41)

H∗(x, q) ≥ −C ∀(x, q) ∈ R2N and H∗(x, 0) ≤ C ∀x ∈ RN(42)

|H∗(x, q)−H∗(y, q)| ≤ C ′Lip|x− y| ∀x, y, q ∈ RN , for some C ′Lip > 0.(43)
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Analogously to the formula (40), for the forward viscosity solution, for any given terminal con-
dition uT ∈ Lip(RN ), the unique backward viscosity solution w ∈ Lip([0, T ]×RN ) to (1) satisfying
w(T, ·) = uT can be given as the value function of a maximization problem as follows:

(44) w(t, x) = sup
ξ∈W 1,1(t,T ;RN )

ξ(t)=x

{
−
∫ T

t

H∗(ξ(s), ξ̇(s))ds+ uT (ξ(T ))

}
.

See [8] for more details on backward viscosity solutions.

Using the representation formula (40) and the properties of H∗ in (41), (42), (43), it is possible
to prove that the forward viscosity solution defined in (40) is a semiconcave function, and the
backward viscosity solution defined in (44) is semiconvex.

Let us recall here the definition of semiconcavity and semiconvexity with linear modulus.

Definition 4. (i) A continuous function f : RN → R is semicontinuous with linear modulus
if there exists a constant C > 0 such that

f(x+ h) + f(x− h)− 2u(x) ≤ C|h|2 ∀x, h ∈ RN .
When this property holds,we say that C is the semiconcavity constant.

(ii) We say that f is semiconvex with linear modulus and constant C > 0 if the function
x 7→ −f(x) is semiconcave with linear modulus and constant C.

Remark 7. It is easy to see that a function f : RN → R is semiconcave (resp. semiconvex) with
linear modulus and constant C > 0 if and only if the function

f̃(x) := f(x)− C

2
|x|2

(
resp. f̃(x) := f(x) +

C

2
|x|2
)

is concave (resp. convex).

Although it is a well-known property, we give here a short proof of the semiconcavity and
semiconvexity estimates for the forward and backward viscosity solutions (40) and (44). For further
results regarding the regularity of the viscosity solutions to Hamilton-Jacobi equations, we refer the
reader to [13, 20, 21, 36].

Proposition 2. Let T > 0 and let H : RN × RN → R be a given Hamiltonian satisfying (H1),
(H2), (H3) and (H4). Then, we have the following

(i) For any t ∈ (0, T ] and u0 ∈ Lip(RN ), the value function u(t, ·) defined in (40) is semi-

concave with linear modulus and constant
C

t
, for some constant C > 0 depending only on

H∗.
(ii) For any t ∈ [0, T ) and uT ∈ Lip(RN ), the value function w(t, ·) defined in (44) is semi-

convex with linear modulus and constant
C

T − t
, for some constant C > 0 depending on

H∗.

Remark 8. Combining Proposition 2 with the C2-regularity of H with respect to both variables,
along with the convexity of the mapping p 7→ H(x, p) for all x ∈ RN , one can readily prove that the
transport coefficient a : [0, T ]× RN → RN , as defined in (30), i.e.

a(t, x) = Hp(x, ∂x[S+
t u0(x)]),
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satisfies the OSLC (31) with a constant C depending only on H and on the Lipschitz constant of

S+
t u0(·), which can at the same time be bounded by a constant C̃ depending only on T , H and the

Lipschitz constant of u0.

Proof. We only give the proof of the semiconcavity estimate for (40), since the semiconvexity
estimate for (44) can be proved analogously.

Let x ∈ RN and t > 0 be fixed. By the properties of H∗ in (41), (42) and (43), we can use
the direct method of calculus of variations to prove the existence of an arc ξt,x ∈ C([0, t];RN ),
satisfying ξt,x(t) = x, such that

(45) u(t, x) =

∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)).

Now, for any y ∈ RN , let us set the arc ξ̃t,x ∈ C([0, t];RN ) defined by

ξ̃t,x(s) = ξt,x(s) +
y − x
t

s for s ∈ [0, t].

Note that ξ̃t,x satisfies

ξ̃t,x(t) = y, ξ̃t,x(0) = ξt,x(0) and
˙̃
ξt,x(s) = ξ̇t,x(s) +

y − x
t

.

Then, by (40), we have

(46) u(t, y) ≤
∫ t

0

H∗
(
ξt,x(s) +

y − x
t

s, ξ̇t,x(s) +
y − x
t

)
ds+ u0(ξt,x(0)).

In view of the properties (41)–(43) on H∗, for any ε > 0 small, there exists a constant K > 0
depending on ξt,x and ε such that

H∗
(
ξt,x(s) +

y − x
t

s, ξ̇t,x(s) +
y − x
t

)
≤ H∗(ξt,x(s), ξ̇t,x(s)) +

C1

t
〈H∗x(ξt,x(s), ξ̇t,x(s)), y − x〉

+
C2

t
〈H∗p (ξt,x(s), ξ̇t,x(s)), y − x〉+

C3

t2
|x− y|2

for all y ∈ B(0, ε) and s ∈ [0, t], where C1, C2, C3 > 0 are three constants depending on H. Hence,
combining this estimate with (45) and (46), we obtain

u(t, y) ≤
∫ t

0

H∗(ξt,x(s), ξ̇t,x(s))ds+ u0(ξt,x(0)) + Λ · (y − x) +
C3

t
|x− y|2

= u(t, x) + Λ · (y − x) +
C3

t
|x− y|2,

for some vector Λ ∈ RN . This implies that u(t, ·) satisfies the inequality

D2u(t, x) ≤ C3

t

in the viscosity sense, which in turn implies the semiconcavity of u(t, ·) with linear modulus and
constant C3/t. �
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3.5. Proof of Theorem 3. In this subsection we give the proof of Theorem 3, which relies on
the well-posedness of the transport equation (29), when the transport coefficient is given by (30).
Since the coefficient a(t, x) given in (30) satisfies the OSLC condition (35) with α(t) = C/t, which
obviously does not belong to L1(0, T ), we cannot directly apply the results in subsection 3.3. The
first step in the proof of Theorem 3 is to prove that the limit as δ → 0+ of the function

(47) vδ(t, x) :=
S+
t (u0 + δw)(x)− S+

t u0(x)

δ
for δ > 0,

is a duality solution (not necessarily unique) to the forward transport equation

(48)

{
∂tv + a(t, x)∇xv = 0 (t, x) ∈ (0, T )× RN
v(0, x) = w(x) x ∈ RN .

Then, we will prove that equation (48) only admits a unique duality solution. This will be proven
as a consequence of Proposition 4, which ensures that the reversible solutions to the backward
conservative equation (32) can be uniquely extended at t = 0 by a measure.

Proposition 3. Let T > 0, u0, w ∈ Lip(RN ), and let H be a Hamiltonian satisfying (H1), (H2),
(H3) and (H4). Then we have that

vδ(t, x)→ v(t, x) in C([0, T ], L1
loc(RN ))

where vδ(t, x) is defined for all δ > 0 as in (47), and v(t, x) satisfies the transport equation (48)
with transport coefficient a(t, x) given by (30) in the duality sense of Definition 3.

Note that, in the definition of duality solution we use, as test functions, reversible solutions
π ∈ C([0, τ ], L∞loc(RN ) − w∗) to the dual equation (36). The fact that the transport coefficient
a(t, x) does not satisfy the OSLC condition (35) with α ∈ L1(0, T ) implies that for some terminal
conditions πτ ∈ L∞loc(RN ), a reversible solution π ∈ C([0, τ ], L∞loc(RN )−w∗) satisfying π(τ, ·) = πτ (·)
may not exist. However, it does not represent any inconvenient in the definition of duality solution.
Existence of reversible solutions for any terminal condition are necessary to ensure the uniqueness of
the duality solution, and this will be done in Proposition 4 by considering measure-valued solutions
to (36).

Proof. For any δ > 0 and (t, x) ∈ (0, T ]× RN , let us set

u(t, x) = S+
t u0(x) and uδ(t, x) = S+

t (u0 + δw)(x).

We can then write

vδ(t, x) =
uδ(t, x)− u(t, x)

δ
and since both uδ and u are Lipschitz continuous and verify (1) almost everywhere, we have that

(49) ∂tvδ(t, x) = −H(x,∇xuδ(t, x))−H(x,∇xu(t, x)))

δ
for a.e. (t, x) ∈ (0, T )× RN .

Now, since H ∈ C2(RN × RN ), we can write

H(x,∇xuδ) = H(x,∇xu) + (∇xuδ −∇xu) ·Hp(x,∇xu) + o(|∇xuδ −∇xu|).
and combining this with (49), we deduce

∂tvδ = −
(
Hp(x,∇xu) +

o(|∇xuδ −∇xu|)
|∇xuδ −∇xu|2

(∇xuδ −∇xu)

)
∇xuδ −∇xu

δ
.
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We now set the transport coefficient aδ as

(50) aδ(t, x) := Hp(x,∇xu) +
o(|∇xuδ −∇xu|)
|∇xuδ −∇xu|2

(∇xuδ −∇xu).

Then, since vδ is a Lipschitz function and satisfies

∂tvδ + aδ(t, x)∇xvδ = 0 for a.e. (t, x) ∈ (0, T )× R,

we deduce from Lemma 2 that vδ is a duality solution for all δ ∈ (0, 1), with initial condition
vδ(0, ·) = w(·).

Now, let us note that for any δ ∈ (0, 1), both functions u and uδ are Lipschitz in [0, T ] × RN ,
with a Lipschitz constant depending on u0 and w, but independent of δ. Hence, in view of (50), we
have that aδ is uniformly bounded in L∞((0, T )×RN ). Moreover, since ∇xuδ converges to ∇xu as
δ → 0 for a.e. (t, x) ∈ (0, T )× R, we deduce that

aδ(t, x) −→ Hp(x,∇xu) for a.e. (t, x) ∈ (0, T )× R,

implying that

aδ ⇀ a as δ → 0+ in L∞((0, T )× R)− w∗.
Therefore, using the stability of the duality solutions from Theorem 7, we conclude that

(51) vδ −→ v as δ → 0 in C([0, T ], L1
loc(R)),

where v is a duality solution to (29). �

We now need to prove that the limit function from Proposition 3 is actually the unique duality
solution to (48), which will be deduced as a consequence of the fact that the reversible solutions
to the dual problem can be uniquely extended at t = 0 by a Radon measure. This will be done
in Proposition 4 below, and to this effect, we need the following lemma, which shows that the
reversible solutions to the conservative equation (32) can be represented explicitly by means of
the backward characteristics associated to the transport flow generated by the transport coefficient
a(t, x) defined in (30), or in other words, by the solutions to the backward system of ODEs (15).

Lemma 3. Let T > 0, u0 ∈ Lip(RN ) and let H be a Hamiltonian satisfying (H1), (H2), (H3)
and (H4). For any τ ∈ (0, T ] and πτ (·) ∈ L∞loc(RN ), there exists a unique reversible solution
π ∈ C((0, τ ]; , L∞loc(RN )− w∗) to the backward conservative equation

(52)

{
∂tπ + divx(a(t, x)π) = 0 in (0, τ)× RN ,
π(τ, x) = πτ in RN ,

where a(t, x) is defined a.e. in (0, τ)× RN as

a(t, x) = Hp(x,∇x[S+
t u0(x)]).

In addition, for all φ ∈ C0
c (RN ) and s ∈ (0, τ ], the reversible solution π satisfies

(53)

∫
RN

φ(x)π(s, x)dx =

∫
RN

φ (Γτ,s(x))πτ (x)dx,

where Γτ,s ∈ L∞loc(RN ;RN ) is defined a.e. in RN as

Γτ,s(x) := ξτ,x(s) for all x ∈ RN where S+
τ u0(·) is differentiable,
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where (ξτ,x(·), pτ,x(·)) ∈ C1([0, τ ];RN × RN ) is the unique solution to

(54)


ξ̇τ,x(s) = Hp(ξτ,x(s), pτ,x(s)) s ∈ (0, τ)

ṗτ,x(s) = −Hx(ξτ,x(s), pτ,x(s)) s ∈ (0, τ)

ξτ,x(τ) = x pτ,x(τ) = ∇S+
τ u0(x).

Proof. First of all, since the transport parameter a(t, x) satisfies the OSLC condition (35) with
α(t) = 1/t, we can use Theorem 5 to ensure existence and uniqueness of a reversible solution
in (ε, τ ] × RN , and by letting ε → 0, we deduce that there exists a unique reversible solution
π ∈ C((0, τ ]; L∞loc(RN )−w∗) satisfying π(τ, ·) = πτ (·). Notice that the extension of the solution at
t = 0 might not be possible in the space L∞loc(RN ).

Let us now prove the second part of the lemma. Let s ∈ (0, τ ] and φ ∈ Lip(RN ) ∩ L∞(RN ) be
fixed. We set

us(·) := S+
s u0(·),

and by the semigroup property, we have that

S+
t−sus(x) = S+

t u0(x), ∀(t, x) ∈ [s, T ]× RN ,

and then, we also have

as(t, x) = Hp(x, ∇x[S+
t−sus(x)]) = a(t, x), ∀(t, x) ∈ [s, T ]× RN .

Now, by means of Theorem 6, and using the uniform OSLC in [s, T ], we have that, for any
φ ∈ C0

c (RN ), there exists a unique duality solution v ∈ SBV to the linear transport equation{
∂tv + as(t, x)∇xv = 0 in (s, T )× RN

v(s, x) = φ(x) in RN .
Moreover, by Proposition 3, we have

v(t, ·) = ∂φS
+
t−sus(·) ∀t ∈ [s, T ],

and by Theorem 1, we have in addition that

v(t, x) = φ(ξt,x(s)) ∀(t, x) ∈ (s, T ]× RN where S+
t−sus(·) is differentiable at x,

where ξt,x(·) is defined5 as in (54), in the statement of the Lemma.

Finally, by the definition of duality solution, we conclude that∫
RN

φ(x)π(s, x)dx =

∫
RN

v(τ, x)π(τ, x)dx =

∫
RN

φ(Γτ,s(x))πτ (x)dx,

where Γτ,s : RN −→ RN is defined a.e. in RN as

Γτ,s(x) = ξτ,x(s), ∀x ∈ RN such that S+
τ u0(·) is differentiable.

�

We can now use Lemma 3 to prove that any reversible solution to (36) with compact support
can be uniquely extended at t = 0 by a finite Radon measure in RN .

5Obviously, in (54), we have to replace τ by t. Recall moreover that S+
t−sus(·) = S+

t u0(·).
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Proposition 4. Under the same assumptions as in Lemma 3, for any τ ∈ (0, T ] and πτ (·) ∈
L∞(RN ) with compact support, there exists a unique Radon measure µ ∈ M(RN ) such that the
unique reversible solution π ∈ C((0, τ ], L∞loc(RN )− w∗) to (52) satisfies

π(t, ·) ⇀ π0 as s→ 0+, in the weak∗ topology of M(RN ).

Hence, for any τ ∈ (0, T ] and πτ (·) ∈ L∞(RN ) with compact support, the backward conservative
problem (52) admits a unique measure-valued solution π∗ ∈ C([0, τ ],M(RN )− w∗), given by

π∗(s)

{
π(s, ·) for s ∈ (0, τ ]

π0 for s = 0.

Proof. Let us note that, by property (53) from Lemma 3, along with the fact that πτ is in L∞(RN )
and compactly supported, and that the solutions to the optimality system (54) remain in a compact
set depending only on T and ‖u0‖L∞(RN ) (see [4, Lemma 1] and also [5]), one can deduce that there
exists a constant C such that ∫

RN

|π(s, x)|dx ≤ C, ∀s ∈ (0, τ ].

Hence, we can apply De La Vallée Poussin compactness criterion for Radon measures (see [3,
Theorem 1.59]), to deduce that for any sequence {sn}n≥1 with sn → 0+, the sequence of measures
associated to the functions π(sn, ·) has a subsequence that converges in the weak∗ topology of
M(RN ).

Let us now prove that for any sequence {sn}n≥1, the weak∗ limit is unique. Let {sn}n≥1 and
{tn}n≥1 be two sequences such that sn → 0+ and tn → 0+. Then, for any φ ∈ C0

c (RN ),by virtue
of (53) in Lemma 3, we have that

(55)

∣∣∣∣∫
RN

φ(x) [π(sn, x)dx− π(tn, x)] dx

∣∣∣∣ =

∣∣∣∣∫
RN

[φ(Γτ,sn(x))− φ(Γτ,tn(x))]πτ (x)dx

∣∣∣∣ .
Now, in view of the definition of Γτ,s(·) in the statement of Lemma 3 and by the continuity of φ,
we deduce that

φ(Γτ,sn(x))− φ(Γτ,tn(x)) = φ(ξτ,x(sn))− φ(ξτ,x(tn))→ 0 as n→∞, for a.e. x ∈ RN ,

and this, together with (55) and the fact that πτ ∈ L∞(RN ) is compactly supported, allows us to
apply Lebesgue’s dominated convergence Theorem to obtain∣∣∣∣∫

RN

φ(x) [π(sn, x)dx− π(tn, x)] dx

∣∣∣∣→ 0 as n→∞.

This implies that for any sequence {sn}n≥1, the sequence of functions π(sn, ·) converges in the
weak∗ topology to a unique Radon measure π0 ∈M(RN ). �

Let us conclude the section with the proof of Theorem 3, which is nothing but a combination of
Propositions 3 and 4.

Proof of Theorem 3. By Proposition 3, we have that

S+
t (u0 + δw)(x)− S+

t u0(x)

δ
−→ v(t, x) in C([0, T ], L1

loc(RN )),
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where v(t, x) is a duality solution to the linear transport equation (48) with transport coefficient
(30) and initial condition v(0, ·) = w(·). We only need to prove that this is in fact the unique
duality solution to (48).

Let v1, v2 ∈ C([0, T ], L1
loc(RN )) be two duality solutions to (48) satisfying

v1(0, x) = v2(0, x) = w(x) ∀x ∈ RN .

Now, for any τ ∈ (0, T ] and any πτ ∈ L∞(RN ) with compact support, let π ∈ C((0, τ ], L∞(RN )−
w∗) be the unique reversible solution to (36) in (0, τ ]×RN with terminal condition π(τ, ·) = πτ (·),
and let π0 ∈ M(RN ) be the unique Radon measure, obtained by means of Proposition 4 as the
limit

π(s, ·) ⇀ π0 as s→ 0+ in the weak∗ topology of M(RN ).

Then, by the definition of duality solution we have that the maps

s 7−→
∫
RN

v1(s, x)π(s, x)dx and s 7−→
∫
RN

v2(s, x)π(s, x)dx

are constant in (0, τ ], and in particular, we have∫
RN

v1(τ, x)πτ (x)dx =

∫
RN

v2(τ, x)πτ (x)dx =

∫
RN

w(x)dπ0(x)

for all πτ ∈ L∞(RN ). This implies that v1(τ, x) = v2(τ, x) for a.e. x ∈ RN and for all τ ∈ (0, T ].
Note that the right-hand-side in the above equality is well-defined as w is a continuous function. �

4. Existence of minimizers

In this section, we prove that the optimization problem (17) has at least one solution. In the
proof, we shall make use of the backward viscosity operator S−T : Lip(RN ) −→ Lip(RN ), whose
definition we recall here.

(56) S−T uT (x) = sup
ξ∈W 1,1(t,T ;R)

ξ(0)=x

{
−
∫ T

0

H∗(ξ(s), ξ̇(s))ds+ uT (ξ(T ))

}
, ∀x ∈ RN .

Note that this is the analogous version to the forward viscosity operator S+
T defined in (13), i.e.

S−T uT (·) is the unique backward viscosity solution at time 0 to the Hamilton-Jacobi equation (1)
with terminal condition u(T, ·) = uT (·). See [8] for further details on backward and forward viscosity
solutions.

Let us state and prove the existence result for the optimization problem (17).

Theorem 8. Let T > 0 and let H be a Hamiltonian satisfying (H1) , (H3), (H4), and (H2) with
C0 = 0 . Let S+

T be the forward viscosity operator defined in (13), and let uT ∈ Lip0(RN ) be a
given function with compact support. Then there exists a function u∗0 ∈ Lip0(RN ) solution to the
optimization problem (17).

Proof. It is well-known, see for instance [8, 37], that combining the operators S+
T and S−T , we have

following property:

(57) S+
T (S−T (S+

T u0)) = S+
T u0 ∀u0 ∈ Lip(RN ).
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Let {ϕn}n∈N ⊂ Lip0(RN ) be a minimizing sequence for the functional JT . In view of the
definition of S+

T , and since uT is Lipschitz continuous with compact support, we can assume, without
loss of generality, that the sequence ϕn is equibounded and that all the elements are supported in
a compact set independent of n ∈ N.

Besides, by the property (57), the sequence of initial conditions

ϕ̃n := S−T (S+
T ϕn) ∀n ∈ N

is also a minimizing sequence for JT . Moreover, using a comparison argument and the finite speed
of propagation of the equation (1), we can deduce that the sequence ϕ̃n is also equibounded and
has support in a compact set independent of n ∈ N.

Now, we can use the regularizing effect of the backward viscosity operator S−T , see Proposition 2,
to ensure that all the elements of the sequence ϕ̃n are semiconvex with linear modulus and constant
C
T , independent of n ∈ N. Since ϕ̃n is also equibounded and with compact support, we can deduce,
using Theorem 2.1.7 and Remark 2.1.8 in [22], that the sequence ϕ̃n is equicontinuous in a compact
set, and then, by means of Arzéla-Ascoli Theorem, we can extract a subsequence, that we still
denote by ϕ̃n, that converges uniformly to some u∗0 ∈ Lip(RN ).

Finally, using that ϕ̃n is a minimizing sequence, together with the continuity of the operator S+
T

from Theorem 1 (see also Remark 3), we conclude that

JT (u∗0) = lim
n→∞

JT (ϕ̃n) = inf
u0∈Lip(RN )

JT (u0).

�

Note that Theorem 8 provides existence of an optimal inverse design for any uT ∈ Lip0(RN ),
as the solution to the optimization problem (17). Due to the lack of backward uniqueness for the
initial-value problem (1), uniqueness of an optimal inverse design is not in general true. We can
however consider a different but related problem, which is that of the L2-projection of uT onto the
reachable set RT , that we can formulate as the optimization problem

(58) minimize
ϕ∈RT

H(ϕ) := ‖ϕ− uT ‖L2(RN ).

For the case of x−independent quadratic Hamiltonians of the form

(59) H(p) =
〈Ap, p〉

2
, for some positive definite matrix A ∈MN (R),

we can actually prove that the optimization problem (58) admits a unique solution by means
of Hilbert Projection Theorem, using a sharp characterization of RT based on a semiconcavity
inequality. It is proved in [30, Theorem 2.2] that a target uT is reachable in time T > 0 if and only
if uT is a viscosity solution to the second-order differential inequality

(60) D2uT −
A−1

T
≤ 0 in RN ,

where D2uT denotes the Hessian matrix of uT . This inequality represents, in fact, the necessary
and sufficient semiconcavity condition for the reachability of a target. Such a precise semiconcavity
condition for the characterization of the reachable set RT is, up to the best of our knowledge,
unavailable for non-quadratic x-dependent Hamiltonians.
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Remark 9. Observe that, we can use the reachability condition (60) to prove that the reachable set
is convex whenever the Hamiltonian is of the form (59).

Indeed, note that (60) is equivalent to say that the function

x 7−→ uT (x)− 〈A
−1 x, x〉
2T

is concave.

Then, for any two functions uT , vT ∈ RT and any scalar α ∈ (0, 1), observe that the function

x 7→ αuT (x) + (1− α)vT (x)− 〈A
−1 x, x〉
2T

= α

(
uT (x)− 〈A

−1 x, x〉
2T

)
+(1− α)

(
vT (x)− 〈A

−1 x, x〉
2T

)
is a concave function as it is the convex combination of two concave functions. Hence, αuT (x) +
(1− α)vT (x) ∈ RT and we can conclude that RT is convex.

Let us state and prove the following result, which ensures the existence and uniqueness of solution
for the optimization problem (58).

Theorem 9. Let T > 0, let H be a Hamiltonian of the form (59), and let uT ∈ Lip(RN ) be a
given compactly supported function. Then, the optimization problem (58) has a unique solution
ϕ∗ ∈ Lip(RN ) ∩ L2(RN ).

Proof. The existence and uniqueness of solution to problem (58) follows from Hilbert Projection
Theorem, after proving that RT ∩ L2(RN ) is a convex closed set in L2(RN ). The convexity of RT
follows from Remark 9, which directly implies the convexity of RT ∩ L2(RN ). Let us now verify
that RT ∩ L2(RN ) is closed in L2(RN ). Let {ϕn}∞n=1 be a sequence of functions in RT ∩ L2(RN )
strongly converging to some ϕ∗ ∈ L2(RN ). This implies that ϕn(x) converges to ϕ∗(x) for almost
every x ∈ RN . Hence, we have that

x 7−→ ϕn(x)− 〈A
−1x, x〉
2T

is a sequence of concave functions that converges for a.e. x ∈ RN to the function

x 7−→ ϕ∗(x)− 〈A
−1x, x〉
2T

which is therefore also a concave function, implying that ϕ∗ ∈ RT ∩ L2(RN ). We then conclude
that RT ∩L2(RN ) is a convex closed set of L2(RN ), and the conclusion of the theorem follows. �

Now, we can combine Theorem 9 with [30, Theorem 2.6] to describe the set of all the solutions
to the optimal control problem (17) when the Hamiltonian is of the form (59).

Corollary 1. Let T > 0, let H be of the form (59), and let uT ∈ Lip0(RN ) be a given compactly
supported function. Set the function

ũ0(x) = S−T ϕ
∗(x) := max

y∈RN

{
ϕ∗(y)− 〈A

−1(y − x), y − x〉
2T

}
,
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where ϕ∗ is the unique solution to (58) provided in Theorem 9. Then, the set of solutions to the
optimal control problem (17) is the convex cone in Lip(RN ) defined as

IT (ϕ∗) =
{
ũ0 + φ ; φ ∈ Lip(RN ) such that φ ≥ 0 and supp(φ) ⊂ RN \XT (ϕ∗)

}
,

where XT (ϕ∗) is the subset of RN defined as

XT (ϕ∗) :=
{
z − TA∇ϕ∗(z) ; ∀z ∈ RN such that ϕ∗ is differentiable at z

}
.

Remark 10. Observe that this corollary establishes in particular existence of solutions for the
optimal control problem (17). However, in view of the form of IT (ϕ∗), the solution is unique if and
only if ϕ∗ is differentiable in RN .

5. Conclusion and perspectives

In this work, we studied the differentiability of the nonlinear operator S+
t , defined in (3), which

associates to any initial condition u0 ∈ Lip(RN ), the viscosity solution to (1) at time t ∈ [0, T ].
First we proved that for any t ∈ (0, T ], the operator S+

t is differentiable with respect to the L1
loc-

convergence at any initial condition u0 ∈ Lip(RN ) and in any direction w ∈ Lip(RN ), i.e. we prove
that for any u0, w ∈ Lip(RN ), it holds that

S+
t (u0 + δw)(·)− S+

t u0(·)
δ

−→ ∂wS
+
t u0(·) as δ → 0+, in L1

loc(RN ),

where the function ∂wS
+
t u0(·) ∈ L∞loc(RN ) can be explicitly computed at all the points where

S+
t u0(·) is differentiable. Hence, since S+

t u0(·) is Lipschitz, and thus, differentiable for almost every
x ∈ RN , the characterization provided in Theorem 1 allows to explicitly determine the Gâteux
derivative ∂wS

+
t u0(·) as a function in L∞loc(RN ).

Then we proved that, for any u0, w ∈ Lip(RN ), the function

v(t, x) := ∂wS
+
t u0(x), for (t, x) ∈ (0, T ]× RN ,

is the unique duality solution to the linear transport equation with discontinuous transport coeffi-
cient given by

a(t, x) := Hp(x,∇xS+
t u0(x)),

and initial condition v(0, ·) = w. The proof of this result relies on the theory of duality solutions for
multi-dimensional transport equations with discontinuous coefficient, developed by Bouchut-James-
Mancini in [16]. The key ingredient to prove existence and uniqueness of a solution by duality is the
fact that the transport coefficient a(t, x) satisfies the one-sided Lipschitz condition (6). However,
the fact that the function α(t) in (6) is not integrable in (0, T ) prevents us from directly using the
results in [16]. In order to ensure the uniqueness of the duality solution, we prove that the backward
solutions to the conservative dual equation can be extended (by continuity with respect to the weak
star topology in the space of measures) at t = 0 by a unique Radon measure. This unique extension
provides uniqueness for the duality solution to the non-conservative forward equation, under the
requirement that the initial condition is continuous.

Then we address the inverse design problem

(61) minimize
u0∈Lip0(RN )

JT (u0) := ‖S+
T u0 − uT ‖

2
L2(RN ),
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for some given target uT ∈ Lip0(RN ). The differentiability results obtained in this paper allow us
to compute the gradient of the functional JT (·) by duality as

DJT (u0) : w(·) 7−→ ∂wJT (u0) = 2

∫
RN

w(x)dπ0(x),

where π0 is the unique Radon measure that extends at t = 0 the backward solution to the conser-
vative dual equation with terminal condition S+

T u0 − uT .

The computation of the gradient of JT allows us to derive a necessary first-order optimality
condition for the problem (61), as well as the implementation of gradient-based methods in order
to numerically approximate an optimal inverse design. However, the fact that the gradient of JT is
a Radon measure prevents us from updating the initial condition in the exact opposite direction to
the gradient, since it may exit the space of Lipschitz functions. Nonetheless, one can implement a
modification of the gradient descent algorithm in which, at each step, the initial condition is updated
in the opposite direction to a suitable Lipschitz approximation of the gradient of JT . Finally, we
include a section where we discuss the existence and uniqueness of optimal inverse designs for the
optimization problem (61).

Open questions. Here we give a list of question that we did not address in the present paper,
and are left for future work.

1. The results of this paper can be used in the context of optimal control problems subject to
Hamilton-Jacobi equations of the form (1), where the control is just the initial condition.
However, one may also consider optimal control problems subject to a Hamilton-Jacobi
equation of the form

(62)

{
∂tu+H(x,∇xu, g) = 0 in (0, T )× RN
u(0, ·) = u0 in RN .

where g ∈ Gad is a control parameter to be optimized, and Gad is the given space of
admissible controls. In this context, one should study the sensitivity of the viscosity
solution with respect to variations of g, which affect the Hamiltonian.

2. Our differentiability results apply to the case when the Hamiltonian is smooth and uni-
formly convex. These hypotheses are needed as they provide semiconcavity estimates for
the viscosity solution, and these are crucial to establish the well-posedness of the transport
equation resulting from the linearization of the Hamilton-Jacobi equation (recall that we
need the transport coefficient to satisfy the OSLC condition). Nonetheless, the differen-
tiability of the viscosity solution with respect to the initial condition seems to be feasible
also under less regularity assumptions.

Consider for instance the case of x-independent Hamiltonians H(p) under the mere
assumption that the map p 7→ H(p) is convex6. In this case, the viscosity solution to the
associated evolutionary Hamilton-Jacobi equation can be given by the Hopf-Lax formula
[1, 7] as

u(t, x) = min
y∈RN

{
u0(y) + tH∗

(
x− y
t

)}
.

6This case includes non-smooth and non-strictly convex Hamiltonians such as H(p) = ‖p‖, where ‖ ·‖ is any norm
in RN .
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In view of this formula, the differentiability of the viscosity solution with respect to the
initial condition u0 might be addressed by using ideas related to Danskin’s Theorem (see
[10, 28]). However, the fact that the Hamiltonian is not assumed to be smooth nor strictly
convex makes semiconcavity estimates unavailable, and then, it is not clear whether the
theory of duality solutions from [14, 16] can be used to study the associated linear transport
equation.
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