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Stability and Convergence of a Randomized
Model Predictive Control Strategy

Daniël W. M. Veldman, Alexandra Borkowski, and Enrique Zuazua

Abstract— This paper is concerned with a combination
of Random Batch Methods (RBMs) and Model Predictive
Control (MPC) called RBM-MPC. In RBM-MPC, the RBM is
used to speed up the solution of the finite-horizon opti-
mal control problems that need to be solved in MPC. We
analyze our algorithm in the linear-quadratic setting and
obtain explicit error estimates that characterize the stability
and convergence of the proposed method. The obtained
estimates are validated in numerical experiments that also
demonstrate the effectiveness of RBM-MPC.

Index Terms— Convergence, Model Predictive Control,
Random Batch Method, Receding Horizon Control, Stability

I. INTRODUCTION

Model Predictve Control (MPC) is a well-established and
widely used method to control complex dynamical systems.
MPC requires the real-time solution of a sequence of optimal
control problems (OCPs) on a finite (but large) time horizon,
see e.g. [1], [2], which can be computationally demanding.
This is for example the case when the model is the result
of the (spatial) discretization of a Partial Differential Equation
(PDE) or in the simulation of interaction particle systems. It is
therefore natural to use numerically efficient approximations to
speed up the solution of the finite-horizon OCPs that need to be
solved in MPC. One recently-proposed numerically-efficient
approximation method is the Random Batch Method (RBM)
[3], [4], which is closely related to the stochastic algorithms
like Stochastic Gradient Descent (SGD) used in machine
learning. The effectiveness of the resulting combination of
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MPC with RBM (RBM-MPC) has been demonstrated for
interacting particle systems in [5], but a rigorous stability and
convergence analysis of the proposed method was still lacking.

The idea for MPC can be traced back to Propoi [6] and is
already found in the classical book by Lee and Markus, [7], but
the interest in MPC only started to grow since the late 1970’s
when sufficient computational power for the implementation of
MPC became available. Since then, various analysis methods
for MPC have been proposed. Often terminal constraints or
terminal costs are imposed to guarantee stability, see, e.g.,
[8], [1], and [2] for an overview. Because this paper considers
RBM-MPC for unconstrained linear systems, the stability and
convergence of MPC can be understood simply from the
convergence of the solution of the Algebraic Riccati Equation
(ARE) to the solution of the Riccati Differential Equation
(RDE) here, see also [9].

Random Batch Methods (RBMs) have been introduced
recently in [3] and are inspired by the successes of stochastic
algorithms such as SGD in supervised learning. In the first
formulation of RBM, the simulation of interacting particle
systems is sped up by considering not all interactions between
particles simultaneously but only a randomly chosen subset
at each time instant [3]. Although initially proposed for the
simulation of the forward dynamics, the same ideas have also
been applied to speed up the computation of optimal controls
for interacting particle systems [5]. A first rigorous analysis of
RBMs in linear-quadratic optimal control has been provided
in [4]. The same paper also shows that original idea of the
RBM for interacting particle systems can be extended to a
more general operator-splitting setting.

In this paper, we provide the first rigorous analysis of the
RBM-MPC algorithm in the unconstrained linear quadratic
setting. The obtained error estimates clearly demonstrate the
influence of the different tuning parameters on the expected
performance of the proposed algorithm and the obtained
convergence rates are validated in numerical experiments.

The remainder of this paper is structured as follows. The
proposed RBM-MPC algorithm is presented in Section II and
the main stability and convergence results are presented in
Section III. Section IV summarizes the existing results about
the analysis of MPC and RBM from [9] and [4] that form
the basis for the proofs of the main result in Section V.
The obtained convergence rates and the effectiveness of the
proposed method are demonstrated in numerical experiments
in Section VI. Finally, conclusions and perspectives for future
work are presented in Section VII.
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II. THE RBM-MPC ALGORITHM

A. The infinite-horizon problem

The RBM-MPC algorithm analyzed in this paper is a way
to approximate the control u∗∞(t) that minimizes

J∞(u) =

∫ ∞
0

(
(x(t))>Qx(t) + (u(t))>Ru(t)

)
dt, (1)

subject to the dynamics

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (2)

where x(t) evolves in Rn starting from the initial condition
x0, the control u(t) evolves in Rm, Q ∈ Rn×n is symmetric
positive semi-definite, R ∈ Rm×m is symmetric positive
definite, A ∈ Rn×n, and B ∈ Rn×m. It is assumed that (A,B)
is stabilizable and (A,Q) is detectable.

Remark 1: It is well-known that the problem (1)–(2) admits
a unique minimizer of feedback form, see e.g. [10], which
can be computed efficiently by solving an Algebraic Riccati
Equation (ARE) when n is not very large. MPC and RBM-
MPC thus only offer a computational advantage when the ARE
cannot be solved efficiently (i.e., when n is large) or when the
optimal control is not given by a linear feedback law (i.e., in
constrained and/or nonlinear optimal control).

Remark 2: Although we present the RBM-MPC algorithm
here in the LQ setting, the same approach can be used for
problems with constraints and/or nonlinear dynamics, see [5].
The stability and convergence analysis for the LQ problem in
this paper is the first step towards a rigorous analysis of the
RBM-MPC algorithm in these more general settings.

B. Model Predictive Control

One method to approximate the solution of the infinite-
horizon OCP (1)–(2) is Model Predictive Control (MPC). In
MPC, two time scales arise: the prediction horizon T and the
shorter control horizon τ . Set τi := iτ (with i ∈ N) and
let u∗T (t;xi, τi) and x∗T (t;xi, τi) denote the control and state
trajectory that minimize

JT (uT ;xi, τi) =∫ τi+T

τi

xT (t)TQxT (t) + uT (t)TRuT (t) dt,
(3)

where xT (t) (for t ∈ [τi, τi + T ]) fulfills

ẋT (t) = AxT (t) +BuT (t), xT (τi) = xi. (4)

The MPC control uM (t) and corresponding state trajectory
xM (t) are now computed as follows, see, e.g. [9], [11], [12].

1) Initialize xM (0) = x0 and i = 0.
2) Compute u∗T (t;xM (τi), τi) and x∗T (t;xM (τi), τi) on

[τi, τi + T ].
3) Set uM (t) = u∗T (t;xM (τi), τi) and xM (t) =

x∗T (t,xM (τi), τi) on [τi, τi+1].
4) Set i = i+ 1 and got to Step 2.

The MPC algorithm is illustrated in Figure 1.
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Fig. 1. Illustration of the MPC algorithm. The controls u∗T (t;xi, τi)
are computed on [τi, τi + T ] (dashed black lines) but are only applied
on [τi, τi+1] (solid red lines) for i ∈ {1, 2}, yielding xM (t).

C. The Random Batch Method
The Random Batch Method (RBM) can speed up the

solution of the OCP (3)–(4). We start by splitting the system
matrix A into submatrices Am

A =

M∑
m=1

Am. (5)

The time interval [τi, τi+T ] is divided into K subintervals of
length h. The grid points are denoted by

hi,k = τi+kh = iτ +kh, i ∈ N, k ∈ {0, 1, . . . ,K}. (6)

Note that there are 2M subsets of the indices m ∈
{1, 2, . . . ,M}, which are denoted by S1, S2, . . . , S2M . In each
time interval [hi,k−1, hi,k), one subset Sωi,k (with ωi,k ∈
{1, 2, . . . , 2M}) is chosen according to certain chosen proba-
bilities pω (with ω ∈ {1, 2, . . . , 2M}). In particular, pω ∈ [0, 1]
is the probability that Sω is selected in a certain time interval
and

∑
ω pω = 1. The indices for one interval [τi, τi + T ] are

collected in a vector

ωi = (ωi,1, ωi,2, . . . , ωi,K) ∈ {1, 2, . . . , 2M}K . (7)

This vector ωi defines a time-dependent matrix on [τi, τi+T ]

AR(ωi, t; τi) =
∑

m∈Sωi,k

Am
πm

, t ∈ [hi,k−1, hi,k), (8)

where πm denotes the probability of having the index m in
the selected subset

πm :=
∑

ω∈{1,2,...,2M}
m∈Sω

pω. (9)

Observe that the definition of AR(ωi, t; τi) requires that πm >
0 for all m ∈ {1, 2, . . . ,M}. The distance between AR and
A is measured by

Var[AR] :=

2M∑
ω=1

∥∥∥∥∥A− ∑
m∈Sω

Am
πm

∥∥∥∥∥
2

pω (10)
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Note that Var[AR] depends on the chosen splitting (5) and
the probability distribution pω and that E[‖AR(t) − A‖2] =
Var[AR] for all t ∈ [τi, τi+T ]. The analysis of the RBM also
requires a uniform growthbound µR ≥ 0 for AR(ωi, t; τi), i.e.

x>AR(ωi, t; τi)x ≤ µR|x|2, (11)

for all x ∈ Rn, ωi ∈ {1, 2, . . . , 2M}K , and t ∈ [τi, τi +
T ]. When µR > 0, the RBM-error grows exponentially in
time. When A is dissipative, it is often possible to choose all
submatrices Am in (5) dissipative and achieve µR = 0. This
is the case for the example in Section VI and [4, Section 4].

The idea is now that replacing the matrix A in (4) by
AR(ωi, t; τi) will lead to a significant reduction in compu-
tational cost and that the dynamics generated by AR(ωi, t; τi)
is (in expectation) close to the dynamics generated by the
original matrix A when hVar[AR] is sufficiently small.

It therefore makes sense to replace the original matrix
A in the OCP (3)–(4) by AR(ωi, t; τi) and to introduce
u∗R(ωi, t;xi, τi) and x∗R(ωi, t;xi, τi) as the control and state
trajectory that minimize

JR(uR;ωi,xi, τi) =∫ τi+T

τi

xR(ωi, t)
TQxR(ωi, t) + uR(t)TRuR(t) dt,

(12)

where xR(t) (for t ∈ [τi, τi + T ]) fulfills

ẋR(ωi, t) = AR(ωi, t; τi)xR(ωi, t) +BuR(t),

xR(ωi, τi) = xi. (13)

Note that xR(ωi, t) depends on ωi through AR(ωi, t; τi).
Remark 3: When n is large, the OCP (12)–(13) is usually

solved by a gradient-based algorithm in which the gradient is
computed as

∇JR(ωi, t) = 2B>ϕ(ωi, t) + 2RuR(t), (14)

where the adjoint state ϕ(ωi, t) satisfies

ϕ̇(ωi, t) = (AR(ωi, t; τi))
>ϕ(ωi, t) +QxR(ωi, t), (15)

and the final condition ϕ(ωi, τi+T ) = 0. Note that ωi is fixed
during this iteration process and that the matrix AR(ωi, t; τi)
in (13) is the same as the matrix AR(ωi, t; τi) in (15). An
approach that does not require to store ωi in memory would
be to use a different realization of the matrix AR(ωi, t; τi) in
every forward pass (13) and backward pass (15). The analysis
and the formulation of good termination conditions for this
algorithm are interesting topics for future research.

D. The RBM-MPC algorithm
The controls u∗R(ωi, t;xi, τi) will be used to control the

original dynamics (2). Introduce therefore y∗R(ωi, t;xi, τi)
as the state trajectory that results from applying the control
u∗R(ωi, t;xi, τi) to the plant (4), i.e.

ẏ∗R(ωi, t) = Ay∗R(ωi, t) +Bu∗R(ωi, t;xi, τi),

y∗R(ωi, τi) = xi. (16)

where y∗R(ωi, t) denotes y∗R(ωi, t;xi, τi), again for brevity.

The RBM-MPC algorithm computes the control uR−M (t)
and corresponding state trajectory xR−M (t) as follows.

1) Initialize xR−M (0) = x0 and i = 0.
2) Select indices ωi,k for k ∈ {1, 2, . . . ,K} according to

the probability distribution pω and build ωi as in (7).
3) Compute u∗R(ωi, t;xR−M (τi), τi) and

y∗R(ωi, t;xR−M (τi), τi) on [τi, τi + T ].
4) Set uR−M (t) = u∗R(ωi, t;xR−M (τi), τi) and

xR−M (t) = y∗R(t,xR−M (τi), τi) on [τi, τi+1].
5) Set i = i+ 1 and got to Step 2.

Note that xR−M (τi+1) depends on all indices ωj,k with j ∈
{1, . . . , i} and k ∈ {1, 2, . . . ,K} which are collected in

Ωi = (ω0,ω1,ω2, . . . ,ωi) ∈ {1, 2, . . . , 2M}(i+1)K . (17)

Remark 4: The proposed algorithm can be viewed as an
MPC strategy with an imperfect plant model constructed by
the RBM. The feedback nature of MPC will naturally create
some robustness against these imperfections.

Remark 5: The computational advantage of the RBM-MPC
strategy depends on the splitting of A into submatrices Am
in (5). For example, when the original matrix A is not
tridiagonal and the submatrices Am are (up to a permutation of
the rows and columns), the computational cost for one time
step in an implicit time discretization scheme reduces from
O(n3) to O(n), see also Section VI. A further discussion on
the reduction of the computational cost achievable in RBM-
constrained OCPs can be found in [4, Examples 4 and 5].

Remark 6: The proposed algorithm is the result of first
applying MPC and then the RBM (first-MPC-then-RBM).
Another variant of RBM-MPC is obtained by first apply-
ing the RBM and then MPC (first-RBM-then-MPC). This
means that we first construct a randomized A-matrix ÃR :
{1, 2, . . . , 2M}N× [0,∞)→ Rn×n as in Subsection II-C. The
plant (2) is then controlled by an MPC controller that uses
the imperfect plant model based on ÃR. When τ = T , first-
MPC-then-RBM and first-RBM-then-MPC result in the same
algorithm, but for τ < T this is not the case. This phenomenon
is similar to the discussions on first-optimize-then-discretize
(FOTD) versus first-discretize-then-optimize (FDTO) in the
numerics of optimal control problems, see, e.g., [13], [14].

III. MAIN RESULTS

Main Result 1 concerns the stability of the RBM-MPC
trajectory xR−M (t).

Main Result 1: There exist positive constants M∞, µ∞,
CMPC, C[A,B,Q,R,T ] such that for t ≥ 0

E[|xR−M (t)|] ≤M∞e−t µR−M |x0|, (18)

where

µR−M = µ∞ − CMPCe
−µ∞(T−τ)

− C[A,B,Q,R,T ]e
2µRT

√
hVar[AR]. (19)

Remark 7: The constants M∞ and µ∞ depend only on A,
B, Q, and R and are related to the infinite-horizon OCP (1)–
(2), see (34) in Subsection IV-B. The constant CMPC also
depends only on A, B, Q, and R and also appears in stability
analysis of MPC in Lemma 2 in Subsection IV-C.
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Remark 8: For T − τ sufficiently large and hVar[AR] and
sufficiently small, µR−M > 0. When µR−M > 0, the RBM-
MPC strategy is stabilizing with probability 1. To see this,
note that Markov’s inequality [15] shows that for any ε > 0

P[|xR−M (Ωi, t)| ≥ ε] ≤
E[|xR−M (t)|]

ε
. (20)

Because E[|xR−M (t)|] → 0 for t → ∞ if µR−M > 0, the
probability that |xR−M (Ωi, t)| < ε approaches 1 for t→∞.

Remark 9: For clarity, the estimates only include the lead-
ing terms in the limit T − τ → ∞ and hVar[AR] → 0. In
particular, by rescaling time, we may assume without loss of
generality that T ≥ 1 and τ ≤ 1. Also, terms proportional
to hVar[AR] are omitted because they are negligible to terms
proportional to

√
hVar[AR] in the limit hVar[AR]→ 0.

The second main result shows that for hVar[AR] → 0,
the RBM-MPC state trajectory xR−M (Ωi, t) and control
uR−M (Ωi, t) converge (in expectation) to the MPC state
trajectory xM (t) and control uM (t), respectively.

Main Result 2: Suppose that µR−M > 0, then there exists
a constant C[A,B,Q,R,T ] such that

E[|xR−M (t)− xM (t)|] + E[|uR−M (t)− uM (t)|] ≤

C[A,B,Q,R,T ]e
2µRT

√
hVar[AR]

e−µR−M (t−τ)(t+ 1)

µR−M
|x0|.

(21)
Remark 10: The estimates in this paper lead to a constant

C[A,B,Q,R,T ] proportional to T 5/2. The numerical example in
Section VI suggests that C[A,B,Q,R,T ] increases at a lower rate.

Remark 11: The proof also clearly indicates that the con-
stant C[A,B,Q,R,T ] decreases when τ is smaller. However,
it does not hold that C[A,B,Q,R,T ] → 0 for τ → 0. The
dependence of C[A,B,Q,R,T ] on τ was therefore omitted.

Main Result 2 has the following corollary that relates the
RBM-MPC strategy to the infinite horizon problem (1)–(2).

Corollary 1: Suppose that µR−M > 0, then there exist
constants C[A,B,Q,R] and C[A,B,Q,R,T ] such that

E[|xR−M (t)− x∗∞(t)|] + E[|uR−M (t)− u∗∞(t)|] ≤

C[A,B,Q,R,T ]

√
hVar[AR]

e−µR−M (t−τ)(t+ 1)

µR−M
|x0|

+ C[A,B,Q,R]e
−2µ∞(T−τ) e

−µR−M t(t+ 1)

µR−M
|x0|. (22)

Proof: The estimate on the state follows because

E[|xR−M (t)− x∗∞(t)|] ≤
E[|xR−M (t)− xM (t)|] + |xM (t)− x∗∞(t)|. (23)

A bound for the first term is given in Main Result 2. The
bound for the second term follows from the analysis of MPC
in [9, Theorem 2.7], see also Lemma 3 in Section IV. The
bound on the controls follows analogously.

The form of the estimates in Main Results 1 and 2 clearly
indicate a tuning strategy for the main parameters T , τ , and
h in the RBM-MPC strategy. First, T − τ should be chosen
such that the MPC strategy is stabilizing, i.e. such that µ∞ −
CMPCe

−µ∞(T−τ) > 0. After that h can be chosen such that
µR−M > 0 and such that the RBM-MPC strategy leads to a
sufficiently good approximation of the MPC strategy.

IV. PRELIMINARIES

A. Notation
For a symmetric matrix M , M < 0 or M � 0 indicates that

M is positive semi-definite or positive definite, respectively.
For two symmetric matrices M and N , M < N means that
M −N < 0. The norm of a vector x ∈ Rn is |x| =

√
x>x.

The operator norm of a matrix A is defined as

‖A‖ = sup
|x|=1

|Ax|. (24)

Furthermore, C[a,b,...,c] denotes a constant depending only on
the parameters a, b, . . . , c that may vary from expression to
expression. We may for example write abC[a,b] ≤ C[a,b].

Let V be a vector space. The expected value of a random
variable X : {1, 2, . . . , 2M}K → V depending on ωi is

Ei[X] =
∑

ωi∈{1,2,...,2M}K
X(ωi)p(ωi), (25)

where
p(ωi) = pωi,1pωi,2 · · · pωi,K . (26)

The expected value of a random variable X :
({1, 2, . . . , 2M}K)i+1 → V depending on Ωi in (17) is
denoted by

E[X] =
∑

ω0,ω1,...,ωi∈{1,2,...,2M}K
X(ω0,ω1, . . . ,ωi)×

p(ω0)p(ω1) · · · p(ωi). (27)

For the expected value of a random variable X(Ωi) w.r.t. only
the last ωi, we will write Ei[X(Ωi−1)] to indicate that the
result only depends on Ωi−1.

For two random variables X(Ωi) and Y (Ωi), the Cauchy-
Schwartz inequality in the probability space shows that

E[XY ] ≤
√

E[X2]E[Y 2], E[X] ≤
√
E[X2]. (28)

where the second equality follows after setting Y = 1. Similar
expressions hold for the expectation Ei introduced above.

B. Riccati Theory
This subsection recalls several well-known results from

Riccati theory that can for example be found in [10].
First of all, the state trajectory x∗∞(t) minimizing the infinite

horizon cost (1)–(2) satisfies

ẋ∗∞(t) = A∞x∗∞(t), x∗∞(0) = x0, (29)

with
A∞ = A−BR−1B>P∞, (30)

where P∞ is the solution of the (unique) symmetric positive-
definite solution of the Algebraic Riccati Equation (ARE)

A>P∞ + P∞A− P∞BR−1B>P∞ +Q = 0. (31)

Comparing (29) and (2), it follows that

u∗∞(t) = −R−1B>P∞x∗∞(t). (32)

The matrix P∞ also has the property that

min
u∞

J∞(u∞) = J∞(u∗∞) = x>0 P∞x0. (33)
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The observability of the pair (A,Q) implies that A∞ is stable,
i.e. there exist M∞ ≥ 1 and µ∞ > 0 such that

‖eA∞t‖ ≤M∞e−µ∞t. (34)

Similarly, the state trajectory x∗T (t;xi, τi) minimizing the
finite horizon cost (3)–(4) satisfies

ẋ∗T (t) = (A−BR−1B>PT (t− τi))x∗T (t), x∗T (τi) = xi,
(35)

where x∗T (t) denotes x∗T (t;xi, τi) for brevity and PT (t) is the
solution of the Riccati Differential Equation (RDE)

−ṖT (t) = A>PT (t) + PT (t)A

− PT (t)BR−1B>PT (t) +Q, PT (T ) = 0, (36)

on [0, T ]. Comparing (4) and (35), it follows that

u∗T (t;xi, τi) = −R−1B>PT (t− τi)x∗T (t;xi, τi), (37)

and it holds that

min
uT

JT (uT ;xi, τi) = JT (u∗T ;xi, τi) = x>i PT (0)xi. (38)

Comparing (38) with xi = x0 to (33), it follows that

x>0 PT (0)x0 ≤ JT (u∗∞|[0,T ] ;x0, 0) ≤ x>0 P∞x0, (39)

where u∞|[0,T ] denotes the restriction of u∗∞(t) to [0, T ].
Since this equation holds for all x0, it follows that 0 4
PT (0) 4 P∞, and thus that

‖PT (0)‖ ≤ ‖P∞‖. (40)

Because the definition of PT (t) in (36) shows that PT (t) =
PT−t(0), (40) implies that (for all t ∈ [0, T ])

‖PT (t)‖ ≤ ‖P∞‖. (41)

Analogously, the state trajectory x∗R(ωi, t;xi, τi) that min-
imizes the finite horizon randomized cost (12)–(13) satisfies

ẋ∗R(ωi, t) =

(AR(ωi, t; τi)−BR−1B>PR(ωi, t− τi))x∗R(ωi, t),

x∗R(ωi, τi) = xi, (42)

where x∗R(ωi, t) denotes x∗R(ωi, t;xi, τi) for brevity and
PR(ωi, t) is the solution of the Randomized Riccati Differ-
ential Equation (RRDE)

ṖR(ωi, t) = AR(ωi, t; τi)
>PR(ωi, t)+ (43)

PR(ωi, t)AR(ωi, t; τi)− PR(ωi, t)BR
−1B>PR(ωi, t) +Q,

and the final condition PR(ωi, T ) = 0 on [0, T ]. Comparing
(13) and (42), it follows that

u∗R(ωi, t) = −R−1B>PR(ωi, t− τi)x∗R(ωi, t). (44)

where u∗R(ωi, t) denotes u∗R(ωi, t;xi, τi) for brevity. It also
holds that

min
uT

JR(ωi,uT ;xi, τi) = JR(ωi,u
∗
R(ωi);xi, τi)

= x>i PR(ωi, 0)xi. (45)

C. Analysis of Model Predictive Control
In this subsection, the main ideas from the analysis of MPC

in [9] are summarized. We note that several other analysis
methods for MPC have been proposed, see, e.g., [8], [1], [2].

A fundamental result is the convergence of the solution
PT (t) of the RDE (36) to the solution P∞ of ARE (31).

Lemma 1: If (A,B) is controllable, (A,Q) is observable,
and µ∞ is as in (34), there exists a constant C ′MPC only
depending on A,B,Q and R such that

||PT (t)− P∞|| ≤ C ′MPCe
−2µ∞(T−t). (46)

Proof: See [9, Lemma 2.2], [16], or [17].
Remark 12: Lemma 1 also holds under the weaker assump-

tions that (A,B) is stabilizable and (A,Q) is detectable.
The form of the optimal state trajectory x∗T (t;xi, τi) in (35)

and the MPC algorithm from Subsection II-B imply that

ẋM (t) = AT,τ (t)xM (t), xM (0) = x0. (47)

where AT,τ (t) is the τ -periodic matrix

AT,τ (t) = A−BR−1B>PT,τ (t), (48)
PT,τ (t) = PT (t mod τ). (49)

Lemma 1 and (47) lead to the following two lemmas on
the stability and convergence of MPC. The first lemma shows
that MPC is stabilizing for T − τ sufficiently large.

Lemma 2: Let M∞ ≥ 1 and µ∞ > 0 be as in (34) and let
C ′MPC be as in Lemma 1, then

|xM (t)| ≤M∞e−µT−τ t|x0|, (50)

where

µT−τ = µ∞ − CMPCe
−2µ∞(T−τ), (51)

CMPC = M∞‖BR−1B>‖C ′MPC. (52)
Proof: See [9, Theorem 2.6].

The second lemma shows that xM (t) and uM (t) converge
to x∗∞(t) and u∗∞(t) for T − τ →∞.

Lemma 3: There exists a constant C[A,B,Q,R] such that

|xM (t)− x∗∞(t)|+ |uM (t)− u∗∞(t)| ≤
C[A,B,Q,R]e

−2µ∞(T−τ)e−µT−τ (t+ 1)|x0|. (53)
Proof: See [9, Theorem 2.7].

D. Convergence of the Random Batch Method
This subsection contains the important results from [4] that

will be used in the analysis of RBM-MPC in the next section.
Let SR(ωi, t, s; τi) (for τi ≤ s ≤ t ≤ τi + T ) denote the

semigroup generated by AR(ωi, t; τi), i.e. SR(ωi, t, s; τi)x =
x(ωi, t) where x(ωi, t) satisfies

ẋ(ωi, t) = AR(ωi, t; τi)x(ωi, t), x(ωi, s) = x. (54)

The following lemma from [4] then shows that SR(ωi, t, s)
is (in expectation) close to eA(t−s) when hVar[AR] is small.

Lemma 4: Let Var[AR] and µR be as in (10) and (11), then

Ei[‖SR(t, s)− eA(t−s)‖2] ≤ hVar[AR]f(t− s). (55)

where
f(t) = (2t+ ‖A‖t2)e2µRt. (56)
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Proof: See [4, Theorem 1 and Corollary 1].
With Lemma 4, it is also possible to bound the difference

between controlled state trajectories. In particular, let uR :
{1, 2, . . . , 2M}K × [τi, τi+T ]→ Rq be a random control and
let xR(ωi, t) and yR(ωi, t) be the state trajectories satisfying

ẋR(ωi, t) = AxR(ωi, t) +BuR(ωi, t), (57)
ẏR(ωi, t) = AR(ωi, t; τi)yR(ωi, t) +BuR(ωi, t), (58)
xR(ωi, τi) = yR(ωi, τi) = xi(ωi), (59)

where xi : {1, 2, . . . , 2M}K → Rn is a random initial
condition. We then have the following lemma.

Lemma 5: Let f(t) be as in Lemma 4 and let X̄ and Ū be
such that

|xi(ωi)| ≤ X̄, |uR(ωi)|L2(τi,τi+T ) ≤ Ū , (60)

for all ωi ∈ {1, 2, . . . , 2M}K , then

E[|yR(t;xi, τi)− xR(t;xi, τi)|2] ≤
f(t− τi)hVar[AR]

(
X̄ + ‖B‖

√
t− τiŪ

)2
. (61)

Proof: By a slight modification of [4, Theorem 2] in
which the random initial condition was not considered.

Finally, we present a sharpened version of the no-gap
condition from [4, Theorem 3] which bounds the difference
between the minimal values of JR(ωi, ·;xi, τi) in (12) and
JT (·;xi, τi) in (3). Because these minimal values are related
to the Riccati operators PR(ωi, t) and PT (t) by (45) and (38),
the following result can be obtained.

Lemma 6: Let PR(ωi, t) and PT (t) be the solutions of the
RDEs (43) and (36), respectively, then

Ei[‖PR(t)− PT (t)‖] ≤ (62)

C[A,B,Q,R]

(√
T 2f(T )hVar[AR] + T 2f(T )hVar[AR]

)
.

The proof of Lemma 6 is in Appendix I.

V. PROOFS

A. Proof of Main Result 1
Let i be such that t ∈ [τi, τi+1). The RBM-MPC

algorithm in Subsection II-D shows that xR−M (Ωi, t) is
yR(ωi, t;xR−M (Ωi−1, τi), τi). Because yR(ωi, t) satisfies
(16), it follows that

ẋR−M (Ωi, t) = AxR−M (Ωi, t; τi) +Bu∗R(ωi, t), (63)

where u∗R(ωi, t;xR−M (Ωi−1, τi), τi) is replaced by u∗R(ωi, t)
for brevity. The RHS of (63) can be rewritten as

ẋR−M (Ωi, t) = A∞xR−M (Ωi, t) + r(Ωi, t), (64)

with A∞ as in (30) and the residual is given by

r(Ωi, t) = BR−1B>P∞xR−M (Ωi, t) +Bu∗R(ωi, t). (65)

The residual r(Ωi, t) can again be split into two parts

r(Ωi, t) = BR−1B>(P∞ − PT (t− τi))xR−M (Ωi, t)+

Bg(Ωi, t), (66)

where

g(Ωi, t) = R−1B>PT (t−τi)xR−M (Ωi, t)+u∗R(ωi, t). (67)

The first term in (66) represents the error introduced by MPC
and can be bounded using Lemma 1. The following lemma
bounds the expected value of |g(Ωi, t)| w.r.t. ωi.

Lemma 7: Let g(Ωi, t) be as in (67), then there exists a
constant C[A,B,Q,R,T ] such that

Ei[|g(Ωi−1, t)|] ≤
C[A,B,Q,R,T ]

√
hVar[AR]|xR−M (Ωi−1, τi)|. (68)

The proof of Lemma 7 is postponed until Subsection V-C.
Combining this result with Lemma 1, it follows that

Ei[|r(Ωi−1, t)|] ≤
CMPC

M∞
e−2µ∞(T−τ)Ei[|xR−M (Ωi−1, t)|]

+ C[A,B,Q,R,T ]

√
hVar[AR]|xR−M (Ωi−1, τi)|. (69)

Main Result 1 can now be proven as follows. Applying the
variation of constants formula to (64) shows that

xR−M (Ωi, t) = eA∞tx0 +

∫ t

0

eA∞(t−s)r(Ωi, s) ds. (70)

Taking the norm using (34) and then the expectation yields

E[|xR−M (t)|] = M∞e
−µ∞tx0

+M∞

∫ t

0

e−µ∞(t−s)E[|r(s)|] ds. (71)

Write i(s) = bs/τc, so that s ∈ [τi(s), τi(s)+1). By definition
of the expectation

E[|r(s)|] = E1[E2[· · ·Ei(s)−1[Ei(s)[|r(s)|]] · · · ]]. (72)

Using (69) to bound the inner expectation and then applying
the other expectation operators to the resulting estimate, it
follows that

E[|r(s)|] ≤ CMPC

M∞
e−2µ∞(T−τ)E[|xR−M (t)|]

+ C[A,B,Q,R,T ]

√
hVar[AR]E[|xR−M (τi(s))|]. (73)

After inserting this estimate back into (71), Main Result 1
follows from the following variation of Gronwall’s lemma.
Note that τ ≤ 1 (see Remark 9) so that the factor eµ∞τ that
appears can be estimated as eµ∞τ ≤ eµ∞ ≤ C[A,B,Q,R].

Lemma 8: Suppose that f(t) ≥ 0 and that there exist
constants µ,C1, C2, C3 ≥ 0 such that for all t

f(t) ≤ C1e
−µt

+

∫ t

0

e−µ(t−s)
(
C2f(τi(s)) + C3f(s)

)
ds,

(74)

then

f(t) ≤ C1e
(−µ+C2e

µτ+C3) t. (75)
The proof of Lemma 8 can be found in Appendix II.

B. Proof of Main Result 2
Let i again be such that t ∈ [τi, τi+1) and write

eR−M (Ωi, t) := xR−M (Ωi, t)− xM (t). (76)

Note that inserting (66) into (64) and using the definition of
AT,τ (t) in (48) shows that

ẋR−M (Ωi, t) = AT,τ (t)xR−M (Ωi, t) +Bg(Ωi, t). (77)
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Subtracting (47) from this equation shows that

ėR−M (Ωi, t) = AT,τ (t)eR−M (Ωi, t) +Bg(Ωi, t), (78)

and eR−M (Ωi, 0) = 0. Applying the variation of constants
formula yields

eR−M (Ωi, t) =

∫ t

0

e
∫ t
s
AA,τ (σ) dσBg(Ωi, s) ds. (79)

Note that Lemma 2 implies that

‖e
∫ t
s
AA,τ (σ) dσ‖ ≤M∞e−µT−τ (t−s) ≤M∞, (80)

where the second inequality uses that µT−τ > µR−M > 0.
Taking norms and the expectation in (79) thus yields

E[|eR−M (t)|] ≤M∞‖B‖
∫ t

0

E[|g(s)|] ds. (81)

Using the bound from Main Result 1 in the estimate from
Lemma 7 furthermore shows that

E[|g(s)|] ≤ C[A,B,Q,R,T ]

√
hVar[AR]eµR−Mτe−µR−Ms|x0|

≤ C[A,B,Q,R,T ]

√
hVar[AR]e−µR−Ms|x0|, (82)

where the second estimate follows because τ ≤ 1 by assump-
tion (see Remark 9) so that eµR−Mτ ≤ eµ∞ . The estimate
for the states now follows by inserting (82) into (81) and
evaluating the remaining integral.

For the bound on the controls, note that (47) shows that

uR−M (Ωi, t)− uM (t) = u∗R(ωi, t) +R−1B>PT,τ (t)xM (t)

= g(Ωi, t)−R−1B>PT,τ (t)eR−M (Ωi, t). (83)

where u∗R(ωi, t) denotes u∗R(ωi, t;xR−M (Ωi−1, τi), τi) as
before. The bound on the controls follows after taking the
norm and the expected value using Lemma 7 and the bound
for E[|eR−M (t)|] obtained in the first part of the proof.

C. Proof of Lemma 7
Let i again by such that t ∈ [τi, τi+1). Note that g(Ωi, t) in

(67) can be rewritten as

g(Ωi, t) = R−1B> PT (t− τi)︸ ︷︷ ︸
(41)

(xR−M (Ωi, t)− x∗R(ωi, t))︸ ︷︷ ︸
Lemma 5

+R−1B> (PT (t− τi)− PR(ωi, t− τi))︸ ︷︷ ︸
Lemma 6

x∗R(ωi, t)︸ ︷︷ ︸
(11)

, (84)

where (44) has been used to express u∗R(ωi, t) and x∗R(ωi, t)
denotes x∗R(ωi, t;xR−M (Ωi−1, τi), τi) for brevity. The main
lemmas and equations are highlighted in (84). After taking
norms and the expectation w.r.t. ωi in (84), it follows that

Ei[|g(Ωi−1, t)|] ≤
C[A,B,Q,R]Ei[|xR−M (Ωi−1, t)− x∗R(t)|]

+ ‖R−1B>‖Ei[‖PT (t− τi)− PR(t− τi)‖]
×max

ωi
|x∗R(ωi, t)|. (85)

The bound for Ei[‖PT (t−τi)−PR(t−τi)‖] is given in Lemma
6. It remains to find bounds for Ei[|xR−M (Ωi−1, t)−x∗R(t)|]
and maxωi |x∗R(ωi, t)|.

For Ei[|xR−M (Ωi−1, t) − x∗R(t)|], apply Lemma 5 with
uR(ωi, t) = u∗R(ωi, t;xR−M (Ωi−1, τi), τi) and the initial
condition xi(ωi) = xR−M (Ωi−1, τi). This makes

yR(ωi, t) = x∗R(ωi, t;xR−M (Ωi−1, τi), τi),

xR(ωi, t) = y∗R(ωi, t;xR−M (Ωi−1, τi), τi) = xR−M (Ωi, t).

Clearly, X̄ = |xR−M (Ωi−1, τi)| does not depend on ωi. It
remains to find Ū . Because R is positive definite and u∗R(ωi)
minimizes JR(ωi, ·), see (45), it follows that

|u∗R(ωi)|2L2 ≤ C[R]JR(ωi,u
∗
R(ωi);xR−M (Ωi−1, τi), τi)

≤ C[R]JR(ωi, 0;xR−M (Ωi−1, τi), τi)

≤ C[Q,R]|xR(ωi;xR−M (Ωi−1, τi), τi)|2L2 . (86)

where xR(ωi, t;xi, τi) satisfies (13) with uR(t) = 0. Now
(11) shows that

d

dt
|xR(ωi, t)|2 = 2x>R(ωi, t)AR(ωi, t; τi)xR(ωi, t)

≤ 2µR|xR(ωi, t)|2, (87)

and it follows that

|xR(ωi, t;xi, τi)|2 ≤ e2µR(t−τi)|xi|2 ≤ e2µRT |xi|2. (88)

Inserting this bound into (86) yields

|u∗R(ωi)|2L2(τi,τi+T ) ≤ C[Q,R]Te
2µRT |xi|2, (89)

which shows that Ū =
√
TeµRT |xR−M (Ωi−1, τi)|. Lemma 5

and the fact that Ei[|X|] ≤
√
Ei[|X|2] thus show that

Ei[|xR−M (Ωi−1, t)− x∗R(t)|] ≤√
f(τ)hVar[AR]C[A,B,Q,R,T ]e

µRT |xR−M (Ωi−1, τi)|, (90)

for t ∈ [τi, τi+1]. This estimate is proportional to
√
τ because

for τ ≤ 1, f(τ) ≤ τ(2 + ‖A‖)e2µR , see Remark 9 and (56).
For the bound on |x∗R(ωi, t)|, note that (11) implies that

d

dt
|x∗R(ωi, t)| =

(x∗R(ωi, t))
>ẋ∗R(ωi, t)

|x∗R(ωi, t)|
≤ µR|x∗R(ωi, t)|+ ‖B‖|u∗R(ωi, t)|. (91)

Integrating the above inequality from τi to t and applying
Gronwall’s lemma shows that

|x∗R(ωi, t)| ≤ eµR(t−τi)|xR−M (Ωi−1, τi)|+

eµR(t−τi)‖B‖
∫ t

τi

|u∗R(ωi, s)| ds. (92)

Since t ∈ [τi, τi+1] it follows that∫ t

τi

|u∗R(ωi, s)| ds ≤ √τ |u∗R(ωi)|L2(τi,τi+T )

≤ C[Q,R]

√
τTeµRT |xR−M (Ωi−1, τi)|, (93)

where the second inequality follows from (89). Inserting (93)
into (92) now yields

|x∗R(ωi, t)| ≤(
1 + C[B,Q,R]

√
τTeµRT

)
eµRτ |xR−M (Ωi−1, τi)|

≤ C[A,B,Q,R,T ]e
µRT |xR−M (Ωi−1, τi)|. (94)

The result follows by inserting (90), (62), and (94) into (85).
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Fig. 2. Spatial discretization of the unit circle. Removing one connection
between two grid points transforms the unit circle into the line segment
at the bottom.

VI. NUMERICAL EXAMPLE

The proposed RBM-MPC algorithm is applied to a heat
equation on the unit circle S1

∂z

∂t
(θ, t) = 0.001

∂2z

∂θ2
(θ, t) + b(θ)u(t), (95)

where θ ∈ [0, 1] and θ = 0 is identified with θ = 1, b(θ) is
1/W for θ ∈ [0,W/2]∪ [1−W/2, 1] and zero otherwise, and
u(t) is the control. We fix W = 0.1. The initial condition is

z(θ, 0) = 10 exp (−2(1 + sin(2πθ))) . (96)

Our objective is to minimize the functional

J (u) =
100

2

∫ ∞
0

∫
S1

(z(θ, t))2 dθ dt+
1

2

∫ ∞
0

(u(t))2 dt.

(97)
The unit circle S1 is discretized with a uniform grid with

n grid points by finite differences. This leads to a problem of
the form (1)–(2) with

A =
1

∆θ2



−2 1 0 · · · 0 1
1 −2 1 0 0
0 1 −2 0 0
...

. . .
0 0 0 −2 1
1 0 0 1 −2


, (98)

B ∈ Rn×1 contains the nodal values of b(θ), Q = ∆θIn,
R = 1, ∆θ = 1/n, and In denotes the n× n identity matrix.

Time is discretized by the Crank-Nicholson scheme on the
truncated time interval [0, 200] with a fixed time step ∆t. At
every time step, a linear system involving the matrix A −
∆t
2 In needs to solved. Because this matrix is not tridiagonal,

the computational cost per time step is of order O(n3). The
OCPs that appear in MPC and RBM-MPC are solved by a
steepest descent algorithm. The gradients are computed based
on the discretization of the adjoint state from [18]. The stepsize
minimizes the functional in the direction of the gradient and
optimization procedure is stopped when the relative change in
the control is below 10−5 or after 1000 iterations.

To construct the randomized matrix AR(ωi, t; τi), note that
A can be written as the sum of M = n interconnection

matrices as in (5), where the first n−1 interconnection matrices
Am are zero except for a diagonal block of the form

1

∆θ2

[
−1 1
1 −1

]
, (99)

and the last interconnection matrix is

An =
1

∆θ2


−1 0 · · · 0 1
0 0
...

...
0 0
1 0 · · · 0 −1

 . (100)

Observe that adding up the first n−1 interconnection matrices
leads to a tridiagonal matrix

n−1∑
m=1

Am =
1

∆θ2



−1 1 0 · · · 0 0
1 −2 1 0 0
0 1 −2 0 0
...

. . .
0 0 0 −2 1
0 0 0 1 −1


. (101)

Therefore, the computational cost for inverting the matrix∑n−1
m=1Am − ∆t

2 In is of order O(n). In fact, the rotational
symmetry implies that removing any of the interconnection
matrices Am leads to a tridiagonal matrix of the form (101)
up to a permutation of the rows and columns. Randomly
removing one of the interconnection matrices thus reduces the
computational cost per time step from O(n3) to O(n). The
randomized matrix AR(ωi, t; τi) is constructed by assigning a
probability 1/n to all subsets of {1, 2, . . . , n} of size n − 1.
The probabilities πm that m is an element of the selected
subset is thus

πm =
n− 1

n
. (102)

The grid spacing h is chosen as small as possible, so h = ∆t.
For a given prediction horizon T and control horizon τ , the
randomized matrix AR(ωi, t; τi) can now be defined as in (8).

Remark 13: Note that h can in principle be chosen as Nh∆t
with Nh ∈ N≥2, but that this is not advisable because it will
not reduce the computational cost and increase the RBM-error.

Figure 3a compares 20 realizations of the RBM-MPC con-
trol uR−M (Ωi, t) to the MPC control uM (t) and the infinite
horizon control u∗∞(t) for n = 100 spatial grid points. As
can be seen, u∗∞(t) is smooth, the MPC control uM (t) jumps
when t is a multiple of τ = 10, and the RBM-MPC controls
contain high-frequent oscillations related to the grid spacing
∆t = h = 1. Figure 3b shows that that despite the relatively
large deviations of uR−M (Ωi, t) from uM (t), the norm of
the resulting state trajectory |xR−M (Ωi, t)| is very close to
the norm of the MPC state trajectory |xM (t)| for all 20
considered realizations Ωi. The RBM-MPC control thus leads
to practically the same convergence rate as the MPC control
in this example. Also note that T = 15 is not much larger than
τ in this example, but that the MPC strategy is stabilizing.

Table I shows that RBM-MPC significantly reduces the
computational cost compared to MPC, which is in turn more
efficient than solving the OCP on [0, 200] directly. The num-
bers between round brackets in Table I indicate the estimated
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(a) The controls uR−M (Ωi, t), uM (t), and u∗∞(t).
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(b) The norm of the state trajectories xR−M (Ωi, t), xM (t), and x∗∞(t).

Fig. 3. The RBM-MPC control and state trajectory uR−M (Ωi, t) and xR−M (Ωi, t) for 20 realizations of Ωi compared to the MPC control and
state trajectory uM (t) and xM (t) and the infinite horizon control and state trajectory u∗∞(t) and x∗∞(t) for n = 100, h = 1, τ = 10, and
T = 15. The lines for |xR−M (Ωi, t)| and |xM (t)| in Figure 3b almost overlap.

TABLE I
RUNNING TIMES FOR A VARYING NUMBER OF SPATIAL GRID POINTS n

(h = 1, T = 15, τ = 10)

Running times [s] n = 10 n = 100 n = 1000

Optimal Control 12.9 (±1.35) 32.7 (±1.53) 218.5 (±4.36)
MPC 4.6 (±0.44) 11.0 (±0.66) 70.5 (±4.51)
RBM-MPC 2.0 (±0.23) 3.6 (±0.71) 14.1 (±1.33)

TABLE II
ERRORS FOR A VARYING NUMBER OF SPATIAL GRID POINTS n

(h = 1, T = 15, τ = 10)

Relative errors [-] n = 10 n = 100 n = 1000

|uR−M − u∗∞|L2 0.76 (±0.28) 0.59 (±0.23) 0.53 (±0.11)
|uR−M − uM |L2 0.63 (±0.30) 0.41 (±0.27) 0.33 (±0.16)
|uM − u∗∞|L2 0.41 (±0.00) 0.37 (±0.00) 0.39 (±0.00)
‖xR−M − x∗∞‖L∞ 0.35 (±0.09) 0.28 (±0.08) 0.25 (±0.04)
‖xR−M − xM‖L∞ 0.17 (±0.08) 0.11 (±0.07) 0.08 (±0.04)
‖xM − x∗∞‖L∞ 0.24 (±0.00) 0.22 (±0.00) 0.22 (±0.00)

standard deviation of the running times based on 20 runs. For
n = 100, MPC is almost 3 times faster than a classical optimal
control approach, and RBM-MPC is again almost 3 times
faster than MPC. For n = 1000, MPC is still approximately
3 times faster than solving the OCP directly, but RBM-MPC
is 5 times faster than MPC. Note that the relative speed up
of RBM-MPC compared to MPC is not of O(n2) as the
theoretical estimates predict because it also includes overheads
and because solving the RBM-constrained OCP sometimes
requires a few more iterations than the original OCP.

These observations are particularly interesting because Ta-
ble II shows that the errors do not increase significantly
when n is increased. The numbers between round brackets
in Table II indicate the estimated standard deviation based on
20 realizations of Ωi. The norm ‖ · ‖L∞ is defined as

‖x‖L∞ := max
t

√
∆θ(x(t))>x(t). (103)

The convergence rates from Main Result 2 and Corollary 1
are validated in Figure 4 and 5. Figures 4a and 5a show that
‖xR−M (Ωi)−xM‖L∞ and |uR−M (Ωi)−uM |L2 decay as

√
h

for h → 0, which is in agreement with Main Result 2. Also
note that xR−M (Ωi) and uR−M (Ωi) do not converge to x∗∞
and u∗∞ for h→ 0, as Main Result 2 and Corollary 1 indicate.
Figures 4b and 5b show that ‖xM − x∗∞‖L∞ and |uM −
u∗∞|L2 are proportional to e−2µ∞T , which is agreement with
Corollary 1. Increasing T increases ‖xR−M (Ωi) − xM‖L∞
and |uR−M (Ωi) − uM |L2 , which confirms that the constant
C[A,B,Q,R,T ] in Main Result 2 increases with T . Figures 4c
and 5c show that varying τ does not affect ‖xR−M (Ωi) −
xM‖L∞ and |uR−M (Ωi)−uM |L2 strongly and ‖xM−x∗∞‖L∞
and |uM − u∗∞|L2 increase with τ . This is in agreement with
Main Result 2 and Corollary 1.

The code used to generated the results in this section can
be found on https://github.com/DCN-FAU-AvH.

VII. CONCLUSION AND PERSPECTIVES

This paper considers a randomized MPC strategy called
RBM-MPC to efficiently approximate the solution of an infi-
nite horizon linear-quadratic OCP. In RBM-MPC, the finite-
horizon OCPs that need to be solved in each iteration of the
MPC-algorithm are simplified by replacing the system matrix
A by a randomized system matrix. RBM-MPC can reduce the
computational cost of MPC significantly.

There are four critical parameters that determine the stability
and convergence of the proposed strategy: the prediction
horizon T , the control horizon τ , the time scale for the ran-
domization h, and variance in the randomization of the system
matrix Var[AR]. The estimates in this paper demonstrate that
the RBM-MPC strategy is stabilizing when T−τ is sufficiently
large and hVar[AR] is sufficiently small and that the RBM-
MPC strategy converges in expectation to an infinite-horizon
OCP when T − τ →∞ and hVar[AR]→ 0.

The computational advantage of the RBM-MPC strategy
was demonstrated for a heat equation with periodic boundary
conditions discretized with n = 100 spatial grid points. In this
example, RBM-MPC is 9 times faster than solving the OCP
direcly and 3 times faster than classical MPC. The relative
speed-up of the RBM-MPC strategy increases with the number
of spatial grid points n.
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Fig. 4. Differences between the RBM-MPC state trajectory xR−M (Ωi, t), the MPC state trajectory xM (t), and the infinite horizon state trajectory
x∗∞(t) for n = 100. The error bars indicate the 2σ confidence intervals estimated based on 20 realizations of Ωi.
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Fig. 5. Differences between the RBM-MPC control uR−M (Ωi, t), the MPC control uM (t), and the infinite horizon control u∗∞(t) for n = 100.
The error bars indicate the 2σ confidence intervals estimated based on 20 realizations of Ωi.

The analysis in this paper opens up several extensions and
interesting possibilities for future work.
• Higher-order moments. Main Result 1 bounds the first-

order moment E[|xR−M (t)|] based on an estimate for
E[|JR(u∗R)− JT (u∗T )|] from [4]. For E[|xR−M (t)|2] an
estimate for E[|JR(u∗R)− JT (u∗T )|2] should be proved.

• Terminal constraint. RBM-MPC with a terminal con-
straint xR(ωi, τi +T ;xi, τi) = 0 in the OCP (3)–(4) can
be analyzed in a future work based on the literature on
MPC with a terminal constraint, see e.g., [8].

• Constraints. Control constraints can be directly included
in the RBM-MPC algorithm. Including state constraints is
more challenging because the plant trajectory yR(t) does
not necessarily satisfy the constraints when the predicted
trajectory x∗R(t) does.

• Nonlinear settings. It follows as in [9] that RBM-MPC
based on a linear plant model is locally stabilizing for
a nonlinear plant when the plant model is a sufficiently
good approximation of the nonlinear plant near the origin.
The RBM-MPC strategy has also been applied with a
nonlinear plant model in [5] but the analysis for this
problem setting is still open.

• Machine Learning. Because the training of residual
Deep Neural Networks (DNNs) can be seen viewed as
a nonlinear OCP [19], [20], RBM-MPC may also be
applied to speed up the training of DNNs.

• Gradient descent for RBM-constrained OCPs. A nat-
ural way to solve RBM-contrained OCPs is to use a

different realization of the randomized A-matrix in each
forward and backward pass, see also Remark 3. The
rigorous analysis of this algorithm is still missing.

• First-RBM-then-MPC. It is natural to also analyze the
first-RBM-then-MPC algorithm and compare it to the
first-MPC-then-RBM algorithm considered in this paper,
see Remark 6. The stochastic dependencies in first-RBM-
then-MPC will be somewhat more involved.

• PDEs on Networks. The numerical example in Section
VI demonstrates that removing cycles by the RBM can
speed up computations significantly. These ideas can also
be applied to the complex networks of (1-D) PDEs that
e.g. appear in the modeling of gas transport [21], [22].

• Adaptive RBM-MPC The computational cost for RBM-
MPC may be reduced further by adapting the parameters
h, τ , and T over the iterations. Developing such adapta-
tion strategies for MPC and RBM-MPC and proving their
stability is an interesting topic for future research.
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APPENDIX I
PROOF OF LEMMA 6

Proof: We will only proof a bound for Ei[‖PR(0) −
PT (0)‖]. The bound for Ei[‖PR(t)−PT (t)‖] can be obtained
similarly by replacing T by T − t. By definition

‖PR(ωi, t)− PT (t)‖ = max
|x|=1

x>(PR(ωi, t)− PT (t))x

= (x̄(ωi))
>(PR(ωi, t)− PT (t))x̄(ωi), (104)

where x̄(ωi) thus denotes the maximizer of the quadratic form
generated by PR(ωi, t)−PT (t) of unit norm. By (45) and (38),

(x̄(ωi))
>PR(ωi, t)x̄(ωi) = JR(ωi,u

∗
R(ωi); x̄(ωi), τi),

(x̄(ωi))
>PT (t)x̄(ωi) = JT (u∗T (ωi); x̄(ωi), τi), (105)

where u∗R(ωi) and u∗T (ωi) are the minimizers of
JR(ωi, ·; x̄(ωi), τi) and JT (·; x̄(ωi), τi), respectively. We
let x∗R(ωi, t; x̄(ωi), τi) and x∗T (ωi, t; x̄(ωi), τi) denote the
corresponding state trajectories. For clarity, the dependence
on x̄(ωi) and τi will be omitted in the following.

We now distinguish two cases:
I) JT (u∗T (ωi)) ≤ JR(ωi,u

∗
R(ωi)),

II) JR(ωi,u
∗
R(ωi)) < JT (u∗T ).

Note that some of the ωi ∈ {1, 2, . . . , 2M}K will fall in case
I and others in case II. We write ωi ∈ I when JT (u∗T (ωi)) ≤
JR(ωi,u

∗
R(ωi)) and ωi ∈ II otherwise. When ωi ∈ I,

|JR(ωi,u
∗
R(ωi))− JT (u∗T (ωi))|

= JR(ωi,u
∗
R(ωi))− JT (u∗T (ωi))

≤ JR(ωi,u
∗
T (ωi))− JT (u∗T (ωi))

= 〈yT (ωi), QyT (ωi)〉L2 − 〈x∗T (ωi)), Qx∗T (ωi))〉L2

= 〈2x∗T (ωi)) + eT (ωi), QeT (ωi)〉L2

≤ 2
√
〈x∗T (ωi)), Qx∗T (ωi))〉L2〈eT (ωi), QeT (ωi)〉L2

+ 〈eT (ωi), QeT (ωi)〉L2 , (106)

where 〈·, ·〉L2 denotes the L2-inner product on [τi, τi + T ],
yT (ωi, t) is the solution of

ẏT (ωi, t) = AR(ωi, t)yT (ωi, t) +Bu∗T (t), (107)

starting from the initial condition yT (ωi, τi) = x̄(ωi), and
eT (ωi, t) = yT (ωi, t)− x∗T (t). Now (38) and (40) show that

〈x∗T (ωi)), Qx∗T (ωi))〉L2 ≤ JT (u∗T (ωi))) ≤
(x̄(ωi))

>PT (0)x̄(ωi) ≤ ‖P∞‖|x̄(ωi))|2 = ‖P∞‖. (108)

When ωi ∈ II, a similar computation shows that

|JR(ωi,u
∗
R(ωi))− JT (u∗T (ωi))|

= JT (u∗T (ωi))− JR(ωi,u
∗
R(ωi))

≤ JT (u∗R(ωi))− JR(ωi,u
∗
R(ωi))

= 〈yR(ωi), QyR(ωi)〉L2 − 〈x∗R(ωi), Qx∗R(ωi)〉L2

= 〈2x∗R(ωi) + eR(ωi), QeR(ωi)〉L2

≤ 2
√
〈x∗R(ωi), Qx∗R(ωi)〉L2〈eR(ωi), QeR(ωi)〉L2

+ 〈eR(ωi), QeR(ωi)〉L2 , (109)

where yR(ωi, t) is the solution of (16) starting from the initial
condition yR(ωi, τi) = x̄(ωi) and eR(ωi, t) = yR(ωi, t) −
x∗R(ωi, t). Again using that we are in case II, it follows that

〈x∗R(ωi), Qx∗R(ωi)〉L2 ≤ JR(ωi,u
∗
R(ωi)) <

JT (u∗T (ωi)) ≤ ‖P∞‖|x̄(ωi)|2 = ‖P∞‖. (110)

Combining the two estimates for cases I and II, we obtain

‖PR(ωi, 0)− PT (0)‖
≤ 2
√
‖P∞‖‖Q‖|eRT (ωi)|L2 + ‖Q‖|eRT (ωi)|2L2 ,
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where

eRT (ωi, t) =

{
eT (ωi, t) when ωi ∈ I,
eR(ωi, t) when ωi ∈ II.

(111)

Taking the expectation, it follows that

Ei[‖PR(0)− PT (0)‖] ≤

C[A,B,Q,R]

(√
Ei[|eRT |2L2 ] + Ei[|eRT |2L2 ]

)
. (112)

A bound for Ei[|eRT |2L2 ] follows from Lemma 5. In partic-
ular, note that |eRT (ωi, t)| = |yR(ωi, t) − xR(ωi, t)| where
xR(ωi, t) and yR(ωi, t) are the solutions to (57)–(59) with

uR(ωi, t) =

{
u∗T (ωi, t) when ωi ∈ I,
u∗R(ωi, t) when ωi ∈ II,

(113)

both starting from the initial condition x̄(ωi). Note that X̄ = 1
because |x̄(ωi)| = 1 by definition. Note that Ū only depends
on A,B,Q,R because when ωi ∈ I,

|uR(ωi)|2L2 ≤ C[R]JT (u∗T (ωi)) ≤ C[R]‖P∞‖, (114)

see (38) and (41), and when ωi ∈ II

|uR(ωi)|2L2 ≤ C[R]JR(ωi,u
∗
R(ωi)) < C[R]JT (u∗T (ωi)).

(115)
Lemma 5 thus shows that

E[|eRT (t)|2] ≤ C[A,B,Q,R]Tf(t− τi)hVar[AR]. (116)

Integrating this bound from t = τi to t = τi + T yields

E[|eRT |2L2 ] ≤ C[A,B,Q,R]T
2f(T )hVar[AR]. (117)

The result follows by inserting this estimate into (112).

APPENDIX II
PROOF OF LEMMA 8

Proof: Define f̂(t) = eµtf(t) and multiply equation (74)
by eµt, which yields

f̂(t) ≤ C1 +

∫ t

0

eµs
(
C2f(τi(s)) + C3f(s)

)
ds

≤ C1 +

∫ t

0

(
C2e

µ(s−τi(s))f̂(τi(s)) + C3f̂(s)

)
ds

≤ C1 + C2e
µ τ

∫ t

0

f̂(τi(s)) ds+ C3

∫ t

0

f̂(s) ds, (118)

where it has been used that s− τi(s) = s mod τ ≤ τ . Define

F̂ (t) := C1 + C2e
µ τ

∫ t

0

f̂(τs) ds+ C3

∫ t

0

f̂(s) ds, (119)

then
F̂ ′(t) = C2e

µ τ f̂(τt) + C3f̂(t)

≤ C2e
µ τ F̂ (τt) + C3F̂ (t)

≤ (C2e
µ τ + C3)F̂ (t), F̂ (0) = C1.

(120)

where it has been used that f̂(t) ≤ F̂ (t) by (118). Gronwall’s
lemma thus shows that

F̂ (t) ≤ C1e
(C3e

µ τ+C4) t. (121)

Again using that f̂(t) ≤ F̂ (t), we obtain

f(t) = e−µtf̂(t) ≤ e−µtF̂ (t), (122)

and the result follows.
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