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Example : a linear control problem

Recall the open-loop linear control problems.

Equation of motion : The state x(t) and control u(t) satisfy{
ẋ(t) = Ax(t) + Bu(t), t ∈ [0,T ],

x(0) = x0 ∈ Rn,

where u : [0,T ]→ U ⊂ Rm.

The control objective : x(T ) = x1 ∈ Rn.

Kalman rank condition : rank[B,AB, · · · ,An−1B] = n.
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Example : a linear control problem

Then, we used adjoint system of the costate φ(·) and built an
optimization process to find an open-loop control u.

Adjoint system : {
−φ̇(t) = A∗φ(t), t ∈ [0,T ],

φ(T ) = φT ∈ Rn,

A control from optimization

Then, the open-loop control is given by u∗(t) = B∗φ(t),

J(φT ) =
1
2

∫ T

0
|B∗φ|2dt + 〈x0, φ(0)〉.
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Example : a linear control problem

One of the common ways to find the minimizer φT is the Gradient
Descent method.

Optimal problem : Find φT ∈ Rd which minimizes

J(φT ) =
1
2

∫ T

0
|B∗φ(t)|2dt + 〈x0, φ(0)〉.

From an initial guess on φT0 , use an iterative process for small α > 0:

φTk+1 := φTk − α∇φT
k
J(φTk ), k = 0, 1, · · · .
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Example : a linear control problem

How can we calculate the gradient, ∇φT
k
J(φTk )?

The costate φ(t) is the solution of the adjoint system from the final
datum φT ,

φ(t) = e−A
∗(T−t)φT , φ(0) = e−A

∗TφT .

Then, the cost function becomes

J(φT ) =
1
2

∫ T

0
|B∗e−A

∗(T−t)φT |2dt + 〈x0, e−A
∗TφT 〉.

Now we can differentiate J in terms of φT .
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Formulation of optimal control problems

Equation of motion :{
ẋ(t) = f (x(t), u(t)), t ∈ [0,T ],

x(0) = x0 ∈ Rn,
(1)

where u : [0,T ]→ U ⊂ Rm.

The control cost : J(x(·), u(·)).

Problem : Find a open-loop control u(t), which minimizes the
control cost for a controlled system.

u∗(t) = argmin{J(x(·), u(·)) | u : [0,T ]→ U},

subject to the equation (1).
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Gradient descent method

Since the control u : [0,T ]→ U determines the state x(t, u(·)), we
need to calculate the derivative

∂

∂u(·)
J(x(·, u(·)), u(·)).

Discretization of the time : For 0 = t0 < t1 < · · · < tN = 1,
the states and control can be represented by xn = x(tn) and
un = u(tn), for example, we may use the forward Euler method:

xk+1 = xk + (tk+1 − tk)f (xk , uk), k = 0, 1, · · · .

Then, the problem becomes

min
(u0,··· ,uN )

J̄(u0, · · · , uN)

= min
(u0,··· ,uN )

J(x0(u0, · · · , uN), · · · , xN(u0, · · · , uN), u0, · · · , uN).
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Gradient descent method

The calculation of the gradient (total derivative) on

J̄(u0, · · · , uN) = J(x0(u0, · · · , uN), · · · , xN(u0, · · · , uN), u0, · · · , uN)

is a tough problem. There are two common options to operate it.

1 Minimizing a function with constraints :
Minimize the cost function over both the state and the control,

min
x1,··· ,xN ,u0,··· ,uN

J(x0, · · · , xN , u0, · · · , uN),

with the equation of motion as constraints,

xk+1 − xk − (tk+1 − tk)f (xk , uk) = 0, k = 0, 1, · · · .

2 Adjoint approach : We may calculate the gradient of the cost
function using the adjoint system.
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Adjoint approach

Equation of motion :{
ẋ(t) = f (x(t), u(t)), t ∈ [0,T ],

x(0) = x0 ∈ Rn,
(2)

where u : [0,T ]→ U ⊂ Rm.

The control cost : J = Ψ(x(T )) +
∫ T

0 L(x(t), u(t))dt.

Problem : Find a open-loop control u(t), which minimizes the
control cost for a controlled system.

u∗(t) = argmin{J(x(·), u(·)) | u : [0,T ]→ U},

subject to the equation (7).
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Adjoint approach

The control cost can be understood as an Euler-Lagrange problem,

Minimize J(x(·), u(·)) = Ψ(x(T )) +

∫ T

0
L(x(t), u(t))dt,

subject to the constraints

x(0)− x0 = 0,
ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ].

We adopt the Lagrange multiplier λ (the ’momentum’) and the
Lagrangian L,

L(x , u, λ) =

∫ T

0
(L(x , u)− λ · (ẋ − f (x , u))) dt + Ψ(x(T ))

=

∫ T

0
(H(x , u, λ)− λ · ẋ) dt + Ψ(x(T )).

13 / 70



Linear control problem Optimal control problems DyCon Toolbox Control “guidance-repulsion” Flexible final time

Adjoint approach

Then, from the optimality of the state, we may consider the
derivative along with δx ,

δL =

∫ T

0
(Hx · δx − λ · δẋ) dt + Ψx · δx(T )

=

∫ T

0

(
(Hx + λ) · δx − d

dt
(λ · δx)

)
dt + Ψx · δx(T )

=

∫ T

0
(Hx + λ) · δxdt + (Ψx − λ(T )) · δx(T ).

This implies the adjoint system with respect to the Hamiltonian H:{
−λ̇ = Hx(x , u, λ) = Lx(x , u) + fx(x , u) · λ,
λ(T ) = Ψx(x(T )),

where the solution of the system for (x , u, λ) will be the optimal
trajectories to minimize L, i.e., J with constraints.
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Pontryagin Maximal Principle

Pontryagin Maximal Principle (PMP)

Define the Hamiltonian of the Lagrangian L,

H(x , u, λ) := L(x , u) + f (x , u) · λ.

Then, if x̄(t), ū(t) are the optimal state and control trajectories, then
there exists a costate λ̄(t) satisfying{

− ˙̄λ = Lx(x̄ , ū) + fx(x̄ , ū) · λ̄,
λ̄(T ) = Ψx(x̄(T )),

where the optimal control u(t) satisfies

ū = argminuH(x̄ , u, λ̄).
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Gradient descent using the adjoint system

Note that PMP requires us to find the optimal state, control and
costate simultaneously. (A system of ordinary differential equations
with boundary values.)

Instead, we can follow an iterative method using the gradient
descent method.

1 From an initial guess u0 on u(t), we may define x0 and λ0,

ẋ0 = f (x0, u0), t ∈ [0,T ], x0(0) = x0 ∈ Rn,

λ̇0 = Lx(x0, u0) + fx(x0, u0) · λ0, t ∈ [0,T ], λ0(T ) = Ψx(x0(T )).

2 From xk , uk and λk , we have the gradient of the Hamiltonian,

Hu(xk , uk , λk) = Lu(xk , uk) + fu(xk , uk) · λk ,

Hu is the same as the gradient of J

d

du(·)
J(x(·, u(·)), u(·))

∣∣∣
u(·)=uk

= Hu(xk , uk , λk).
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Example : a harmonic oscillator

Equation of motion :{
ẍ(t) + x(t) = u(t), t ∈ [0,T ], T = π,

x(0) = 1, ẋ(0) = 0.
(3)

where u : [0,T ]→ R1.

Let y(t) = (x(t), ẋ(t)).

The control cost : J = 1
2 (|x(T )|2 + |ẋ(T )|2) + 1

2

∫ T

0 |u(t)|2dt, where

Ψ(y(T )) =
1
2
|y(T )|2 and L(y(t), u(t)) =

1
2
|u(t)|2.

Problem : Find the gradient of J at u0 = 0 with respect to u.
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Example : a harmonic oscillator

Discretization of the time : For 0 = t0 < t1 < · · · < tN = 1,
the states and control can be represented by xn = x(tn), ẋn = ẋ(tn)
and un = u(tn),

x = (x0, x1, . . . , xN), ẋ = (ẋ0, ẋ1, . . . , ẋN), u = (u0, u1, . . . , uN).

Then, the problem becomes

min
(x,ẋ,u)

J(x , ẋ , u),

subject to the equation of motion.

For example, we may use the forward Euler method:

xk+1 = xk + (tk+1 − tk)ẋk ,

ẋk+1 = ẋk + (tk+1 − tk)(uk − xk),

x0 = 1, ẋ0 = 0.
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Example : a harmonic oscillator

We may use the adjoint system to calculate gradient.

The running cost L and the final cost Ψ are

L(y(t), u(t)) =
1
2
u(t)2 and Ψ(y(1)) =

1
2

(x(1)2 + ẋ(1)2).

Then, the adjoint system is

−λ̇ = Ly + fy · λ =

[
0 1
−1 0

]
λ,

λ(1) = Ψy (y(1)) = y(1).

Now we may calculate the gradient from the state, control and
costate, y , u and λ:

Hu(x , u, λ) = Lu + fu · λ = u(t) + (0, 1) · λ(t).
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Example : a harmonic oscillator

Let u0 = 0. The corresponding y0 = (x0, ẋ0) satisfies

ẍ0(t) + x0(t) = u0(t) = 0.

Then, from y0(0) = (1, 0), we have y0(t) = (cos t,− sin t).

From the adjoint equation

−λ̇ =

[
0 1
−1 0

]
λ, λ(π) = y(π),

we have λ0(π) = y0(π) = (−1, 0). Then,

λ0(t) = (cos t, sin t).

Finally, the gradient becomes

Hu(x0, u0, λ0) = Lu(x0, u0) + fu(x0, u0) · λ0

= 0 + (0, 1) · (cos t, sin t)

= sin t.
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Example : a harmonic oscillator

We may compare Hu = sin t with the gradient of the cost J.

Note that J = 1
2 (|x(T )|2 + |ẋ(T )|2) + 1

2

∫ T

0 |u(t)|2dt. Then,

dJ

du

∣∣∣
u=u0

= u0(t) + y0(π) · dy(π)

du

∣∣∣
u=u0

.

The derivative of the final state with respect to the control function:

δ̈x + δx = δu and δy(0) = (0, 0), find δy(π).

For the Dirac delta function δu = δ0(t), we have δx = (sin t, cos t).
In the same way, for δu = δt0(t),

δx(π) = (sin(π − t0), cos(π − t0)) = (sin t0,− cos t0).
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Example : a harmonic oscillator

We conclude that〈
dJ

du

∣∣∣
u=u0

, δt0(t)

〉
= u0 + y0(π) ·

〈
dy(π)

du

∣∣∣
u=u0

, δt0(t)

〉
= 0 + (−1, 0) · (sin t0,− cos t0) = − sin t0.

Hence, the total derivative on J is the same as the partial derivative
of H in L∞.

Now, the next iteration starts from

u1 = u0 − αHu(x0, u0, λ0),

with proper α > 0.
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Computational Platform: DyCon Toolbox

DyCon Toolbox is a software platform developed in MATLAB which
implements a set of tools to solve mathematical problems of Optimal
Control. It’s goal is to provide a software architecture that allows modular
algorithms to be integrated, in addition to providing visualization tools.

https://deustotech.github.io/dycon-platform-documentation/
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Computational Platform: DyCon Toolbox

DyCon Toolbox is developed around the minimum principle of
Pontryagin. Thanks to the symbolic MATLAB engine, problems can be
defined in a general way. For example, the following problem:

J = ‖Y (T )− YT‖2 +
1
2

∫
‖U(t)‖2dt subject to Ẏ = AY + BU,

can be stated in DyCon Toolbox in few lines of code

1>> Y = sym( ’ y ’ , [ 2 1 ] ) ; U = sym( ’ u ’ , [ 2 1 ] ) ;
2>> odeDyn = ode (@( t ,Y,U,P) A∗Y+B∗U,Y,U, sym . empty ) ;
3>> numPsi = @(T,Y) ( [ 1 , 1 ] − Y) . ’ ∗ ( [ 1 , 1 ] − Y) ;
4>> numL = @( t ,Y,U) 0 . 5∗ (U. ’∗U) ;
5>> iCP1 = Pont r yag in ( odeDyn , numPsi , numL) ;
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Computational Platform: DyCon Toolbox

These can be resolved througout different optimization methods provided
by DyCon Toolbox and other external libraries. For example:

1>> U0 = ze r o s ( iCP1 . Dynamics . Nt , iCP1 . Dynamics .
Cont ro lD imens ion ) ;

2>> GradientMethod ( iCP1 , U0) ;
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Computational Platform: DyCon Toolbox

DyCon Toolbox also provides a web platform, in which plenty of
documentation on how to get started with the toolbox is available. It
also provides further tutorials, practical examples, as well as a detailed
installation guide.
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Example 1 : a harmonic oscillator

Equation of motion :{
ẍ(t) + x(t) = u(t), t ∈ [0,T ], T = π,

x(0) = 1, ẋ(0) = 0.
(4)

where u : [0,T ]→ R1.

Let y(t) = (x(t), ẋ(t)).

The control cost : J = 100
2 (|x(T )|2 + |ẋ(T )|2) + 1

2

∫ T

0 |u(t)|2dt,
where

Ψ(y(T )) =
1
2
|y(T )|2 and L(y(t), u(t)) =

1
2
|u(t)|2.

Problem : Find u∗(t), which minimizes J under (5).
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Example 1 : a harmonic oscillator

Then, the code can be built as follows,

1>> A = [ 0 1 ; −1 0 ] ; B = [0 ; 1 ] ;
2>> odeDyn = ode ( ’A ’ ,A , ’B ’ ,B , ’Nt ’ ,100 , ’ F ina lT ime ’ , p i

) ;
3>> odeDyn . I n i t i a l C o n d i t i o n = [ 1 ; 0 ] ;
4>> numPsi = @(T,Y) 50∗Y. ’∗Y;
5>> numL = @( t ,Y,U) 0 .5∗U. ’∗U;
6>> iCP = Pont r yag in ( odeDyn , numPsi , numL) ;
7>> U0 = ze r o s ( iCP . Dynamics . Nt , iCP . Dynamics .

Cont ro lD imens ion ) ;
8>> GradientMethod ( iCP ,U0) ;

29 / 70



Linear control problem Optimal control problems DyCon Toolbox Control “guidance-repulsion” Flexible final time

Example 1 : a harmonic oscillator

Initial guess of the control : constant zero
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Example 1 : a harmonic oscillator

Initial guess of the control : constant one
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Example 2 : a heat equation

Equation of motion : For x ∈ [−1, 1] and t ∈ [0, 0.1],{
y ′(t, x)−∆y(t, x) = u(t, x)1[−1/2,1/2](x),

y(0, x) = sin((π/2)x), ẋ(t,−1) = x(t, 1) = 0.
(5)

Goal of the control : y(0.1, x) ' yT = 0.

The control cost : J = 1012

2 (‖y(0.1)− yT‖2) +
∫ T

0 ‖u(t)‖dt.

Problem : Find u∗(t), which minimizes J.
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Example 2 : a heat equation

1N = 20 ;
2x i = −1; x f = 1 ;
3x l i n e = l i n s p a c e ( x i , x f ,N+2) ;
4x l i n e = x l i n e ( 2 : end−1) ;
5dx = x l i n e (2 ) − x l i n e (1 ) ;
6A = FDLaplac ian ( x l i n e ) ;
7%%%%%%%%%%%%%%%%
8a = −0.5; b = 0 . 5 ;
9B = B I n t e r i o r ( x l i n e , a , b , ’ min ’ , f a l s e ) ;
10%%%%%%%%%%%%%%%%
11Fina lT ime = 0 . 1 ;
12dt = 0 . 0 0 1 ;
13Y0 =s i n ( 0 . 5∗ p i ∗ x l i n e ’ ) ;
14

15dynamics = pde ( ’A ’ ,A, ’B ’ ,B , ’ I n i t i a l C o n d i t i o n ’ ,Y0 , ’
F ina lT ime ’ , F ina lTime , ’Nt ’ , 5 ) ;

16dynamics . mesh= x l i n e ;
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Example 2 : a heat equation

1Y = dynamics . S t a t eVec to r . Symbo l i c ;
2U = dynamics . Con t r o l . Symbo l i c ;
3

4YT = 0∗ cos ( 0 . 5∗ p i ∗ x l i n e ’ ) ;
5e p s i l o n = dx ^4;
6symPsi = @(T,Y) dx ∗(1/(2∗ e p s i l o n ) ) ∗(YT − Y) . ’ ∗ (

YT − Y) ;
7symL = @( t ,Y,U) dx∗sum( abs (U) ) ;
8

9iCP1 = Pont r yag i n ( dynamics , symPsi , symL ) ;
10t o l = 1e−8;
11U0 = ze r o s ( iCP1 . Dynamics . Nt , iCP1 . Dynamics .

Cont ro lD imens ion ) ;
12[ UOptDyCon , JOptDycon ] = GradientMethod ( iCP1 , U0 , ’ t o l

’ , t o l , ’ Graphs ’ , t rue , ’ DescentA lgo r i thm ’ ,
@ConjugateDescent , ’ Max I te r ’ ,300 , ’ d i s p l a y ’ , ’ a l l ’
)
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Example 2 : a heat equation

Iteration : 300
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Example 2 : a heat equation

Iteration : 600
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The herding problem : Shepherd dogs and sheep
The number of individuals is small, yet the interaction dynamics and control strategies is complex

We consider the "guidance by repulsion" model based on the two-agents
framework: the driver tries to drive the evader.

The drivers want to control the evaders:

1 Gathering of the evaders,
2 Driving the evaders into a desired area.

Figure: Picture of Border Collie [from Wikipedia] and the diagram of the model
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Motivation: "Guidance by repulsion" model
R. Escobedo, A. Ibañez and E.Zuazua, Optimal strategies for driving a mobile agent in a
"guidance by repulsion" model, Communications in Nonlinear Science and Numerical Simulation,
39 (2016), 58-72.

[R. Escobedo, A. Ibañez, E. Zuazua, 2016] suggested a guidance by
repulsion model based on the two-agents framework: the driver, which
tries to drive the evader.

1 The driver follows the evader but cannot be arbitrarily close to it
(because of chemical reactions, animal conflict, etc).

2 The evader moves away from the driver but doesn’t try to escape
beyond a not so large distance.

3 The driver is faster than the evader.
4 At a critical short distance, the driver can display a circumvention

maneuver around the evader, forcing it to change the direction of
its motion.

5 By adjusting the circumvention maneuver, the evader can be driven
towards a desired target or along a given trajectory.
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One sheep + one dog + Circumvention control
The control k(t) is chosen in feedback form to align the gate, the sheep and the dog.

In short, the model for ud ,ue ∈ R2 can be written with nonlinear
interaction kernels fd(·) and fe(·):

u̇d = vd , u̇e = ve
md v̇d = −fd(|ud − ue |)(ud − ue)− νdvd + κ(t)(ud − ue)⊥

me v̇e = −fe(|ue − ud |)(ud − ue)− νeve
ud(0) = u0

d , ue(0) = u0
e , vd(0) = 0, ve(0) = 0

(6)
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Studies on the herding problem

In this setting, they considered bang-bang type controls with open-loop
and feed-back strategies.

Similar consideration have been addressed with repulsive interactions in
control theory:

Defender-intruder strategy : [Wang, Biegler, 2006],
Hunting strategy model :
[Muro, Escobedo, Spector, Coppinger, 2011 and 2014],
Dog-sheep gathering problem :
Well-posedness of optimal control problems [Burger, Pinnau, Roth,
Totzeck, Tse, 2016]
and its simulations [Pinnau, Totzeck, 2018].
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Guidance-by-repulsion model with many individuals

Let udj ,uei ∈ R2 are positions of drivers and evaders for i = 1, · · · ,N
and j = 1, · · · ,M.

When there are many evaders, we need to suggest a representative
position of evaders which the drivers follow. We set the barycenter of
evaders,

uec :=
1
N

N∑
k=1

uek ,

then the dynamics can be described by

üdj = −fd(|udj − uec |)(udj − uec)− νu̇dj + κj(t)(udj − uec)⊥,

üei = − 1
M

M∑
j=1

fe(|udj − uei |)(udj − uei )

− 1
N

N∑
k=1

fg (|uek − uei |)(uek − uei )− νu̇ei ,

udj(0) = u0
dj , uei (0) = u0

ei , u̇dj(0) = v0
dj , u̇ei (0) = v0

ei .
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First order reduced model with one driver and one evader

From now on, we consider one driver and one evader model for analytic
results.

For simplicity, we first observe the dynamics of its reduced limit,
me ,md → 0. This singular limit removes the effect of inertia, hence, we
get the long-time behavior monotonically.

u̇d = vd , u̇e = ve
νd u̇d = −fd(|ud − ue |)(ud − ue) + κ(t)(ud − ue)⊥

νe u̇e = −fe(|ue − ud |)(ud − ue)

ud(0) = u0
d , ue(0) = u0

e ,

where the relative position u := ud − ue satisfies a closed equation,

u̇ = −f (|u|)u + κ(t)u⊥.

From this relation, we can separately treat central velocity −f (|u|)u and
its perpendicular velocity κ(t)u⊥.
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Interaction functions

Since we want the relative position u to satisfy the regulation between
the driver and evader, we assume f (r) = fd(r)− fe(r) satisfy

f (r) =

{
≥ 0 for r ≥ rc ,

< 0 for 0 < r < rc
with f ′(rc) > 0,

which implies that |u| tends to rc in the absence of control κ(t).
As an example, we suggest

fd(r) =
2
r2 −

3
r4 + 2 and fe(r) =

1
r2 ,
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Potential function as a Lyapunov function

For the potential function

P(r) :=

∫ r

rc

sf (s)ds,

we may describe its gradient property:

u̇ = −∇P(|u|) + κ(t)u⊥,

The potential function plays the role of Lyapunov function.

Ṗ(|u|) =
dP

d |u|
· d |u|

dt
= |u|f (|u|) 〈u, u̇〉

|u|
= f (|u|)〈u,−f (|u|)u + κ(t)u⊥〉 = −f (|u|)2|u|2 ≤ 0.
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Therefore, if we assume proper conditions on f (r),∫ rc

0
rf (r) = −∞ and γm := lim inf

r→∞
f (r) > 0,

so that P is smooth, coercive, and blow-up at r = 0. Then, from the
time derivative,

Ṗ(|u|) = −f (|u|)2|u|2 ≤ 0.

we obtain dynamical properties.

Relative distance of the reduced model

The relative distance |u| cannot be 0 from nonzero initial data, and
uniformly bounded along time.
u tends to the steady solution ū(t) which satisfies f (|ū|)|ū| = 0,
that is,

|u| → rc if |u0| 6= 0.

Note that the convergence is exponential since f ′(rc) 6= 0 so that P(r)
and Ṗ(r) are both quadratic on f (r) locally.
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Steady states and controllability

Finally, we may classify the steady states of ud and ue .
If κ(t) ≡ 0, then the dynamics is in a one-dimensional line including
u0
d and u0

e . Eventually, two agents tend to uniform linear motions.
If κ(t) ≡ 1, then they converge to circular motions, where the
relative distance is rc and angular velocities are 1.

From these two states, we can control ue into a desired position:
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Figure: Rotational states (left) and off-bang-off control using it (right)
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The Guidance-by-repulsion model

Next, we go back to the second order Guidance-by-repulsion model.

ü + f (|u|)u + νu̇ = κ(t)u⊥.

For the interaction coefficient f (r), we assume the same condition: for

P(r) :=

∫ r

rc

sf (s)ds ≥ 0,

P(0) =∞ and P grows quadratically
(
∼ γm

2
|u|2
)
as r →∞.

The equation now follows the motion of damped oscillator under a
central potential P(|u|) with an additional control term.
The negativity/positivity of f makes the relative distance u ∼ rc .

Two main regimes arise: Pursuit κ(t) = 0 / Circumvention κ(t) 6= 0.
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Steady states

For each mode, we have the following steady states which characterize
the dynamics:

Pursuit mode: κ(t) ≡ 0:

u(t) = u∗ ∈ R2 and v(t) = (0, 0) with |u∗| = rc ,

where the driver and evader behave uniform linear motions,

u`(t) = − fd(u∗)u∗
ν

t + u`(0), ` = d , e.

Circumvention mode, κ(t) ≡ κ:

u(t) = rp
(

cos
(κ
ν
t
)
, sin

(κ
ν
t
))

,

where the driver and evader have rotational motions on circles
centered at the same point,

u`(t) = r`
(

cos
(κ
ν
t + φ`

)
, sin

(κ
ν
t + φ`

))
+u∗, u∗ ∈ R2, ` = d , e.
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Off-Bang-Off control of the evader

Combining these two modes, we can construct an Off-Bang-Off control:
choose the direction by rotations in the circumvention mode, and drive
the evaders to the target in the pursuit mode.

Theorem [K.-Zuazua (preprint)]

Let f (r) be as before. Then, for a given destination uf ∈ R2 and
u0 6= (0, 0), there exist t1, t2, tf and κ such that the control function

κ(t) =

{
κ if t ∈ [t1, t2],

0 if t ∈ [0, t1) ∪ (t2, tf ],
satisfies ue(tf ) = uf .
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Stability to the steady states

In order to analyze the off-bang-off control, we need to show the
asymptotic stability to the steady states on each constant κ(t).

The equation of the relative position u with constant control κ(t) ≡ κ,

ü + f (|u|)u + νu̇ = κu⊥, u ∈ R2,

which is the damped potential oscillator with an external source term.

However, the standard energy,

E (t) :=
1
2
|v|2 + P(|u|),

is no more non-increasing from the perpendicular term κ(t)u⊥.

Ė (t) = v · v̇ + f (|u|)u · u̇
= v · (−f (|u|)u− νv + κ(t)u⊥) + f (|u|)u · v
= −ν|v|2 + κ(t)u⊥ · v.
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To fix it, we use hypocoercivity theory1, and construct a perturbed
energy using inner product terms:

L±(t) = E (t)± ν

2
(
ν

2
|u|2 + u · v).

Then, its time derivative is

L̇±(t) ≤ −ν
2
|v|2 +

1
2

(νf (|u|) + κ(t))|u|2,

which is nonpositive if |u| is close to 0 or ∞.

On the other hand, if κ(t) is constant, we may define κ dependent
functions,

Lκ(t) = E (t)− κ

ν
u⊥ · v and L̇κ(t) = −ν

∣∣∣v − κ

ν
u⊥
∣∣∣2 ≤ 0,

which is always nonpositive.

1[C. Villani, 2009] and [K. Beauchard, E. Zuazua, 2011]
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Therefore, we have the following dynamical properties.

Boundedness of relative distance

Suppose that the control κ(t) is bounded: lim sup
t→∞

|κ(t)| < ν
√
γm.

Then, the relative position u(t) does not hit (0, 0) or blow-up in a finite
time. Moreover, if κ(t) is constant, then u(t) is uniformly bounded.

Global stability of steady states

The positions ud(t) and ue(t) converge to the steady states
asymptotically if κ(t) ≡ κ and κ < ν

√
γm:

If κ = 0, then ud(t) and ue(t) tend to linear motions.
If 0 < |κ| < ν

√
γm, then ud(t) and ue(t) tend to rotational motions.

By combining these asymptotic steady states, we may prove the
controllability of the evader’s position to any desired point.
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Since we can apply the Off-Bang-Off controls to any initial data, we may
use it to pass multiple target points:
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Figure: A trajectory of the evader which passes near points (3, 3), (4.5, 5),
(6, 1), (9, 3), (7.5, 5) and (6, 7) denoted by black boxes.

This can be done by turning on and off κ(t) using two control modes,
where the dynamics converges to the corresponding steady state
(‘rotational motion’ and ‘linear motion’) in a short time.
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The effect of the number of evaders

If the evaders are gathered initially, the dynamics are similar to the one
evader case, as we have one fat evader.

Figure: Trajectories of five evaders with a bang-off control κ(t).

fd(r) =
2
r2 −

3
r4 + 2, fe(r) =

1
r2 , and fg (r) = 10

(
(0.2)2

r2 − (0.2)4

r4

)
.
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Optimal control strategies

While Off-Bang-Off controls can drive the evaders properly, it is natural
to find an optimal control strategy which minimizes a given cost.

For the cost function, we suggest two optimal control problems: On one
hand, we want to minimize the running cost of controls:

J(κ(·)) =
1
N

N∑
i=1

|uei (tf )− uf |2 +
0.001
M

M∑
k=1

∫ tf

0
|κk(t)|2dt.

The simulations are done by gradient descent methods with flexible final
time tf , where the initial guess is given by constant control functions. For
example, κ(t) ≡ 1.5662 and tf = 5.1727 to make u(tf ) = (−1, 1):
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Flexible final time

Note : The control is to drive the evader to a specific position. The
final state may not be a steady state!

Since the final state is not a steady state, after a little time, it
escapes the desired position. Then, this optimal control problem
needs to have a flexible final time tf .

For example, let ud(0) = (−1, 0), ue(0) = (0, 0) and uf = (1, 0)
with initially zero velocities.
Then, for a trivial control κ(t) ≡ 0, there is only one time tf which
satisfies ue(tf ) = uf .

Therefore, the optimal control with a fixed time may not be a
reasonable control.
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Flexible final time

The formulation of the Pontryagin maximum principle,{
ẋ(t) = f (x(t), u(t)), t ∈ [0,T ],

x(0) = x0 ∈ Rn,
(7)

with the cost function

J = Ψ(x(T )) +

∫ T

0
L(x(t), u(t))dt,

only works with the fixed final time.

We may implement the flexible time problem by time-rescaling
functions.
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Flexible final time

From the original equation,{
d
dt x(t) = f (x(t), u(t)), t ∈ [0, tf ],

we adopt a time-rescaling T : [0, 1]→ [0, tf ], t = T (s), where
T ′(s) ≥ c > 0, T ′(s) < C for some c and C .

Then, in terms of s, the dynamics of x̃(s) = x(T (s)) can be
described by

d

ds
x̃(s) =

d

ds
x(T (s)) =

dT

ds

d

dt
x(t)

= T ′(s)f (x(T (s)), u(T (s))) =: F (x̃(s), ũ(s),T (s)).
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Flexible final time

One more question : How we can build the cost function:

Ψ(x(tf )) = Ψ̃(x̃(1),T (1)),

L(x(t), u(t)) = L̃(x̃(s), ũ(s))T ′(s).

Therefore, we can obtain the optimal solution x̃ , ũ and T .

In order to get the optimal solution for original equation, we need

x(t) = x̃(T−1(t)) and u(t) = ũ(T−1(t)).

Moreover, if we want to minimize the final time tf , then we may add
T ′(s) to L, where

∫ 1
0 T ′(s)ds = tf .
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A DyCon Toolbox code for the herding problem

1N=1; M=1; syms t ;
2

3Y = sym( ’ y ’ , [ 8 1 ] ) ; % S t a t e s v e c t o r s f o r p o s i t i o n s
and v e l o c i t i e s

4ue = Y( 1 : 2 ) ; ve = Y( 3 : 4 ) ; ud = Y( 5 : 6 ) ; vd = Y( 7 : 8 ) ;
5U = sym( ’ u ’ , [ 2 1 ] ) ;
6kappa = U(1) ; % Con t r o l f u n c t i o n o f the o r i g i n a l

problem
7T = U(2) ; % Time−s c a l i n g from s to t
8

9ur = ud−ue ; % R e l a t i v e p o s i t i o n , d r i v e r − evade r
10

11f_e2 = @( x ) ( 2 . / x ) ;
12f_d2 = @( x ) −(−5.5./ x+10./ x .^2−2) ;
13nu_e = 2 . 0 ;
14nu_d = 2 . 0 ;
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A DyCon Toolbox code for the herding problem

1dot_ud = vd ;
2dot_ue = ve ;
3dot_vd = −f_d2 ( ur . ’∗ ur ) ∗ ur − nu_d∗vd + kappa ∗ [−ur

(2 ) ; ur (1 ) ] ;
4dot_ve = −f_e2 ( ur . ’∗ ur ) ∗ ur − nu_e∗ ve ;
5

6F = [ dot_ue ; dot_ve ; dot_ud ; dot_vd ]∗T; % Mu l t i p l y
o r i g i n a l v e l o c i t i e s w i th time−s c a l i n g T( s ) .

7Params = sym . empty ;
8numF = mat labFunct i on (F , ’ Var ’ ,{ t ,Y ,U, Params }) ;
9Nt = 101 ; % Numer i ca l t ime d i s c r e t i z a t i o n
10dt = 1/(Nt ) ;
11dynamics = ode (numF ,Y,U, ’ F ina lT ime ’ ,1 , ’Nt ’ ,Nt ) ;
12% ud = (−3 ,0) , ue = (0 , 0 ) , and ze r o v e l o c i t i e s

i n i t i a l l y .
13dynamics . I n i t i a l C o n d i t i o n = [ 0 ; 0 ; 0 ; 0 ; − 3 ; 0 ; 0 ; 0 ] ;
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A DyCon Toolbox code for the herding problem

1Ps i = 1000∗( ue−u f ) . ’ ∗ ( ue−u f ) ;
2L = 1∗ ( ( kappa ) .^2) ∗T;
3

4numPsi = mat labFunct ion ( Ps i , ’ Var ’ ,{ t ,Y}) ;
5numL = mat labFunct ion (L , ’ Var ’ ,{ t ,Y ,U}) ;
6

7iP = Pont r yag i n ( dynamics , numPsi , numL) ;
8

9min_dt = 0 . 1 ;
10iP . C o n s t r a i n t s . P r o j e c t o r = @( U t l i n e ) [ U t l i n e ( : , 1 )

, 0 . 5∗ ( U t l i n e ( : , end )−min_dt+abs ( U t l i n e ( : , end )−
min_dt ) )+min_dt ] ;

11

12U0_t l ine = [1 . 5662∗ ones ( s i z e ( t l i n e ) ) ; 5 . 1727∗ ones (
s i z e ( t l i n e ) ) ] ’ ;

64 / 70



Linear control problem Optimal control problems DyCon Toolbox Control “guidance-repulsion” Flexible final time

A DyCon Toolbox code for the herding problem

1t o l = 1e−6;
2GradientMethod ( iP , U0_tl ine , ’ DescentA lgo r i thm ’ ,

@ConjugateDescent , ’ t o l ’ , t o l , ’ to lU ’ , t o l , ’ t o l J ’ ,
t o l , ’ d i s p l a y ’ , ’ a l l ’ , ’ E a c h I t e r ’ , 20 , ’ Graphs ’ , t rue
, ’ GraphsFcn ’ ,{ @graphs_init_GBR_flext ime ,
@graphs_iter_GBR_flext ime }) ;

3temp = iP . S o l u t i o n . UOptimal ;
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One driver and one evader

We can observe that the optimal strategy is not an Off-Bang-Off control,
but it shares the main idea: ‘rotate and then drive’.

Figure: Diagrams for the optimal control leading to ue(tf ) ' (−1, 1) when
initially u0

e = (0, 0), u0
d = (−3, 0) and zero velocities.
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Two drivers and one evader

This ‘rotate and then drive’ strategy also works with two drivers. In a
similar initial data from the previous simulation, we can observe that two
drivers act like one driver.

Figure: Diagrams for the control leading to ue1(tf ) ' (−1, 1) when initially
u0
e = (0, 0), u0

d1 = (−3, 0.5), u0
d2 = (−3,−0.5) and zero velocities.
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Two drivers and one evader: Minimizing the driving time

It is not changed much even if we want to minimize the driving time,

J(κ(·)) =
1
N

N∑
i=1

|uei (tf )− uf |2 +
0.001
M

M∑
k=1

∫ tf

0
|κk(t)|2dt + 0.1tf .

Figure: Diagrams for the control leading to ue1(tf ) ' (−1, 1) when initially
u0
e = (0, 0), u0

d1 = (−3, 0.5), u0
d2 = (−3,−0.5) and zero velocities.
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The trajectories can be significantly different if initial positions are not
well-ordered, in terms of the initial velocity of the evader. However, for
any case, the drivers want the evader to get the right direction in a short
time.

Figure: Diagrams for the control leading to ue1(tf ) ' (0,−4) when initially
u0
e = (0, 0), u0

d1 = (−2,−2), u0
d2 = (−2, 2) and zero velocities.
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In the same way, the minimal time optimal strategy contains strong
control functions and wants to decrease the relative position.

Figure: Diagrams for the control leading to ue1(tf ) ' (0,−4) when initially
u0
e = (0, 0), u0

d1 = (−2,−2), u0
d2 = (−2, 2) and zero velocities.
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