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Abstract

In this paper, we study the problem of initial data identification for weak-entropy solutions
of the one-dimensional Burgers equation. This problem consists in identifying the set of initial
data evolving to a given target at a final time. Due to the time-irreversibility of the Burgers
equation, some target functions are unattainable from solutions of this equation, making the
identification problem under consideration ill-posed. To get around this issue, we introduce
a non-smooth optimization problem, which consists in minimizing the difference between the
predictions of the Burgers equation and the observations of the system at a final time in
L2(R) norm. Here, we characterize the set of minimizers of the aforementioned non-smooth
optimization problem. One of the minimizers is the backward entropy solution, constructed
using a backward-forward method. Some simulations are given using a wave-front tracking
algorithm.
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1 Introduction

1.1 Presentation of the Problem

Initial data identification problems consist in finding the origin of physical phenomena, governed
for instance by partial differential equations (PDEs), from a set of observations at a given time.
These arise naturally in meteorology, oceanography or climatology [32, 45, 23, 44, 30, 5, 19] to
improve the forecasts of a model. Finding optimal positions or shapes of sensors [40, 41, 42] also
lead to the study of identification problems.
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Initial identification problems need to be carefully addressed, depending on each type of PDEs.

• In the case of parabolic PDEs, the high and instant regularization effect induces the non-
existence of initial data for which the corresponding solution evolves to given not-necessary
regular target functions, and causes numerical instabilities when solving the PDE backwards
in time. In [34], the authors solve an identification problem for the heat equation with
applications in pollution source localization. Note however that, when the target is attainable,
the initial datum whose the corresponding trajectory evolves to this target, is unique as seen
in [36].

• In the case of nonlinear hyperbolic PDE as (1), the backward uniqueness property fails due
to the presence of discontinuities (so-called shocks), i.e multiple initial data may evolve to
the same attainable target function. Moreover, due to the time-irreversibility of nonlinear
hyperbolic PDEs, a target function uT can be unattainable, that is to say that there is
non-existence of initial data leading to the target function uT .

In this paper, we study the latter case. More precisely, we consider the scalar conservation laws{
∂tu(t, x) + 1

2∂xu
2(t, x) = 0, (t, x) ∈ R+ × R,

u(0, x) = u0(x).
(1)

Kruzkov’s theory [31] provides existence and uniqueness of a weak-entropy solution u of (1) with
initial datum u0 ∈ L∞(R). Let T > 0 and uT ∈ L∞(R) a given function, the goal is to find the set
of initial data generating weak-entropy solutions of (1) that are as close as possible to uT at time
T in L2(R)-norm. This leads to solve the following non-smooth optimization problem

inf
u0∈U0

ad

J0(u0) := ‖uT (·)− u(T, ·)‖L2(R), (OT )

where u is the weak-entropy solution of (1) and U0
ad is the class of admissible initial data in L∞(R)

with compact essential support (see (10) for more details). The study of initial data identification
for (1) is motivated by the minimization of the sonic boom effects generated by supersonic aircrafts,
which are modeled by an augmented Burgers equation [15, 3, 2, 35].

1.2 State of the art and main results

Initial data identification problems for (1) in the case of attainable targets have already been
studied in [12, 13, 24, 1, 28, 16, 35]. In [16, Theorem 3.1, Corollary 3.2], [28, Corollary 1] or [24],
the authors prove that uT is truly attainable in an exact manner by a solution of (1) if and only
if uT satisfies the one-sided Lipschitz condition [8, 25, 39, 21], i.e

∂xu
T ≤ 1

T
in the sense of distributions. (2)

When uT is an attainable target, the authors in [28] prove that the set of initial data evolving
to uT is a convex set. Later on, the aforementioned set was fully characterized in [16, 22] using
the classical Lax-Hopf formula. In [35], an alternative proof is given using backward generalized
characteristics.

The optimization problem (OT ) with attainable targets has also been studied in [12, 13, 1] from
numerical points of view. Since the weak-entropy solution u of (1) may contain shocks even if the
initial datum is a smooth function, this generates important added difficulties to solve (OT ) that
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have been the object of intensive study in the past, see [38, 37, 9, 10, 6, 7, 4] and the references
therein. More precisely, in [9, 10, 6, 7], the derivative of the cost function J0 in (OT ) is regarded
in a weak sense by requiring strong conditions on the set of initial data. This leads to require that
weak-entropy solutions of (1) have a finite number of non-interacting jumps. When J0 is weakly
differentiable, gradient descent methods have been implemented in [12, 13, 1] to solve numerically
the optimization problem (OT ). In the cases where it was applied successfully, only one possible
initial datum emerges, namely the backward entropy solution, see Remark 1. This is mainly due to
the numerical viscosity that numerical schemes introduce to gain stability. To find some multiple
minimizers, the authors in [28] use a filtering step in the backward adjoint solution.

In this article, we give a full characterization of the set of minimizers of the optimization prob-
lem (OT ). More precisely, we prove that the backward entropy solution, denoted by S−T (uT ), is
a minimizer of (OT ) using a backward-forward method described in Section 2.1. Then, we show
that u∗0 is a minimizer of (OT ) if and only if the weak-entropy solution of (1) with initial datum
u∗0 coincides, at time T , with the weak-entropy solution of (1) with initial datum S−T (uT ) using
variational methods. Contrary to [12, 13, 1], we do not require strong assumptions on the set of
initial data, i.e weak-entropy solutions of (1) may have a countable number of interacting jumps.
Finally, we construct numerically random minimizers of (OT ) based on a wave-front tracking al-
gorithm.

1.3 Some related open problems

Let us address some related open questions and possible extensions of this work.

• It would be interesting to study the optimization problem (OT ) in L1-norm, which is the
natural distance in the framework of conservation laws. This problem leads to additional
difficulties since x 7→ ‖x‖L1(R) is not a differentiable function.

• It would be also interesting to consider a convex-concave function as a flux function in (1)
which is, for instance, a more realistic choice to describe the flow of pedestrian [17, 14].
The main difficulty comes from the existence of discontinuities (called non-classical shocks)
violating standard admissibility entropy conditions such that the Oleinik inequality.

• We could also study a Burgers equation with source terms. In this case, some suitable
conditions on source terms have to be determined to use the backward-froward method
described in this paper. For instance, the backward operator S−t (uT ) defined in Section 2.1
associated to {

∂tu(t, x) + 1
2∂xu

2(t, x) = −u3(t, x), (t, x) ∈ R+ × R,

u(T, ·) = uT (x), x ∈ R.

may blow up at time t < T .

• We can also investigate systems of conservation laws in one dimension (Euler equations,
Saint-Venant equations, Aw-Rascle-Zhang traffic flow model). Note that, as soon as the
backward-forward operator S+

T (S−T ) is well-defined, S+
T (S−T )(uT ) may give a good candidate

to solve initial data identification problems for systems of conservation laws.

• We may consider a multi-dimensional conservation of laws in a numerical point of view. For
instance, a fractional steps method [18, 33, 29] (or splitting method) may be implemented to
solve an identification problem of a two-dimensional equation of conservation laws.
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The article is organized as follows. In section 2, we describe the backward-forward method and
we recall some known results on initial data identification problems for (1). In Section 3, we state
the main results where the proofs are given in Section 4. In Section 5, we run some simulations
using a wave-front tracking method.

2 Notations and comments

We now introduce some notations and recall some known results which will be essential to state the
main theorem of this paper. In the sequel, we denote by BV (R) the class of functions of bounded
variation, see [21, Definition 1.7.1]. If g ∈ BV (R), we use the notation g(x−) := limy→x

y<x

g(y) and

g(x+) := limy→x
x<y

g(y). Let f ∈ BV (R), we denote by X(f) the set defined by

X(f) := {x ∈ R/f(x−) = f(x+)}, (3)

and Supp(f) stands for the essential support of the function f . Let Ω be a domain in R,
D(Ω) := C∞c (Ω) denotes the set of infinitely differentiable functions with compact support. Let
two distributions T1, T2 ∈ D′(Ω), we say that T1 ≤ T2 in the sense of distributions if

∀ϕ ∈ D(Ω), ϕ ≥ 0,
〈
T1, ϕ

〉
≤
〈
T2, ϕ

〉
,

where
〈
·, ·
〉

is a duality bracket between D′ and D.

2.1 The backward-forward method

For the sake of completeness, we recall the definition of a weak-entropy solution of (1).

Definition 2.1 We say that u ∈ L∞(R+ × R) ∩ C0(R+, L1
loc(R)) is a weak-entropy solution if for

every k ∈ R, for all ϕ ∈ C1
c (R2,R+),∫

R+

∫
R
(|u− k|∂tϕ+

1

2
sgn(u− k)(u2 − k2)∂xϕ)dxdt+

∫
R
|u0 − k|ϕ(0, x)dx ≥ 0.

Kruzkov’s theory [31] provides existence and uniqueness of a weak-entropy solution (t, x) →
S+
t (u0)(x) of (1) with initial datum u0 ∈ L∞(R). For a given function uT , we introduce the

function (t, x)→ S−t (uT )(x) as follows: for every t ∈ [0, T ], for a.e x ∈ R,

S−t (uT )(x) = S+
t (x→ uT (−x))(−x). (4)

Note that (t, x)→ S−t (uT )(x) is the weak-entropy solution of{
∂tu(t, x)− 1

2∂xu
2(t, x) = 0, (t, x) ∈ R+ × R,

u(0, x) = uT (x), x ∈ R.

Using the change of variable t→ T − t, (t, x)→ S−t (uT )(x) is also the weak-entropy solution of{
∂tu(t, x) + 1

2∂xu
2(t, x) = 0, (t, x) ∈ R+ × R,

u(T, x) = uT (x), x ∈ R.

Thus, the backward-forward method consists in solving backward in time the PDE (1) with final
target uT and then solving it forward in time with initial datum S−T (uT ).
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Remark 1 The solutions S+
t (u0) and S−t (uT ) may be regarded as the zero viscosity limit of the

solutions S+,ε
t (u0) and S−,εT (uT ) respectively where S+,ε

t (u0) and S−,εt (uT ) are defined as follows:

S+,ε
t (u0) is the solution of the following viscous Burgers equation{

∂tu(t, x) + 1
2∂xu

2(t, x) = +ε∂2
xxu(t, x), (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R,

and S−,εt (uT ) is the solution of the following backward equation{
∂tu(t, x) + 1

2∂xu
2(t, x) = −ε∂2

xxu(t, x), (t, x) ∈ R+ × R,

u(T, x) = uT (x), x ∈ R.

Using the change of variable (t, x) → (T − t,−x), we notice that the backward equation above is
well-defined. Thus, S−T (uT ) is called the backward entropy solution. Note that the construction
involving S±t is also related to scattering theory [27, 26]

For any attainable target uT , we have S+
T (S−T (uT )) = uT as seen in [16, Theorem 3.1, Corollary

3.2] and [28, Corollary 1]. Note that there exist target functions uT verifying S+
T (S−T (uT )) 6= uT .

For instance, if uT (·) = −1(−∞,0)(·) + 1(0,∞)(·) then

S+
T (S−T (uT ))(x) =

 −1 if x < −T,
x
T if − T ≤ x ≤ T,
1 if T < x.

These targets are called unattainable targets.

2.2 Identification problem for attainable targets

Fix uT ∈ L∞(R), we introduce the set

I+(uT ) = {u0 ∈ L∞(R) / S+
T (u0) = uT }. (5)

From [16, Corollary 3.2], I+(uT ) 6= ∅ if and only if a suitable representative of uT satisfies the
Oleinik condition [8, 25, 39, 21], i.e for every x ∈ R and y ∈ R+\{0},

uT (x+ y)− uT (x) ≤ y

T
. (6)

The following theorem stated in [35, Theorem 1] (see also [16, 22]) gives a full characterization of
the set of initial data u0 ∈ L∞(R) such that S+

T (u0) = uT .

Theorem 2.1 ([35]) Let T > 0 and let a suitable representation of uT ∈ L∞(R) satisfy the
Oleinik condition (2). Then the initial data u0 ∈ L∞(R) satisfies S+

T (u0) = uT if and only if the
following statements holds. For any (x, y) ∈ X(uT )× R,∫ y

x−TuT (x)

S−T (uT )(s) ds ≤
∫ y

x−TuT (x)

u0(s) ds, (7)

For any (x, y) ∈ X(uT )2, ∫ y−TuT (y)

x−TuT (x)

S−T (uT )(s) ds =

∫ y−TuT (y)

x−TuT (x)

u0(s) ds, (8)

where X(uT ) is defined in (3) and S−T (uT ) is defined in (4).
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Remark 2 When uT ∈ L∞(R) satisfies the Oleinik condition (2), then uT ∈ BVloc(R). Thus,
X(uT ) is well-defined.

Theorem 2.1 points out the richness and the diversity of initial data evolving to the same target
at time T (see Figure 1).

• There exists u0 ∈ L∞(R) such that S+
T (u0) = uT with minx∈R u0(x) < minx∈R u

T (x) and/or
maxx∈R u

T (x) < maxx∈R u0(x), see Figure 1.

• The set I+(uT ) defined in (5) is a convex cone having as unique extremal point at its
vertex the map S−T (uT ), see [16, Proposition 5.2]; for any u0 ∈ I+(uT ), for every η > 0,
uη0 = S−T (uT ) + η(u0 − S−T (uT )) ∈ I+(uT ).

x−1

1

−1

u1(·) = uT (·)
u∗
0(·)

u2(·)

1− 1
12− 1

4

Figure 1: Three initial data u∗0(−), u1(−−) and u2(· · ·) leading to an attainable target uT (·) :=
1(−∞,0)(·)− 1(0,+∞)(·) at time T = 1 along forward entropic evolution.

3 Main results

Let T > 0, C > 0, KT := [aT , bT ] ⊂ R be a compact set. We consider a target function uT ∈ L∞(R)
that satisfies

Supp(uT ) ⊂ KT and ‖uT ‖L∞(R) ≤ C. (9)

Let K0 := [a0, b0] verify [aT − TC, bT + TC] ⊂ K0 (see an illustration in Figure 3). We study the
non-smooth optimization problem

inf
u0∈U0

ad

J0(u0) := ‖uT (·)− S+
T (u0)(·)‖L2(R), (OT )

where S+
T is defined in Section 2.1 and U0

ad is the class of admissible initial data defined by

U0
ad = {u0 ∈ L∞(R) / ‖u0‖L∞(R) ≤ C and Supp(u0) ⊂ K0}. (10)

Theorem 3.1 characterizes the set of minimizers of (OT ) (see an illustration in Figure 2).
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Theorem 3.1 Let T > 0, C > 0, KT := [aT , bT ] ⊂ R and let uT ∈ L∞(R) satisfy (9). The initial
datum u∗0 ∈ L∞(R) is a minimizer of (OT ) if and only if u∗0 ∈ U0

ad satisfies S+
T (u∗0) = S+

T (S−T (uT )).

T

t

0•

•

•

×S−
T (uT )

×S+
T (S−

T (uT ))

×S+
t (S−

T (uT ))

L2(R)

L2(R)

L2(R)

×

×

{u0/S
+
T (u0) = S+

T (S−
T (uT ))}

UT
ad

×

×

×

uT×
Backward-Forward Method

Figure 2: The backward-forward solution S+
T (S−T (uT )) is the projection of uT onto the set of

attainable target functions. The shaded area in red at time t = 0 represents the set of minimizers
of (OT ).

Corollary is a direct consequence of Theorem 3.1 and the full characterization of the set {u0 ∈
L∞(R)/S+

T (u0) = S+
T (S−T (uT ))} given in Theorem 2.1.

Corollary 3.1 Let T > 0, C > 0, KT := [aT , bT ] ⊂ R and let uT ∈ L∞(R) satisfy (9). The
map u∗0 ∈ L∞(R) is a minimizer of (OT ) if and only if the following statements hold. For any
(x, y) ∈ X(S+

T (S−T (uT )))× R,∫ y

x−TS+
T (S−T (uT ))(x)

S−T (uT )(s) ds ≤
∫ y

x−TS+
T (S−T (uT ))(x)

u∗0(s) ds, (11)

For any (x, y) ∈ X(S+
T (S−T (uT )))2,∫ y−TS+

T (S−T (uT ))(y)

x−TS+
T (S−T (uT ))(x)

S−T (uT )(s) ds =

∫ y−TS+
T (S−T (uT ))(y)

x−TS+
T (S−T (uT ))(x)

u∗0(s) ds, (12)

where X(S+
T (S−T (uT ))) is defined in (3) and S−T (uT ) is defined in (4).

Remark 3 • The constraints ‖u0‖L∞(R) ≤ C and Supp(u0) ⊂ K0 in (10) are used to guarantee
the existence of minimizers of (OT ). Moreover, the assumption [aT − TC, bT + TC] ⊂ K0 is
required to have S−T (uT ) ∈ U0

ad.

• From (26), S+
T (S−T (uT )) ∈ BV (R). Thus, for any x ∈ R, S+

T (S−T (uT ))(x−) and S+
T (S−T (uT ))(x+)

exist and then X(S+
T (S−T (uT ))) is well-defined.
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• We assume that the given target uT is attainable. Since S+
T (S−T (uT )) = uT , Theorem 3.1 and

Corollary 3.1 give a full characterization of initial data generating weak-entropy solutions
of (1) that coincide with uT at time T, as in [22, 35]. Note that there exist initial data,
generating weak solutions of (1) that coincide with uT at time T, such that the inequalities
(11) and (12) do not hold. For instance, we choose T = 1 and uT (·) = 1(−∞,0)(·)−1(0,+∞)(·)
then the weak solution u defined by

u(t, x) =

{
1(−∞,4t−2)(x) + 71(4t−2,3t− 3

2 )(x)− 1(3t− 3
2 ,+∞)(x) if t < 1

2 ,

1(−∞,0)(x)− 1(0,+∞)(x) if 1
2 ≤ t,

satisfies u(T, ·) = uT and S+
T (u(0, ·)) 6= uT .

The next section is devoted to the proof of Theorem 3.1 that is structured as follows. From [16,
Theorem 3.1, Corollary 3.2], [28, Corollary 1] or [24], there exists u0 ∈ L∞(R) such that S+

T (u0) = q
if and only if q ∈ L∞(R) satisfies the one-sided Lipschitz condition (2). Let K1 ⊂ R be a set such
that [a0 − TC, b0 + TC] ⊂ K1 with K0 := [a0, b0], the optimization problem (OT ) is equivalent to

min
q∈UT

ad

J1(q) := ‖uT − q‖L2(R), (13)

where the admissible set UTad is defined by

UTad = {q ∈ L∞(R)/ ∂xq ≤
1

T
, ‖q‖L∞(R) ≤ C and Supp(q) ⊂ K1}. (14)

The optimization problem (13) admits a unique minimizer using Hilbert projection Theorem.
Since the cost function J1 in (13) is a differentiable function (unlike J0 in (OT )), we can write
down the first-order optimality conditions for (13). Thus, together with the full characterization
of the set {u0 ∈ BV (R)/S−T (u0) = S−T (uT )} (see Theorem 4.1), we prove that q = S+

T (S−T (uT ))
is the minimizer of (13). As a consequence, u∗0 is a minimizer of (OT ) if and only if S+

T (u∗0) =
S+
T (S−T (uT )).

4 Proof of Theorem 3.1

4.1 On the solution of the optimization problem (13).

The following proposition will be an essential tool to solve (13). Let u0 ∈ L∞(R), we introduce
the set

I−(u0) = {uT ∈ L∞(R) / S−T (uT ) = u0}. (15)

From (4) and [16, Corollary 3.2], I−(u0) 6= ∅ if and only if for every x ∈ R and y ∈ R+\{0},

u0(x+ y)− u0(x) ≥ − y
T
. (16)

Proposition 4.1 gives a full characterization of the set of functions uT ∈ L∞(R) such that
S−T (uT ) = u0.

Proposition 4.1 Let T > 0 and let a suitable representation of u0 ∈ L∞(R) satisfy (16). Then
a map uT ∈ L∞(R) satisfies S−T (uT ) = u0 if and only if the following statements hold. For any
(x, y) ∈ X(u0)× R, ∫ y

x+Tu0(x)

S+
T (u0)(s) ds ≥

∫ y

x+Tu0(x)

uT (s) ds, (17)

8



For any (x, y) ∈ X(u0)2, ∫ y+Tu0(y)

x+Tu0(x)

S+
T (u0)(s) ds =

∫ y+Tu0(y)

x+Tu0(x)

uT (s) ds, (18)

where X(u0) = {x ∈ R / u0(x−) = u0(x+)} .

Proposition 4.1 is a direct consequence of Theorem 2.1 noticing that S−T (uT ) : x → S+
T (x →

uT (−x))(−x).

Lemma 4.1 The optimization problem (13) admits a unique minimizer S+
T (S−T (uT )).

Proof. The proof is divided in two steps.

Step 1: Existence of minimizers of (13).
By definition of J1 in (13), it is enough to prove that UTad defined in (14) is a closed convex set of
L2(R) using Hilbert projection Theorem.

• Assuming that q1, q2 ∈ UTad, we immediately have, for every α ∈ [0, 1], αq1 + (1−α)q2 ∈ UTad.
Thus, UTad is a convex set.

• Assuming that qn ∈ UTad converges to q in L2(R) then qn converges to q in the sense
of distributions and by passing to the limit in ∂xqn ≤ 1

T , we have ∂xq ≤ 1
T . Since

‖qn‖L∞(R) ≤ C and using that the closed ball BL∞(R) is compact in the weak* topology
σ(L∞, L1) [11, Theorem 3.16], qn converges, (up to a subsequence, still denoted by qn)
to q ∈ L∞(R) in the weak* topology of L∞(R). Moreover, from [11, Proposition 3.13],
‖q‖L∞(R) ≤ lim infn ‖qn‖L∞(R) ≤ C. Using that qn converges to q in L2(R), qn converges a.e
to q. Moreover, since Supp(qn) ⊂ K1, we have qn(x) = 0 for a.e x ∈ R\K1. Therefore, we
have Supp(q) ⊂ K1 and we conclude that q ∈ UTad. Thus, UTad is a closed set.

Step 2: First-order optimality conditions.
Our aim is to prove that,

S+
T (S−T (uT )) ∈ UTad, (19)

and for any admissible perturbation h ∈ TUT
ad

(S+
T (S−T (uT ))),

−
∫

R

(
uT (x)− S+

T (S−T (uT ))(x)
)
h(x) dx ≥ 0. (20)

Above, TUT
ad

(S+
T (S−T (uT ))) is a set of functions h ∈ L∞(R) such that, for any sequence of positive

real numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L∞(R) converging to h as
n→∞ and S+

T (S−T (uT )) + εnhn ∈ UTad for every n ∈ N. If (19) and (20) hold then S+
T (S−T (uT )) is

a critical point of (13). Since J1 is a strictly convex function, S+
T (S−T (uT )) is the unique minimizer

of (13).

We now prove (19): since uT satisfies (9), we have ‖uT ‖L∞(R) ≤ C. By using the definition of

S+
T and S−T and the maximum principle fulfilled by weak-entropy solutions [43, Theorem 2.3.5], we

have
‖S−T (uT )‖L∞(R) ≤ C and ‖S+

T (S−T (uT ))‖L∞(R) ≤ C. (21)

From (9), by definition of S−T and using the finite velocity of propagation, we have Supp(S−T (uT )) ⊂
[aT − TC, bT + TC] ⊂ K0 (see Figure 3). Therefore, together with (21),
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x

t

t = T

t = 0

×
aT

×
bT

aT − TC aT + TCa0
×

a0 − TC

b0
×

b0 + TC
KT

K0

Figure 3: Illustration of KT (−−) and K0(−−) defined in Section 3.

S−T (uT ) ∈ U0
ad. (22)

Moreover, by definition of S+
T and using [a0−TC, b0 +TC] ⊂ K1 and [21, Theorem 6.2.3], we have

S+
T (u0) ∈ UTad for any u0 ∈ U0

ad, (23)

where UTad is defined in (14). We replace u0 in (23) by S−T (uT ) and we deduce that (19) holds.

We now prove (20) : let x ∈ X(S−T (uT )) with X defined in (3) and we introduce the function
F : R→ R defined by

F : y 7→
∫ y

x+Tf ′(S−T (uT )(x))

(
uT (s)− S+

T (S−T (uT ))(s)
)
ds. (24)

Since uT ∈ L∞(R) satisfies (9), we have

uT ∈ L1(R) ∩ L∞(R). (25)

By definition of S−T and S+
T (see Section 2.1), from [21, Theorem 11.2.2] and uT ∈ L∞(R), we have

S+
T (S−T (uT )) ∈ BVloc(R). Therefore, together with (19), we deduce that for any T > 0,

S+
T (S−T (uT )) ∈ BV (R) and S+

T (S−T (uT )) ∈ L1(R) ∩ L∞(R). (26)

From (24), (25) and (26), we have that

F ∈W 1,1(R) ∩W 1,∞(R). (27)

and for a.e y ∈ X(S+
T (S−T (uT ))),

F ′(y) = uT (y)− S+
T (S−T (uT ))(y). (28)

We now introduce the function p : X(S+
T (S−T (uT )))→ R defined by

p(y) = y − TS+
T (S−T (uT ))(y). (29)

From [21, Theorem 11.1.3], p(y) = ξ+(0) = ξ−(0) where ξ− and ξ+ denote respectively the minimal
and the maximal backward generalized characteristics associated with the solution S+

t (S−T (uT ))
emanating from (y, T ) (see Figure 4). From (24), (26) and [21, Theorem 1.7.4, Theorem 11.3.4],
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x

t

t = T

t = 0

×
x+ TS−

T (uT )(x)

×
y

x p(y)

ξ(
·)

ξ−
(·)

=
ξ
+
(·)

Figure 4: Plotting of the forward generalized characteristic ξ(·) emanating from (x, 0) and the
extremal backward generalized characteristics ξ−(·) and ξ+(·) emanating from (y, T ) associated
with the solution S+

t (S−T (uT )). We have p(y) := y − TS+
T (S−T (uT ))(y) = ξ+(0) = ξ−(0).

X(S+
T (S−T (uT ))) has full Lebesgue measure and

−
∫

R(uT (y)− S+
T (S−T (uT ))(y))h(y) dy = −

∫
X(S+

T (S−T (uT )))
(uT (y)− S+

T (S−T (uT ))(y))h(y) dy,

= −
∫
p−1(X(S−T (uT )))

F ′(y)h(y) dy

−
∫
X(S+

T (S−T (uT ))) \ p−1(X(S−T (uT )))
F ′(y)h(y) dy.

(30)
where p−1(X(S−T (uT ))) := {y ∈ X(S+

T (S−T (uT ))) / p(y) ∈ X(S−T (uT ))} (see an illustration in
Figure 5). By definition of S−T , using that uT ∈ L∞(R) satisfies (9) and [21, Theorem 6.2.6], we

x

t
t = T

t = 0

××××

z1 z2 = p(y)

(y, T )×

Figure 5: Illustration of (t, x) → S+
t (S−T (uT ))(x), p−1(X(S−T (uT )) ⊂ X(S+

T (S−T (uT )))(−−),
X(S+

T (S−T (uT ))) \ p−1(X(S−T (uT ))) (--) and discontinuous points of S+
T (S−T (uT )) (×). Here,

y ∈ X(S+
T (S−T (uT ))) \ p−1(X(S−T (uT ))), p(y) is defined in (29) and at any discontinuous points

(zk)k∈N of S−T (uT ) verifying S−T (uT )(zk−) < S−T (uT )(zk+), a rarefaction wave is created at time
t = 0.

have S−T (uT ) ∈ BV (R). As a consequence, S−T (uT ) has a countable number of discontinuous points
(zk)k∈N verifying S−T (uT )(zk−) < S−T (uT )(zk+). Moreover, if y ∈ X(S+

T (S−T (uT ))) \ p−1(X(S−T (uT ))),
from [21, Theorem 11.1.3] associated with the solution S+

t (S−T (uT )), we have S−T (uT )(p(y)−) <
S−T (uT )(p(y)+). Thus, a rarefaction wave is created at time t = 0 and at the position p(y), i.e
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y ∈ [p(y) + TS−T (uT )(p(y)−), p(y) + TS−T (uT )(p(y)+)]. We conclude that

X(S+
T (S−T (uT ))) \ p−1(X(S−T (uT ))) = ∪k∈N[zk + TS−T (uT )(zk−), zk + TS−T (uT )(zk+)]. (31)

Thus, (30) can be written as

−
∫

R(uT (y)− S+
T (S−T (uT ))(y))h(y) dy = −

∫
p−1(X(S−T (uT )))

F ′(y)h(y) dy

−∑k∈N

∫
Ik F

′(y)h(y) dy,

(32)

with
Ik := (zk + TS−T (uT )(zk−), zk + TS−T (uT )(zk+)). (33)

We now study each term on the right side of the equality (32).

• Let x ∈ X(S−T (uT )) and y ∈ p−1(X(S−T (uT ))). Applying Proposition 4.1 with u0 = S−T (uT )
and uT = uT , the equality (18) holds, i.e for any (x, p(y)) ∈ X(S−T (uT ))2,∫ p(y)+TS−T (uT )(p(y))

x+TS−T (uT )(x)

S+
T (S−T (uT ))(s) ds =

∫ p(y)+TS−T (uT )(p(y))

x+TS−T (uT )(x)

uT (s) ds, (34)

Using y ∈ p−1(X(S−T (uT ))) and [21, Theorem 11.1.3, Theorem 11.3.2] associated with the
solution S+

t (S−T (uT )), there exists a unique forward generalized characteristic ξ(·) emanating
from (p(y), 0) and ξ(T ) = p(y) + TS−T (uT )(p(y)) = y. From (24) and (34), we conclude that
for any y ∈ p−1(X(S−T (uT ))), F (y) = 0. From (27), F is a continuous function on R and from
(26) the set of discontinuous points of S+

T S
−
T (uT ) is countable. Then, together with (31), we

have for any y ∈ R\ (∪k∈NIk),
F (y) = 0. (35)

Therefore, for ε small enough, for any y ∈ R\
(
∪k∈NIk

)
, we deduce that

0 =
F (y + ε)− F (y)

ε
=

1

ε

∫ y+ε

y

F ′(s)ds. (36)

Combining (36) with Lebesgue differentiation Theorem, we have for a.e y ∈ p−1(X(S−T (uT )))

F ′(y) = 0. (37)

Thus, from (37), for every h ∈ TUT
ad

(S+
T (S−T (uT ))),

−
∫
p−1(X(S−T (uT )))

F ′(y)h(y) dy = 0. (38)

• Let x ∈ X(S−T (uT )) and y ∈ ∪k∈NIk with Ik defined in (33). Since a rarefaction is created
at (p(y), 0) (see Figure 5), we have

∂yS
+
T (S−T (uT ))(y) =

1

T
. (39)

Since h ∈ TUT
ad

(S+
T (S−T (uT ))) is an admissible perturbation, for every εn > 0 such that

εn → 0 when n → ∞ there exists hn ∈ L∞(R) such that limn→∞ hn = h in L∞(R) and
S+
T (S−T (uT )) + εnhn ∈ UTad. Thus,

∂yS
+
T (S−T (uT ))(y) + εn∂yhn(y) ≤ 1

T
in the sense of distributions. (40)
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Using (39) and (40), we have ∂yhn(y) ≤ 0 in the sense of distributions. Since limn→∞ hn = h
in L∞(R), hn tends to h in the sense of distributions and we conclude that for any admissible
perturbation h ∈ TUT

ad
(S+
T (S−T (uT ))),

∂yh(y) ≤ 0 in the sense of distributions. (41)

Applying Proposition 4.1 with u0 = S−T (uT ), uT = uT , the inequality (11) holds, i.e∫ y

x+TS−T (uT )(x)

uT (s) ds ≤
∫ y

x+TS−T (uT )(x)

S+
T (S−T (uT ))(s) ds,

From (24), we conclude that for any y ∈ ∪kIk

F (y) ≤ 0. (42)

Let k ∈ N. Using (27) and (35), we have F ∈ W 1,1
0 (Ik). Thus, there exists Fn ∈ C∞c (Ik)

such that Fn converges to F in W 1,1(Ik). Moreover, Fn := ρn ∗ F where ρn is a sequence
of positive mollifiers (see details in [11, Section 8]). Therefore, together with (42), we have
Fn(y) ≤ 0 for any y ∈ Ik. Besides, for every n ∈ N,

−
∫
Ik
F ′n(y)h(y) dy =

〈
∂yh, Fn

〉
, (43)

where
〈
·, ·
〉

is a duality bracket between the distribution ∂yh and the test function Fn ∈
C∞c (Ik). Using (41) and (42), we have

〈
∂yh, Fn

〉
≥ 0. From (43),

−
∫
Ik
F ′n(y)h(y) dy ≥ 0. (44)

Since Fn converges to F in W 1,1(Ik), by passing to the limit in (44), we conclude that, for
any admissible perturbation h ∈ TUT

ad
(S+
T (S−T (uT ))),

−
∫
Ik
F ′(y)h(y) dy ≥ 0. (45)

Using (32), (38) and (45), the inequality (20) holds.
2

4.2 On the solutions of the optimization problem (OT ).

We are now ready to prove Theorem 3.1. From Lemma 4.1, for every q ∈ UTad, we have

‖uT − S+
T (S−T (uT ))‖L2(R) ≤ ‖uT − q‖L2(R). (46)

From (23) and (46), we deduce that, for any u0 ∈ U0
ad,

‖uT − S+
T (S−T (uT ))‖L2(R) ≤ ‖uT − S+

T (u0)‖L2(R), (47)

with S−T (uT ) ∈ U0
ad using (22). Thus, S−T (uT ) is a minimizer of (OT ).

13



• Let u∗0 a minimizer of (OT ). Then u∗0 ∈ U0
ad and for any u0 ∈ U0

ad we have

‖uT − S+
T (u∗0)‖L2(R) ≤ ‖uT − S+

T (u0)‖L2(R). (48)

From (47) and (48), we immediately have S+
T (u∗0) = S+

T (S−T (uT )).

• Let u∗0 ∈ U0
ad satisfiying S+

T (u∗0) = S+
T (S−T (uT )). From (47), for any u0 ∈ U0

ad,

‖uT − S+
T (u∗0)‖L2(R) ≤ ‖uT − S+

T (u0)‖L2(R).

Thus, u∗0 is a minimizer of (OT ). This concludes the proof of Theorem 3.1.

5 Numerical investigations

5.1 Set of minimizers of (OT ) when uT is a classical shock.

In this section, we present how we can construct randomly a minimizer u∗0 ∈ BV (R) of (OT ) when
uT is a classical shock, i.e

uT = uL1(−∞,x̄) + uR1(x̄,∞), (49)

with uL > uR, x̄ ∈ R, T > 0. We introduce the set

Γ(uL, uR, x̄, T ) :=
{
γ ∈W 1,1 ([x̄− TuL, x̄− TuR],R]) /γ satisfies (A1), (A2), (A3) and (A4)

}
(50)

with

(A1) γ̇ ∈ BV (R)

(A2) γ(x̄− TuL) = 0,

(A3) γ(x̄− TuR) = 1
2T (u2

L − u2
R),

(A4) For every x ∈ [x̄− TuL, x̄− TuR],

γ(x) ≥ γ∗(x) := −T
∫ x̄−x

T

uL

sds.

An illustration of the set Γ(uL, uR, x̄, T ) is given in Figure 6.

Construction. We pick a random path γ ∈ Γ(uL, uR, x̄, T ) and from Theorem 4.1, the initial
data uγ0 ∈ BV (R) defined by

uγ0 =

 uL if x < x̄− TuL
γ̇(x) if x̄− TuL < x < x̄− TuR
uR if x̄− TuR < x

(51)

is a minimizer of (OT ) (see an illustration in Figure 6).

Example 1 Let T = 1 and uT (·) := 1(−∞,0)(·) − 1(0,+∞)(·). In Figure 1, two different initial
data defined by u1(x) = 1(−∞,0)(x) − 1(0,+∞)(x) and u2(x) = 1(−∞,− 1

4 )(x) + 21(− 1
4 ,− 1

12 )(x) −
1(− 1

12 ,+∞)(x) are constructed. The two γ1 : [−1, 1] → R and γ2 : [−1, 1] → R defined almost

everywhere by γ̇1(·) = u1(·) and γ̇2(·) = u2(·) belongs to Γ(1,−1, 0, 1), see Figure 7. From Theorem
4.1, S+

T (u1) = S+
T (u2) = uT .
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x

y

x̄− TuL x̄− TuR

γ∗(x̄− TuR)

γ∗(x̄− TuL)

γ1

γ2

γ∗

Figure 6: Let uT defined in (49). The set Γ(uL, uR, x̄, T ) is illustrated by the shaded area. The

function γ∗ is defined by γ∗(x) = −T
∫ x̄−x

T

uL
sds = S+

T (S−T (uT ))(x) for a.e x ∈ [x̄− TuL, x̄− TuR].

We have γ1 ∈ Γ(uL, uR, x̄, T ) and γ2 /∈ Γ(uL, uR, x̄, T ). From Theorem 4.1, uγ1

0 defined in (51) is
a minimizer of (OT ) while uγ2

0 is not.

x0 1−1 − 1
4 − 1

12

γ1(·)

γ∗(·)

γ2(·)

Figure 7: Plotting of γ1 and γ2 belonging to Γ(1,−1, 0, 1). For a.e x ∈ [−1, 1], γ̇∗(x) =
S+
T (S−T (uT ))(x), γ̇1(x) = u1(x) and γ̇2(x) = u2(x) where uT (·), u1(·) and u2(·) are defined in

Example 1.

5.2 Construction of a set of approximate minimizers for (OT )

In this section, we solve numerically the optimization problem (OT ) using Section 5.1.

Algorithm. Construction of an approximate random minimizer u∗0 of (OT ).
First, we construct numerically the backward-forward solution S+

T (S−T (uT )) using a wave-front
tracking algorithm, see [20]. Second, at each discontinuous point x̄ of S+

T (S−T (uT )) satisfying uL :=
S+
T (S−T (uT ))(x̄−) > S+

T (S−T (uT ))(x̄+) := uR, we pick a random path γ ∈ Γ(uL, uR, x̄, T ) defined
in (50) such that γ̇ belongs to the state mesh generated by the wave-front tracking algorithm.
Then for almost every x ∈ (x̄ − TuL, x̄ − TuR), u∗0(x) := γ̇(x). Finally, out of each interval
(x̄− TuL, x̄− TuR), u∗0 coincides with the approximate backward-forward solution S+

T (S−T (uT )).
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5.2.1 With attainable target uT

Let T = 1. We consider the target uT defined by uT (·) = 0.68751(−∞,4.6)(·) − 1(4.6,∞)(·) (Figure
8). Since uT (4.6+) < uT (4.6−), the inequality (2) holds and so uT (·) is an attainable function. As
a consequence, we have uT = S+

T (S−T (uT )). In Figure 8 and Figure 9, six approximate minimizers
u∗0 of (OT ) are constructed. Note that in the top left corner of Figure 9, S−T (uT ) is plotted with
respect to x.

Figure 8: The attainable target uT (·) = 0.68751(−∞,4.6)(·)− 1(4.6,∞)(·)

5.2.2 With unattainable target uT

In Example 2 and Example 3, the optimization problem (OT ) is solved numerically with two
unattainable targets.

Example 2 Let T = 2. We consider the target uT defined by

uT (x) =

{
2 if x ∈ (−0.2, 1.1)

⋃
(2, 3.1)

⋃
(4.1, 5.3)

⋃
(6.1, 7.2),

−1 otherwise.

Since, for every x ∈ {−0.2, 2, 4.1, 6.1}, we have uT (x−) < uT (x+). Therefore, the inequality (2)
does not hold. Thus, uT is an unattainable target and S+

T (S−T (uT )) 6= uT .

• In Figure 10a), an approximate function of (x, t)→ S−t (uT )(−x) is plotted.

• In Figure 10b), an approximate function of S−T (uT ) of (OT ) is plotted.

• In Figure 10c), an approximate function of (x, t)→ S+
t (S−T (uT ))(x) is plotted.

• In Figure 10d), the function uT and an approximate function of x → S+
T (S−T (uT ))(x) are

plotted.

Four approximate minimizers u∗0 of (OT ) are constructed in Figure 11.

Example 3 Let T = 1. We consider the target uT defined by

uT = −1(−∞,−0.2) + 21(−0.2,1.1) + 0.161(1.1,2) + 1.331(2,3.1) − 0.771(3.1,4.1)

−0.421(4.1,5.3) − 1(5.3,6.1) + 1.911(6.1,7.2) − 1(7,2,∞).

The function uT is an unattainable target. In Figure 12, the function uT and x 7→ S+
T (S−T (uT ))(x)

are plotted.
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M = 1 discontinuous point M = 2 discontinuous points

M = 3 discontinuous points M = 4 discontinuous points

M = 5 discontinuous points M = 6 discontinuous points

Figure 9: Construction of six approximate minimizers u∗0 of (OT ) having M ∈ {1, · · · , 6} discon-
tinuous points. T = 1, uT = uL1(−∞,x̄) + uR1(x̄,∞) with uL = 0.6875, uR = −1, x̄ = 4.6.
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