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Abstract

This paper is concerned with the eigenvalue decay of solution operators to operator Lyapunov equations, a relevant topic in
the context of model reduction for parabolic control problems. We mainly focus on the Gramian operator, which arises in the
context of control and observation of heat processes in infinite time, which is normally the first step towards observations in
a finite time horizon.

By improving existing energy and observability estimates for parabolic equations, we obtain both upper and lower bounds
on the convergence rate of the eigenvalues of the Gramian operator towards zero. Both bounds follow the same polynomial
decay rate, up to a multiplicative constant, which ensures their optimality. This confirms the slow decay of the eigenvalues
and limits the efficiency of model reduction. The theoretical findings are supported by numerical results.
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1 Introduction and the main result

Motivated by recent work on the eigenvalue decay of
the solution operator to operator Lyapunov equations,
a relevant topic in the context of model reduction for
parabolic control problems (see [13] and the references
therein), we analyse this issue in the context of the con-
trol of the heat equation with controls supported in
an open subset of the domain where the heat process
evolves.

Let us formulate the problem under consideration more
precisely.

Let Ω be an open, bounded domain of Rd with a
Lipschitz boundary. Given T > 0 we consider linear

Email addresses: martin.lazar@unidu.hr (Martin
Lazar), enrique.zuazua@fau.de (Enrique Zuazua).

parabolic equations of the form
zt −∆z = v1ω in Ω× (0, T )

z = 0 on ∂Ω× (0, T )

z(0) = z0 in Ω.

(1)

In (1), z = z(x, t) is the state and v = v(x, t) the con-
trol, which acts on the system through the control oper-
ator v → v1ω, where ω is an open non-empty subset of
Ω. Here and in the sequel 1ω denotes the characteristic
function of the set ω.

We shall denote by QT the cylinder Ω × (0, T ) and by
ΣT the lateral boundary ∂Ω× (0, T ).

We assume that z0 ∈ L2(Ω) and v ∈ L2(QT ), so that
(1) admits a unique solution z in the class

z ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)
.

It is by now well known that system (1) is null (and con-
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sequently approximate) controllable (see, for instance,
[12] and [25]). In other words, given an initial datum
z0 ∈ L2(Ω) there exists a control v ∈ L2(QT ) such that
the solution of (1) satisfies

z(T ) = 0. (2)

Accordingly, the set of admissible controls Uad (z0) below
is non-empty (for all z0 ∈ L2(Ω), T > 0 and ω) :

Uad (z0) ={
v ∈ L2(QT ) : the solution z of (1) satisfies (2)

}
.

(3)

The corresponding, by now well known, null controlla-
bility result is based in the dual observability inequality
for the adjoint system, which, up to time reversal, reads
as : 

pt −∆p = 0 in QT

p = 0 on ΣT

p(0) = p0 in Ω,

(4)

with p0 ∈ L2(Ω).

To be more precise, the null controllability result above
is equivalent to the existence of a constant C(T, ω) such
that the following inequality holds:

‖ p(T ) ‖2L2(Ω)≤ C (T, ω)

∫ T

0

∫
ω

p2dxdt (5)

for all solutions p of the adjoint system (4).

This inequality was proved to hold in [12] (see also [11])
using Carleman inequalities. The dependence of the ob-
servability constant C (T, ω) with respect to the various
ingredients of the control problem (support of the con-
trol ω, length of the time-horizon T , etc) was further
discussed in [11].

As observed in [11], this estimate, can be improved to
obtain a global estimate on pweighted by an exponential
vanishing weight at t = 0. More precisely, there exist
constants c, C > 0 depending on T, ω and Ω only, such
that ∫ T

0

∫
Ω

exp(−c/t)|p|2dxdt ≤ C
∫ T

0

∫
ω

p2dxdt

for any p solving the adjoint system (4). By means of
the last estimate and by using the Fourier representation
of solutions, (5) can be refined to obtain the following
weighted observability inequality:

∑
j≥1

exp(−a
√
λj)|p̂0,j |2 ≤ C

∫ T

0

∫
ω

p2dxdt, (6)

with a that obviously decreases as T increases. The value
of the optimal constant a corresponding to the infinite
time horizon is unknown as far as we know.

Here and in the sequel, p̂0,k stand for the Fourier coef-
ficients of the datum p0 of the adjoint heat equation on
the basis of the eigenfunctions of the minus Laplacian
that we denote by {φk}k≥1, {λk}k≥1 being the corre-
sponding eigenvalues, repeated with their multiplicities
and arranged in nondecreasing order.

On the other hand, the classical regularizing effects for
the solution to the heat equation (4) (e.g. [10, Chapter
XVIII, §3]) ensure that whenever p0 ∈ H−1(Ω), then
p ∈ L2(Ω × (0,∞)) and the total energy of the system
is given by ∫ ∞

0

∫
Ω

p2dxdt =
1

2
||p0||2H−1(Ω). (7)

Here, as usual, H−1(Ω) stands for the dual of H1
0 (Ω)

and consists of all distributions f that can be written as
divF for some F ∈ L2(Ω;Rn). Its norm is defined as

||f ||2H−1(Ω) = sup
‖g‖

H1
0

(Ω)
=1

〈f, g〉 = sup
‖g‖

H1
0

(Ω)
=1

∫
Ω

F · ∇g dx,

where divF = f . In general, by H−k(Ω), k ∈ N we shall
denote the dual of Hk

0 (Ω) (for details cf. [1]).

By combining the last estimate with (6), we get the fol-
lowing, two-sided bounds on the observed energy in the
infinite time horizon

1

C

∑
j≥1

exp(−a
√
λj)|p̂0,j |2 ≤

∫ ∞
0

∫
ω

p2dxdt

≤
∑
j≥1

1

2λj
|p̂0,j |2

(8)

where the last inequality is obtained by expressing H−1

norm of p0 in terms of Fourier coefficients.

The both lower and upper bound in (8) are sharp [11].
As we shall see, these estimates suffice to set some first
bounds on the decay of the eigenvalues of the infinite
time Gramian operator, which is the solution of the Lya-
punov equation that, in this particular case, reads

∆Xω +Xω∆ = −1ω. (9)

Here ∆ stands for the Dirichlet Laplacian, which is a
negative operator inL2(Ω),Xω is the operator unknown,
and the right hand side term takes account of the control
operator.
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Recall that in the classical setting of a control pair (A,B)
the Lyapunov equation reads:

AX +XA∗ = −BB∗,

which, in the context of the heat equation, leads to (9).

The solution of this equation is given by the Gramian in
infinite time

X =

∫ ∞
0

exp(At)BB∗ exp(A∗t)dt,

where, in a general setting of an unbounded operator A,
the above expression is understood in the sense of oper-
ators acting on the domain of A [22, Theorem 5.1.1]. In
the context of the specific examples of the heat equation
the expression reads

Xω =

∫ ∞
0

exp(∆t)1ω exp(∆t)dt. (10)

The operator Xω is a bounded operator on L2(Ω) and,
as we shall see in the next section, also compact.

The main object of investigation in [13] was the obten-
tion of the upper decay estimates for the eigenvalues of
Gramian operators like X. Assuming the control opera-
tor B is of finite rank (e.g. a boundary control operator),
the authors obtain the exponential decay rate.

This paper is devoted to the case B = 1ω which, obvi-
ously, is not of finite rank. The existence of the sequence
of eigenvalues of the corresponding Gramian Xω in that
case, as well as its properties, are ensured by Lemma 2
in the next section.

As we shall see, one can easily achieve both lower and
upper bounds (in terms of λk) for the eigenvalues of the
Gramian Xω using the existing observability inequali-
ties as in (8). Consequently, lower bounds obtained in
this way will be of the exponential nature, while the up-
per ones will follow a polynomial law, leaving a large gap
in between. Since these bounds follow from the sharp
observability inequalities given in (8), one might expect
them to be sharp as well. This would imply that there
are two subsequences of eigenvalues that decay at differ-
ent rates, exponentially and polynomially, respectively.
However, the main result of the paper, surprisingly, rules
out any kind of exponential decay and yields a much
slower, polynomial decay along the entire sequence of
eigenvalues of the Gramian.

Theorem 1 (The main result)
The sequence of eigenvalues µk of the Gramian operator
Xω given by (10) allow for a two-sided, polynomially
decaying bounds of the form

C1k
−2/d ≤ µk ≤ C2k

−2/d, (11)

where C1,2 are positive constants that depend on ω and
Ω only.

Remark 1 The paper is devoted to the analysis of the
infinite time Gramian, i.e. of observations over the in-
finite time horizon. However, as we shall see, the main
result on polynomial decay of eigenvalues applies both for
finite and infinite time Gamians (cf. Theorem 7).

The paper is organised as follows. The next section
contains preliminary bounds on the eigenvalues of the
Gramian operator arising from the existing observabil-
ity inequalities (8). Section 3.1 is devoted to the proof
of the main result, Theorem 1. More precise estimates
obtained for the case of a rectangular domain, where
we exploit the explicit knowledge of the eigenvectors
of the Laplacian, are presented in Section 3.2. The re-
lation of the obtained results to control problems for
the heat equation is discussed in Section 4. Section 5
contains numerical examples which, surprisingly again,
at first sight, seem to contradict the obtained theoreti-
cal results. The paper is finalised with some concluding
remarks and directions for future research.

2 Preliminary bounds on the eigenvalue decay
for the Gramian

We analyse the Gramian operator Xω for the heat equa-
tion given by (10). Note that the quadratic form associ-
ated to Xω reads

〈Xωp0 | p0 〉L2(Ω) =

∫ ∞
0

∫
ω

p2dxdt (12)

where p is the solution of the heat equation (4) in the
infinite horizon 0 < t < ∞. Thus the quadratic form
〈Xωp0 | p0 〉L2(Ω) equals the observation of the adjoint
state p in ω over the infinite time interval (0,∞).

For this reason, the study of the eigenvalues of Xω is
directly related to the existing observability estimates
for the solution to the heat equation. However, before
analysing decay properties of eigenvalues of the Gramian
operator, let us first ascertain its spectral decomposition.

Lemma 2 The Gramian operatorXω is a compact, self-
adjoint operator on L2(Ω). Its eigenvalues µk constitute
a sequence of positive real numbers accumulating at zero
and the corresponding eigenfunctions ψk form an or-
thonormal basis of L2(Ω).

Proof: The Dirichlet Laplacian, which is the generator
of the semigroup appearing in (10), is a negative, self-
adjoint operator on L2(Ω) with compact resolvent and
the domain H1

0 (Ω)∩H2(Ω). Consequently, the Gramian
Xω given by (10) is a self-adjoint operator as well. As by
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(12) it is also a positive operator, it allows for the unique
positive root

√
Xω [14, Theorem V-3.35].

By using the classical energy estimate (7) for the solution
to the heat equation, we get

‖
√
Xωp0‖

2

L2(Ω) = 〈Xωp0 | p0 〉L2(Ω) ≤
1

2
‖p0‖2H−1(Ω).

As L2(Ω) is compactly embedded into H−1(Ω), it fol-
lows that

√
Xω is a compact, self-adjoint operator on

L2(Ω). By the spectral theorem it allows for spectral de-
composition, i.e. there exists an orthonormal basis {ψk}
of L2(Ω) consisting of eigenvectors of

√
Xω. The corre-

sponding eigenvalues, denoted by
√
µk, constitute a se-

quence of positive numbers accumulating at zero and
each one has a finite multiplicity.

From here it follows directly that the Gramian Xω is
also a compact operator on L2(Ω). In particular, it al-
lows for the spectral decomposition with the eigenpairs
(ψk, µk). 2

Remark 2 The last lemma is proved using classical en-
ergy estimates for the solution to the heat equation and is
specifically tailored to the setting of this article . In par-
ticular, it is based on the special structure of the dynamics
operator under consideration, i.e. on −∆. The compact-
ness (even nuclearity) of Gramian operators in a general
setting, for abstract operators A,B can be found in [21].
However, verification of the assumptions posed there (in
particular, that A1/2B is a Hilbert-Schmidt operator) is
not straightforward (if feasible at all) in the case of an
infinite dimensional control space (which is the setting of
our paper).

Based on the last lemma, we can associate two families
of eigenpairs to the control system (1): one related to the
minus Laplacian, the generator of the dynamics, that we
denote by {(φk, λk)}k≥1, and the other {(ψk, µk)}k≥1,
corresponding to the infinite time Gramian.

Two sequences of eigenvalues are of a completely oppo-
site nature. While the sequence (λk) is known to consists
of positive numbers with no finite accumulation point,
the eigenvalues of the Gramian accumulate at zero. A
precise relation between them will be in our focus for
the rest of the paper. By exploiting existing observabil-
ity results and energy estimates for the heat equation
(8), one obtains the following asymptotic bounds on the
eigenvalues of the Gramian.

Proposition 3 The eigenvalues µk of the Gramian Xω

satisfy
1

C
exp(−a

√
λk) ≤ µk ≤

1

2λk
, (13)

where a and C are positive constants appearing in (6).

Proof: The upper bound in (13) can be easily derived
from the existing energy estimate for the heat equation
(8), using the min-max characterization of the eigenval-
ues of symmetric operators (cf. [8, pp 491-492]):

µk = min
dimE=k−1
E⊆L2(Ω)

{
max

{
Rω(p0) : p0 ∈ E⊥ \ {0}

}}
,

where Rω stands for the Rayleigh quotient defined as
the ratio of the observed energy and the initial one, i.e.

Rω(p0) =
〈Xωp0 | p0 〉L2(Ω)

||p0||2L2(Ω)

=

∫∞
0

∫
ω
p2dxdt∑

j≥1 |p̂0,j |2
.

In view of this characterisation, and taking E =
span{φ1, ..., φk−1} as the k − 1-dimensional subspace,
namely the one generated by the first k − 1 eigenfunc-
tions of the Laplacian, and using the upper bound in
(8) we easily deduce that

µk ≤ max {Rω(p0) : p0⊥φ1, ..., φk−1} ≤
1

2λk
.

Indeed, for p0 orthogonal to the span{φ1, ..., φk−1} we
have p̂0,j =

∫
Ω
p0φjdx = 0 for j < k. Consequently,

relation (8) and the monotonicity of the sequence (λk)
imply

Rω(p0) ≤
∑
j≥k

1
2λj
|p̂0,j |2∑

j≥k |p̂0,j |2
≤ 1

2λk
.

Similarly, using the dual characterisation (cf. [8, pp 491-
492])

µk = max
dimE=k
E⊆L2(Ω)

{min {Rω(p0) : p0 ∈ E \ {0}}} , (14)

and taking E = span{φ1, ..., φk}, the lower bound in (8)
implies

µk ≥ min
p0∈E\{0}

Rω(p0)

≥
∑
j≤k exp(−a

√
λj)|p̂0,j |2

C
∑
j≤k |p̂0,j |2

µk ≥
1

C
exp(−a

√
λk).

2

Note that, according to Weyl’s asymptotic law on the
eigenvalues of the Laplacian [23] we know that

lim
k

k

λ
d/2
k

= C(Ω) (15)
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where the constant C(Ω) depends on the space dimen-
sion and the volume of the domain Ω only. Consequently,
there exist positive constants C̃1, C̃2 such that

C̃1k
2/d ≤ λk ≤ C̃2k

2/d, k ∈ N. (16)

Combining the last inequalites with Proposition 3 we
obtain the following bounds.

Corollary 4 The eigenvalues µk of the Gramian Xω

satisfy the following bounds

1

C
exp(−ãk1/d) ≤ µk ≤ C2k

−2/d,

with suitable positive constants ã, C (depending on both
ω and Ω) and C2 (depending on Ω only).

The above estimates provide lower and upper bounds
on the convergence rates of the eigenvalues µk. Note,
however, that they are of different nature. While the
first one is of exponential type, the second is polyno-
mial, leaving a huge gap in between. Exploring and
filling this gap is the topic of the next section.

Remark 3 The ideas developed in this section gen-
eralize to various parabolic-type problems that allow a
spectral decomposition of the elliptic operator generating
the dynamics (mainly symmetric problems with time-
independent coefficients). In fact, one can automatically
transfer the existing results on observability of the heat
equation and related models into eigenvalue bounds of
the Gramian. Accordingly, the arguments used above can
be applied in many other situations in which observabil-
ity inequalities have been proved, such as time invariant
heat equations with lower order potentials [11,12], con-
trols with support in measurable sets (including boundary
and lump controls) [3,12,13], systems of heat equations
[2], etc.

Remark 4 We finalize the section by providing a char-
acterisation of the eigenfunctions ψk of the Gramian in
terms of the solution to the heat equation (1) starting
from z0 = 0.

To this effect, let us first describe Xωp0 for an arbitrary
p0 ∈ L2(Ω). Taking into account the expression (10) we
have

Xωp0 = lim
T→∞

∫ T

0

exp(∆t)1ω exp(∆t)dt p0

= lim
T→∞

∫ T

0

exp(∆(T − t))1ω exp(∆(T − t))dt p0

= lim
T→∞

zT (T ),

(17)

where we observe that the last integral provides the final
state zT (T ) of the solution to the control problem (1) with
the zero initial datum and the control vT (t) = exp(∆(T−
t))p0 = p(T − t), with p being the solution to the system
(4) with the initial value p0.

This allow us to characterize the eigenfunction ψk of the
Gramian operator Xω as follows. Let p be the solution
to the system (4) starting from p0 = ψk. Then the final
state zT (T ) of the solution to the control problem (1) with
the initial value zero and the control vT (t) = p(T − t),
approximately coincides with ψk, up to a multiplicative
constant (the corresponding eigenvalue), i.e.

zT (T ) ≈ Xωψk = µkψk,

where the approximation error tends to zero as T ap-
proaches infinity. This means that the shape of the eigen-
vector is preserved when two systems, the adjoint and the
control one, are run over the given time horizon, and that
the solution of the latter at the final time coincides (ap-
proximately, for T large enough) with the initial datum
of the first one.

3 Polynomial lower bounds for µk

3.1 Proof of the main result

In this section, we aim to reduce the gap between the
lower and upper decay rates that results from Proposi-
tion 3 and Corollary 4. In contrast to the approach of
the previous section, where the obtained bounds were
an almost direct consequence of the existing observabil-
ity and energy estimates (8) for the solution to the heat
equation, here we have to apply a different methodol-
ogy. The first step in that direction consists in improv-
ing the observability estimates when the initial datum
is supported in the observation region.

Lemma 5 (Improved observability estimates)
Let p be the solution to the heat equation (4) with initial
datum p0 ∈ H−1(Ω) supported in a compact set K ⊂ ω.
Then for every T ∈ 〈0,∞] there exists constants cT , CT
independent of p0, such that the following estimates hold:

(i) ∫ T

0

∫
ωc

p2dxdt ≤ CT ||p0||2H−2(Ω),

(ii) ∫ T

0

∫
ω

p2dxdt ≥ cT ||p0||2H−1(Ω), (18)

where ωc stands for the complement of the control region.
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Proof: (i) In order to obtain the desired bound let us
define a smooth cut-off function θ ∈ C(Ω) such that

θ(x) =

{
1, x ∈ ωc

0, x ∈ K.

Then q(t, x) := θ(x)p(t, x) solves the problem
qt −∆q = −2∇θ · ∇p− (∆θ)p in QT

q = 0 on ΣT

q(0) = 0 in Ω.

Using the regularity results for solutions to the heat like
equations (e.g. [10, Chapter XVIII, §3]) we obtain

‖q‖L2(QT ) ≤ CT ‖2∇θ · ∇p+ (∆θ)p‖L2(0,T ;H−2(Ω))

≤ CT ‖p‖L2(0,T ;H−1(Ω)) ≤ CT ‖p0‖H−2(Ω),

where CT denotes a generic constant, independent of p0.
As p = q on ωc the first claim follows.
(ii) Due to the classical energy estimates and the expo-
nential decay of the solutions p(t) in H−1(Ω), for every
T > 0 there exists a constant c̃T > 0 such that∫ T

0

∫
Ω

p2dxdt = ||p0||2H−1(Ω) − ||p(T )||2H−1(Ω)

≥ c̃T ||p0||2H−1(Ω).

By combining the last inequality with the first part of
the lemma we obtain

cT ||p0||2H−1(Ω) ≤
∫ T

0

∫
ω

p2dxdt+ ||p0||2H−2(Ω). (19)

By using classical compactness-uniqueness arguments
(e.g. [6,16]) one gets rid of the compact reminder in the
last estimate, to obtain the desired result with some, not
relabelled, positive constant cT . Indeed, suppose that
(18) does not hold. Then there exists a sequence of ini-
tial data (pn0 ) such that

||pn0 ||2H−1(Ω) ≥ n
∫ T

0

∫
ω

(pn)2dxdt, (20)

where pn stands for the solution of the heat equation (4)
with initial datum pn0 .
As the problem is linear, without loosing generality we
can suppose that ||pn0 ||2H−1 = 1 for every n. In that case
the contradictory assumption (20) directly implies

∫ T

0

∫
ω

(pn)2dxdt −→ 0. (21)

In addition, there exist a (nonrelabeled) subsequence
such that pn0 −⇀ p0 weakly in H−1(Ω). Denoting by p
the solution of the heat equation starting from the limit
datum p0, we obtain pn −⇀ p in L2(QT ). In particular,
we have∫ T

0

∫
ω

p2dxdt ≤ lim inf
n

∫ T

0

∫
ω

(pn)2dxdt = 0,

where the lower weak semicontinuity of norms and the
strong L2(ω × (0, T )) convergence of (pn) given by (21)
are used. The observability estimate (5) for the solution
of the heat equation ensures that p = 0 everywhere.
Consequently p0 = 0 as well, and the compact embed-
ding of H−1(Ω) into H−2(Ω) implies ||pn0 ||2H−2(Ω) −→ 0.

Combining the obtained convergences with the upper
estimate (19) we get that pn0 −→ 0 in H−1(Ω), which
contradicts the normalization assumption of the same
sequence. 2

With the aid of the last lemma we are able to improve
the lower decay bounds provided by Proposition 3. In
particular, we obtain the following result.

Lemma 6 The sequence of eigenvalues µk of the
Gramian operator allow for a lower, polynomially de-
caying bound of the form

c∞
λω,k

≤ µk,

where λω,k are eigenvalues of the Dirichlet Laplacian on
ω and c∞ is the positive constant from (18) (for T =∞).

Proof: Let ω̃ ⊂ ω be an open, non-empty, compactly
embedded subset of the control region. Denote by
{φω̃,k, k = 1, ...,∞} the orthonormal basis in L2(ω̃) that
consists of eigenfunctions of the Dirichlet Laplacian on
ω̃, and let λω̃,k be the corresponding eigenvalues.

Without changing notation we extend each φω̃,k by zero
to the whole domain Ω. Let Ek = [φω̃,1, ..., φω̃,k] be a
k-dimensional subspace of L2(Ω) spanned by the first k
such extended functions.

Then for p0 ∈ Ek the interior regularity estimate (18)
implies∫ ∞

0

∫
ω

p2dxdt ≥ c∞||p0||2H−1(Ω) ≥ c∞||p0||2H−1(ω̃).

(22)
In the next step we observe

||p0||2H−1(ω̃) =

k∑
1

1

λω̃,i

∣∣∣ ∫
ω̃

p0φω̃,idx
∣∣∣2 ≥ 1

λω̃,k
||p0||2L2(Ω)

6



where
∫
ω̃
p0φω̃,idx is the Fourier coefficients of p0 with

respect to the eigenfunctions of the Dirichlet Laplacian
on ω̃.

By combining the last estimate with (22) and exploiting
the max-min characterisation of the eigenvalues (14), we
obtain

µk ≥ min {Rω(p0) : p0 ∈ Ek \ {0}} ≥
c∞
λω̃,k

.

The obtained inequality holds for any ω̃ ⊂⊂ ω. As the
eigenvalues are continuous and nonincreasing functions
of the domain (e.g. [4]), we can replace λω̃,k by λω,k, i.e.
by the eigenvalues of the Dirichlet Laplacian on ω.

Finally, the Weyl’s law implies polynomial growth of
the sequence (λω,k), from which the claim follows. 2

The main result, Theorem 1 now follows directly as the
consequence of the preceding lemma.

Proof of Theorem 1: Combining the result of the last
lemma with the upper bound from (13) we obtain the
following improved estimates on the eigenvalues of the
Gramian operator

c∞
λω,k

≤ µk ≤
1

2λk
. (23)

Here λk and λω,k denote eigenvalues of the Dirichlet
Laplacian on the domain Ω and control region ω, re-
spectively, while c∞ is the positive constant appearing
in (18), depending on ω and the domain Ω.

By Weyl’s law (15), both the eigenvalue sequences (λk)
and (λω,k) exhibit the same asymptotic behaviour of the

type k2/d, up to multiplicative constants C(Ω) and C(ω)
that depend on the volume of Ω and ω, respectively, as
well as on the space dimension. In particular it holds
the analogue of the relation (16), i.e. there exist positive

constants C̃1,ω, C̃2,ω such that

C̃1,ωk
2/d ≤ λω,k ≤ C̃2,ωk

2/d, k ∈ N. (24)

Combining (16) and (24) with the estimates (23) we
obtain the desired polynomial bounds (11), with the

constants C1 = c∞/C̃2,ω and C2 = 1/2C̃1 (the same
one appearing in Corollary 4). 2

The last result eliminates the gap between these bounds
that was present in Proposition 3 and we obtain sharp
asymptotic rates for the eigenvalues of the Gramian op-
erator, both from below and above, up to multiplicative
constants.

We finalize this subsection by discussing the eigenvalue
decays for the finite time Gramian

XT
ω p0 =

∫ T

0

exp(∆t)1ω exp(∆t)dt p0. (25)

As already discussed in Remark 1, the infinite time
Gramian and its finite time counterpart coincide up
to a compact operator. For this reason, it is not sur-
prising that the main result of the paper, obtained in
the infinite time horizon, also extends to a finite time
framework. More precisely, the following result holds.

Theorem 7 The eigenvalues µTk of the finite time
Gramian XT

ω given by (25) satisfy the following two-
sided bounds

cT
λω,k

≤ µTk ≤
1

2λk
, (26)

where cT is the positive constant from (18).

In addition, the sequence of eigenvalues follow the same
polynomial decay law as their infinite time counterpart

CT1 k
−2/d ≤ µTk ≤ C2k

−2/d, (27)

where only the constant CT1 appearing in the lower bound
depends on T .

Proof: First, let us note that the spectral decomposition
of the operatorXT

ω and the properties of the correspond-
ing eigenvalues µTk are ensured following the same argu-
ments used in Lemma 2 for the infinite time Gramian.

The lower bound in (26) is obtained following the steps
of Lemma 6. For this to be possible it is essential that
the improved interior observability estimate (18) holds
for any T ∈ 〈0,∞].

The upper estimate in (26) follows trivially by bounding
the finite time observation by an infinite one and using
the energy estimate (7).

Finally, the polynomial decay law (27) is obtained by
applying Weyl’s law in the same way as in the proof of
the main theorem. 2

Remark 5 The eigenvectors of the finite time Gramian
operator can be characterised in a similar way as their in-
finite time counterparts. Indeed, following the arguments
of Remark 4, it is easy to show that

XT
ω ψ

T
k = µTk ψ

T
k = zT (T ), (28)

where zT (T ) is the final state of the solution to the control
problem (1) with the zero initial datum and the control
vT (t) = exp(∆(T − t))p0 = p(T − t), with p being the
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solution to the system (4) with the initial value ψk. In this
way, each eigenvector ψTk can be exactly reached by the
control determined by the solution of the adjoint system
starting from the same eigenvector (up to a multiplicative
constant).

Note, that unlike in the infinite time framework, in (28)
we have the exact equality (and not just an asymptotic re-
lation). This will be of importance when discussing rela-
tion of the obtained decay results to the control problems
in Section 4.

3.2 Precise estimates for rectangular domains

The lower bound in (23) is expressed in terms of an un-
known constant c∞ and eigenvalues λω,k of the Lapla-
cian on ω. The value of c∞ is beyond our reach due to the
arguing-by-contradiction procedure used in Lemma 5.

A more precise estimates on the lower bound in (23),
with an exact constant value and expressed in terms
of eigenvalues λk of the Laplacian on Ω only, can be
obtained for a rectangular domain Ω. These results are
presented in the following theorem.

Theorem 8 Assume that the domain Ω is an open rect-
angle in Rd. Let ω ⊆ Ω be a control region of a posi-
tive measure. Then there exists a positive integer n ≥
d
√
|Ω|/|ω| such that the eigenvalues of the Gramian Xω

satisfy
1

2ndλkn
≤ µk ≤

1

2λk
. (29)

The smallest value of the constant n for which the lower
estimate in (29) holds depends in a non-increasing man-
ner on the size of the control region |ω|, and it equals to
1 when the latter coincides with the whole domain Ω.

Proof: The upper estimate has already been shown in
Proposition 3. In the proof we therefore concentrate just
on the lower bound.

For making the arguments more comprehensible and eas-
ier to follow, we first prove the desired inequality for a
special 1D case, and then we show it holds for a general
rectangular domain.

(1) Special 1D case: Ω = (0, π), ω = (0, π/n).
Let Φn be the subfamily of eigenfunctions of the

Dirichlet Laplacian on Ω consisting of φkn(x) =

φk(nx) =
√

2/π sin(knx), k = 1, ...,∞. Note that
these functions are eigenfunctions of the Dirich-
let Laplacian on ω, with the associated eigenvalues
λω,k = (kn)2. In particular, they are mutually or-
thogonal with respect to L2(ω) scalar product.

Let Ek = [φn, φ2n, ..., φkn] be a k-dimensional
subspace ofL2(Ω) spanned by first k of the above in-
troduced functions. As their squares, φ2

jn, are peri-
odic functions with the period π/n, for any p0 ∈ Ek

we have∫ ∞
0

∫
ω

p2dxdt =
1

n

∫ ∞
0

∫
Ω

p2dxdt =
1

2n
||p0||2H−1(Ω),

(30)
where the last equality is the consequence of the
regularity estimate (7).

By expressing H−1 norm in terms of the Fourier
coefficients of p0 (with respect to the eigenfunctions
of the Dirichlet Laplacian on Ω) we get

∫ ∞
0

∫
ω

p2dxdt =
1

2n

k∑
1

1

λin
|p̂0,in|2

≥ 1

2nλkn

k∑
1

|p̂0,in|2 =
1

2nλkn
||p0||2L2(Ω).

By using the max-min characterisation of the eigen-
values, (14), we obtain

µk ≥ min {Rω(p0) : p0 ∈ Ek \ {0}} =
1

2nλkn
,

where the last equality is reached for p0 = φkn.
(2) Case 2: General rectangular domain.

Without loosing generality we may assume that
Ω = Πi〈0, Li〉 for some positive interval lengths
Li. Taking n large enough there exist nonnega-
tive integers mi, i = 1, ..., d such that the rectangle
ω̃ = Πi(miLi/n, (mi + 1)Li/n) is contained in the
control region ω.

Let us consider again the subfamily Φn of eigen-
functions of the Dirichlet Laplacian on Ω consisting
of φkn(x) = φk(nx), k = 1, ...,∞ and let us denote
byEk = [φn, φ2n, ..., φkn] a k-dimensional subspace
of L2(Ω) spanned by the first k elements of the in-
troduced subfamily. As these functions are periodic
with period Li/n in each variable, for any p0 ∈ Ek
we have∫ ∞

0

∫
ω

p2dxdt ≥
∫ ∞

0

∫
ω̃

p2dxdt

=
1

nd

∫ ∞
0

∫
Ω

p2dxdt =
1

2nd
||p0||2H−1(Ω).

The rest of the proof goes now as in the first case,
just by following the steps from relation (30) on-
wards.

2

Remark 6 Unlike the result of Lemma 6, the lower
bound in (29) does not depend on an unknown mul-
tiplicative constant, but provides a precise bound that
depends directly on the measure of the observation set ω.
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Note that the lower bounds approach the upper ones by
increasing the size of the set ω, and the two bounds coin-
cide in the limit case when the observation is performed
on the entire domain Ω. This is in accordance with the
fact that the Gramian in that case is just the inverse of
the Laplacian operator (up to a multiplicative constant)
and its eigenvalues equal 1/(2λk) (cf. Example 1 in the
next section).

Obtaining the explicit lower bound (29) for a general do-
main Ω remains an open problem.

Remark 7 The lower bound obtained in the last theorem
is not expected to be optimal. Indeed, its proof is obtained
by using periodic initial adjoint datum p0. According to
the improved regularity estimates obtained in Lemma 5,
the corresponding observed energy should be the same,
up to a compact reminder, as for the system driven by
restriction of p0 to the observability region. Therefore,
the Rayleigh quotient in the first case (with periodic p0)
is nd times smaller than in the latter one (when p0 is cut
off by zero outside the observability region) and we expect
the lower bound in (29) can be improved by the same
factor, i.e. that the estimate µk ≥ 1

2λkn holds. However,
this improved bound resisted several attempts of proof,
even in this special case of a rectangular domain, thus
leaving the conjecture open.

4 Relation to control problems

In this section we discuss the connection of the results
above on the spectral decomposition and the eigenvalue
decay of the Gramian operator, with the control prop-
erties of the heat equation. We also investigate the na-
ture of the linear operator transforming the coefficients
on the spectral basis of the Gramian into the classical
eigenfunctions basis of the Dirichlet Laplacian.

Let us go back to the null control problem (1)+(2) .
According to the classical control results (cf. [25] and
the references therein), the control with minimal L2(ω×
(0, T )) norm is of the form exp(∆(T − t))p0, where p0 is
the optimal adjoint datum determined as the solution to

XT
ω p0 = −zH(T ) = − exp(T∆)z0. (31)

Here zH denotes the homogeneous part of the solution
to (1), run by the initial datum only, while XT

ω stands
for the finite time Gramian (25). Relation (31) ensures
that the null control annihilates the action of the free dy-
namics, i.e. it steers the system to zero in the prescribed
time horizon.

Taking the expansion z0 =
∑
j αjφj of the initial datum

with respect to eigenvectors of the Laplacian, we obtain

zH(T ) =
∑
j

exp(−λjT )αjφj =
∑
k

βkψ
T
k , (32)

where the last sum is the expansion of the final state
zH(T ) with respect to the eigenvectors of the Gramian
XT
ω . Together with the equation (31), this implies that

the exact representation of the optimal adjoint datum
(i.e. of the one providing the minimal norm control) is
of the form

p0 = −
∑
k

βk
µTk

ψTk . (33)

This is a theoretical result, which is hard to implement
in applications. Indeed, the spectral decomposition of
the Gramian operator is usually beyond our disposal.
Its eigenvectors are much harder to construct than those
of the underlying operator (the Dirichlet Laplacian in
this paper). However, the last relation opens interesting
issues to be discussed.

First of all, according to the classical null controllability
results for the heat equation (e.g. [24]), p0 belongs to the
Hilbert space H defined as

H = {p0 :

∫ ∞
0

∫
ω

p2dxdt <∞}

and endowed with the canonical norm.

This space, is by construction sharp.

For p0 ∈ H, the observed energy can be written as∫ ∞
0

∫
ω

p2dxdt = 〈Xωp0 | p0 〉L2(Ω) =
∑

µTk |p̃0k|2 < +∞,

where p̃0k are Fourier coefficients of p0 on the basis of
eigenvectors of the Gramian.

Given that the eigenvalues of the Gramian µTk decay
polynomially, we observe that when representing the el-
ements p0 of H on the basis of the Gramian we get a
summability condition on its coefficients with polyno-
mial weights. This is in contrast with the inequality in
(6), which is also sharp, and that assures that when rep-
resenting the elements ofH on the basis of the eigenfunc-
tions of the Gramian one obtains rather exponentially
degenerating weights.

This is a manifestation of the singularity of the tran-
sition matrix M = (mkj) from one basis, consisting of
eigenvectors of the Laplacian, to the other one, consist-
ing of eigenvectors of the Gramian.

5 Numerical examples

Example 1, ω = Ω

As the Gramian is the solution to the operator Lyapunov
equation (9), whose right hand side in this special case
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is just the identity, it implies Xω = −(2∆)−1. In par-
ticular, for the eigenvalues we obtain the exact relation
µk = 1/(2λk), which is in agreement with our bounds
obtained in the previos section (cf. Remark 6 above).

Example 2, ω = (0, π/2), Ω = (0, π).

In order to obtain the eigendecomposition of the
Gramian, we reduce the problem to a finite dimensional
one. More precisely, instead of the Gramian operator
Xω we consider its finite dimensional approximation
XN defined as

XN := PVN
◦ (Xω)|VN

,

where VN = [φ1, . . . , φN ] ⊂ L2(Ω) is the space spanned
by first N eigenvectors of the Dirichlet Laplacian, PVN

is the orthogonal projection from L2(Ω) onto VN , while
(Xω)|VN

is the restriction of the Gramian to VN .

According to [8, pp 491-492] the eigenvalues of XN con-
verge to the eigenvalues of the original operator as N
goes to infinity. More precisely, let us denote by µNk the
eigenvalues of XN repeated with their multiplicities and
arranged in nonincreasing order. Then for any fixed k
the sequence (µNk )N is nondecreasing and converges to
µk asN goes to∞. This can be shown by using the max-
min characterization of the eigenvalues and the fact that
the number of subspaces of VN of a fixed dimension k
increases with N .

In order to calculate eigenvalues of XN , we first deter-
mine the matrix representation of XN (in the basis of
VN consisting of the first N eigenvectors of the Dirich-
let Laplacian). Due to the special choice of the observa-
tion set and the explicit formula for the eigenfunctions
φk =

√
2/π sin(kx), one obtains the following expres-

sions for the matrix entries

(XN )ij

=
2

π

∫ ∞
0

exp
(

(−i2 − j2)t
)
dt

∫ π/2

0

sin(ix) sin(jx)dx

=



1
4i2 , i = j

2
π(i4−j4)

(
− i cos( iπ2 ) sin( jπ2 )

+j cos( jπ2 ) sin( iπ2 )
)
,

i 6= j.

(34)
Figure 1 depicts eigenvalues of XN for N = 100 (calcu-
lated by the Matlab eig function) together with the lower
and upper polynomial decay bound ensured by Theorem
8. Since ω is exactly one half of the whole domain, the
factor n appearing in (29) equals 2, thus implying the
lower bound of the form 1/(2ndλkn) = 1/(16k2).

In contrast to the polynomial decay rates obtained in the
previous section, the figure reveals a two-fold behaviour
of the eigenvalues of the Gramian. For approximately
half of the eigenvalues, the decay rates coincide with the
theoretical findings, satisfying both the lower and upper
polynomial bound provided by Theorem 8. However, the
next group of eigenvalues (represented by a steeply de-
creasing curve) decays exponentially. The calculation of
the smallest twenty ones can not be considered signifi-
cant due to the numerical resolution constraints.

Fig. 1. Eigenvalues decay for the finite dimensional approx-
imation of the Gramian XN for N = 100. Relevant branch
obeying the same polynomial law as the spectrum of X for
k ≤ 55, spurious exponential branch for 55 < k < 80 and
irrelevant branch for k ≥ 80.

In order to get a better understanding of the phenom-
ena observed in Figure 1 and to explain the departure
from the expected polynomially decaying law for high-
frequency eigenvalues, we depict the corresponding
eigenvectors of the (finite dimensional approximation of
the) Gramian XN (Figure 2). Here, the eigenvectors are
separated into two groups: those related to the polyno-
mially decaying eigenvalues are presented in (a) part
of the Figure, while the second plot shows the eigen-
vectors corresponding to the eigenvalues that decay
exponentially.

A notable difference between two groups of eigenfunc-
tions is observed immediately: the first group is (mostly)
supported within the observation region ω, while the
latter on its complement. Such kind of behaviour and
the concentration phenomena can be understood by ex-
ploiting the min-max characterisation of the eigenvalues
again. As it is known, the largest eigenvalue is the one
maximizing the Rayleigh quotient:

µ
(N)
1 = max

p0∈VN

〈XNp0 | p0 〉
‖p0‖2L2(Ω)

= max
p0∈VN

∫∞
0

∫
ω
p2dxdt

‖p0‖2L2(Ω)

,

(35)
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(a)

(b)

Fig. 2. Eigenvectors of the Gramian XN (N = 100) corre-
sponding to (a) polynomially and (b) exponentially decaying
eigenvalues.

where p is the solution to the heat equation (4) with the
initial datum p0. Actually, the first eigenvalue equals the
maximal ratio of the observed energy compared to the
initial one with respect to all possible choices of p0.

The value of the Rayleigh quotient can be enlarged in two
ways. First, by taking an initial datum consisting of low
frequencies. Indeed, we know that the observed energy
is less than the total one, which, by the classical energy
estimates, decreases with frequency by 1/λk (cf. relation
(7)). The second mechanism supporting large values of
the Rayleigh quotient relies on the dissipation properties
of the heat equation. In particular, the solution to the
heat equation decays exponentially in space with respect
to the distance from the support of its initial datum.
For p0 supported in ω, the amount of unobserved energy
should therefore be small, in this way contributing to
large values of the Rayleigh quotient.

Thus, in order to maximize the amount of the observed
energy, one would like to employ p0 that is supported
on the observation set ω and is a combination of eigen-

functions corresponding to small frequencies. However,
these requirements can not be met simultaneously. In-
deed, the initial datum consisting of the lowest frequency
only is supported on the entire domain. If its support is
to be confined within the observation region, it should
also incorporate high frequencies. In this way, the max-
imisation in (35) is obtained as a trade-off between two
objectives: the choice of an initial datum p0 that is sup-
ported in the observation region and the choice of p0

consisting of low frequencies.

If we carefully analyse the eigenfunction corresponding

to the largest eigenvalue µ
(100)
1 , we observe that this is

exactly what happens. Indeed, expressed in terms of the
eigenfunctions of the Laplacian it reads

ψ
(100)
1 = 0.93φ1 +

∑
k≥2

αkφk (36)

where αk are the corresponding Fourier coefficients. We
see that most of the energy corresponds to the lowest
frequency, which, as stated above, supports larger val-
ues of the Rayleigh quotient. The rest of the expansion
in (36) ensures that the largest portion of its mass is
contained within the observability region, as it can be
observed in Figure 3. This is in accordance to the second
above stated mechanism that contributes to large values
of the Rayleigh quotient.

The above arguments can be similarly applied to subse-

quent eigenfunctions: ψ
(100)
2 , ψ

(100)
3 , etc. Figure 3 depicts

the first five of them (left) together with the distribution
of their Fourier coefficients (right).

Fig. 3. Eigenvectors ψ
(100)
k of the Gramian XN (left) and

their spectral decomposition (right), for k = 1..5.

The plotted eigenvectors ψ
(100)
k tend to have most of its
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mass within the control region. Their spectral decom-
position is dominated by few (usually two) harmonics
whose frequencies shift forward with k. The same be-
haviour is exhibited by approximatively half of the eigen-
vectors, after which a new phenomenon occurs. Figure

4 depicts eigenfunctions ψ
(100)
k for k = 51, ..., 55. For

k = 53 the dominating frequency reaches the end of the
spectrum, and subsequent eigenfunctions have spectral
decomposition distributed along the whole spectrum.
Moreover, their mass is shifted to the complement of the
control region, in accordance to the Figure 2 b).

Such behaviour can be explained as follows. The eigen-
vectors of XN have to be mutually orthogonal in L2(Ω)
and are spanned by the first N eigenfunctions of the
Laplacian (since the image of XN is spanned by them).
These N eigenfunctions (of the Laplacian) constitute an
orthonormalised set in L2(Ω). However, when restricted
to the control region (being the first half of the whole
domain) just half of them (either even ones or odd ones)
will be mutually orthogonal. For that reason, the first
half of eigenvectors (of the Gramian XN ), which are
mostly supported on the control region, exhaust the set
of orthogonal functions supported on the control region
and spanned by the first N eigenfunctions of the Lapla-
cian. Consequently, in order to obey with the orthogo-
nality, the support of the second half is shifted outside
the control region.

Fig. 4. Eigenvectors ψ
(100)
k of the Gramian XN (left) and

their spectral decomposition (right).

The presented numerical results seem to contradict the
theoretical bounds obtained in the previous Section. In
contrast to the two-fold decay behaviour revealed in Fig-
ure 1, Corollary 4 ensures polynomially decay for the
whole sequence of eigenvalues of the Gramian operator.

However, this contradiction is just an apparent one and

is related to the finite-dimensional approximation of the
Gramian defined on an infinite dimensional space. Al-
though finite dimensional approximation allows for a
portion of eigenvalues decaying exponentially, this be-
haviour disappears as the dimension N of the approxi-
mation goes to infinity. This can be clearly observed on
Figure 5, which depicts eigenvalues for several approx-
imation dimensions, together with the lower and upper
polynomial decay bound ensured by Corollary 4. In par-
ticular, we note that the eigenvalues µNk approach the
predicted decay rate from below as N goes to infinity
while keeping k fixed. This is in accordance to the gen-
eral results for finite dimensional approximations of an
operator stating that for a fixed k the sequence (µNk )N
is nondecreasing and converges to µk as N goes to ∞
(cf. [8, pp 491-492]). Consequently, in the limit case all
the eigenvalues will follow a polynomial decay law, thus
obeying theoretical bounds (29) obtained in the previ-
ous section.

Fig. 5. Eigenvalues decay rates for various approximation
dimensions N .

Such behaviour coincides with the one observed for the
spectra of a discrete Laplacian operator (e.g. [24]). There
it is shown that just a limited portion of the eigenvalues
of the original, continuous operator can be approximated
by the corresponding eigenvalues of its discrete counter-
parts. Furthermore, this portion (of the order N−1/3)
deteriorates as the approximation dimension N goes to
infinity. Unlike there, for a fixed control region the per-
centage of eigenvalues of a discrete Gramian following
the polynomial decay seems to be preserved and not in-
fluenced by the dimension N . From Figure 5 we note
this ratio is close to 1/2, and this for all approximation
dimensions N considered. Of course, the ratio strongly
depends on the size of the control region ω and it will in-
crease/decrease by taking ω larger/smaller. In the limit
case when the solution is observed on the whole domain
Ω, the polynomial decay is obeyed by all the values of the
finite dimensional approximation of the Gramian oper-
ator. This result is natural having in mind that in this

12



special case the eigenvalues of the finite dimensional ap-
proximation XN = PVN

◦ (−(2∆)−1)|VN
, coincide with

the first N eigenvalues of the full Gramian.

Remark 8 The analysis and results of this example gen-
eralize to any domain Ω obtained by dilatation of a rect-
angular observability region by a finite factor. The only
difference is that the portion of eigenvalues of the finite
dimensional approximation of the GramianXN following
polynomial decay changes and should be approximately
equal to the ratio |ω|/|Ω|.

6 Conclusions and perspectives

The paper focuses on the most classical problem of null
control of the heat equation in which the heat process
evolves in a bounded domain, with Dirichlet boundary
conditions, and the control is localized in an open non-
empty subset. The goal was to obtain sharp estimates
on the corresponding Grammian operator.

Previous results on the topic provide upper bounds on
the eigenvalues, which under appropriate boundedness
and finite-rank assumptions on the control operator,
imply exponential decay rates [13,19]. However, lower
bounds seem to be out of the focus of the research com-
munity. In addition, some important cases, like the dis-
tributed control one are not covered by the above men-
tioned assumptions.

The topic was also investigated in a more general con-
text of Hankel singular values, that take into account
both observability and controllability Gramian. In the
case when two Gramians coincide, we get the framework
of this paper. In [18] it was shown that Hankel singular
values, and consequently the eigenvalues of the control-
lability Gramian, converge to zero faster than any poly-
nomial rate, but assuming the control space is finite di-
mensional. Their exponential decay, under the same as-
sumption, was obtained recently in [20]. The numerical
study of the decay of Hankel singular values, in a com-
pletely finite dimensional setting, was studied in [7] in
the context of the model order reduction.

The analysis performed in this paper is in an essen-
tial manner based on the spectral decomposition of the
underlying Laplace operator. Employing the min-max
characterisation of eigenvalues by Rayleigh quotients,
and the existing observability and energy estimates, we
have first obtained two-sided bounds on the decay of
the eigenvalues of the Gramian operator. As already dis-
cussed, such bounds can be generalised to a wide class of
parabolic-like equations for which observability inequal-
ities have been proved and that allow a suitable spectral
decomposition of the elliptic operator generating the dy-
namics (cf. Remark 3).

However, the lower and the upper bounds obtained in
this way obey different asymptotic laws, an exponential

and polynomial one, respectively, leaving a huge gap in
between. Although they are derived from observability
estimates that are sharp on the basis of eigenfunctions of
the Laplacian, they turn not to be optimal when captur-
ing the asymptotic behaviour of the eigenvalues of the
Grammian.

Actually, we have then proved that the lower bound can
be improved to obey the same polynomial law as the
upper one, up to a multiplicative constant. This last
result is the most striking one, in clear and unexpected
contrast with the exponential decay of the eigenvalues of
the Grammian for the boundary control of the 1d heat
equation (see [13]).

The proof of the optimality of the polynomial bound,
however, exploits the fact that the control region is an
open subset of the domain where the equation evolves,
and therefore does not apply in the context of boundary
control or when the control acts in an arbitrary measur-
able subset of positive measure, two situations in which
the null controllability of the heat equation in finite time
is guaranteed. It would be interesting to analyze whether
in these situations an exponential decay of eigenvalues
may occur, as it was shown in [13,19] in the case of 1d
boundary control.

All in all, for the heat equation with constant coeffi-
cients and the control localized in an open subdomain,
we have derived sharp polynomial asymptotic rates for
the eigenvalues of the corresponding Grammian, which
are also confirmed by numerical examples. This provides
the slow decay of the eigenvalues, which limits the effi-
ciency of model reduction [5].

The methods introduced and developed in this paper can
be applied in other contexts. But they also lead to very
interesting and challenging open problems. We mention
here some of them.

• More general equations and systems. We could treat
for instance a broad class of parabolic-like equations
and systems provided we have a suitable spectral de-
composition of the elliptic operator generating the
dynamics, meaning self-adjoint heat equations with
time-independent coefficients in the principal part and
lower potential terms [11,12].

It would be interesting to see if our methods can
be adapted to other models, for instance, involving
space-time depending potentials or convective terms,
for which such a spectral decomposition is not avail-
able.

• Boundary control problems [12] extending the 1d anal-
ysis in [13]. Note however that the nature of the opti-
mal decay rate to be expected is to be clarified since
now the control will not be finite-dimensional any-
more as in 1d.

• The heat equation is also known to be null-controllable
with controls with support in measurable sets [3].
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Whether the optimal decay bounds can be extended
to that context is uncertain.
• Pointwise control of the 1d heat equation [13] or heat

equations on networks [9]. In this case one could ex-
pect results aligned with [13]. But this would require
further analysis as well.
• Our results could also be extended to symmetric sys-

tems of heat equations [2]. But the extension to asym-
metric systems for which a spectral decomposition is
not available would be an open problem.

Finally let us note, that, just as we have analyzed the
relationship between the eigenvalues of the Laplacian
operator and the corresponding infinite time Gramian
operator, it would be of interest to obtain some kind of
connection between the associated sequences of eigen-
vectors. The latter would lead to the study of the tran-
sition matrix from the basis given by the eigenvectors
of the Laplacian to the basis consisting of the eigenvec-
tors of the Gramian operator. As mentioned before, this
matrix allows us to characterize the space of reachable
states by different types of sequences: polynomial and
exponential decaying ones. A good understanding of the
transition and its properties will help us to understand
the deterioration of the observability estimates for frac-
tional systems and their eventual loss for the critical val-
ues of the fractional derivative [17].
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