

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

CLUSTERING IN PURE-ATTENTION HARDMAX TRANSFORMERS AND ITS ROLE IN SENTIMENT ANALYSIS

Albert Alcalde[†]

Giovanni Fantuzzi[†]

Enrique Zuazua[†]

[†]Chair for Dynamics, Control, Machine Learning and Numerics – AvH Professorship, FAU Erlangen-Nürnberg, Germany.

Introduction

The transformer is a fundamental model in contemporary machine learning whose power is attributed to self-attention layers. Heuristically, they capture 'context' by identifying relations between components of the transformer's input data, which is observed to facilitate prediction tasks. Our work [1] rigorously justifies these heuristics by proving that:

Computational contribution

We leverage our clustering results to design an interpretable transformer-based model to solve the supervised learning task of sentiment analysis:

"predict the sentiment of $50\,000$ movie reviews labeled as

- self-attention layers entail a clustering effect in the infinite-depth limit
- transformers leverage the clustering to capture 'context' in sentiment analysis.

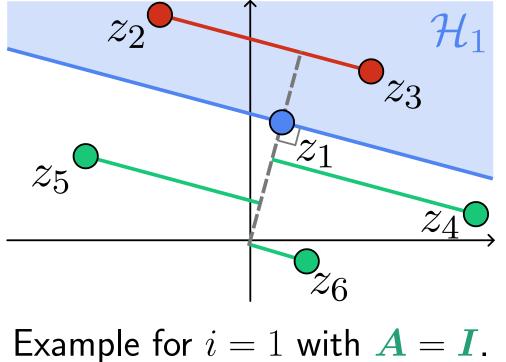
Pure-attention hardmax transformers

We study **pure-attention hardmax transformers**, parameterized by a symmetric positive definite matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ and a scalar $\boldsymbol{\alpha} > 0$. They act on a collection of tokens $z_1, \ldots, z_n \in \mathbb{R}^d$. Given initial token values z_1^0, \ldots, z_n^0 , the value z_i^{k+1} of token z_i returned by the k^{th} layer of our transformer model IS

$$z_{i}^{k+1} = z_{i}^{k} + \frac{\boldsymbol{\alpha}}{1+\boldsymbol{\alpha}} \frac{1}{|\mathcal{C}_{i}^{k}|} \sum_{j \in \mathcal{C}_{i}^{k}} \left(z_{j}^{k} - z_{i}^{k} \right), \qquad (1a)$$
$$\mathcal{C}_{i}^{k} = \left\{ j \in [n] : \left\langle \boldsymbol{A} z_{i}^{k}, z_{j}^{k} \right\rangle = \max_{\ell \in [n]} \left\langle \boldsymbol{A} z_{i}^{k}, z_{\ell}^{k} \right\rangle \right\}, \qquad (1b)$$

where $|\mathcal{C}_i^k|$ is the cardinality of the index set \mathcal{C}_i^k , and $\langle \cdot, \cdot \rangle$ denote the standard inner product in \mathbb{R}^d .

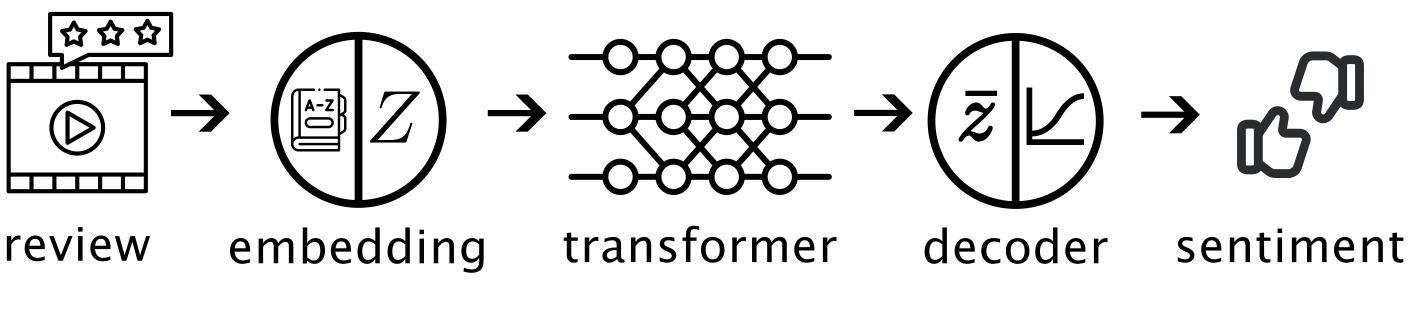
As in [2,3], we view (1) as a discrete-time dynamical system describing the evolution of tokens. Our system has a simple geometric interpretation:



positive (1) or negative (0) from the benchmark IMDb dataset [4]."

Each review has n = 128 words, uniquely identified with a basis vector in \mathbb{R}^{W} . The proposed model inputs a movie review $X \in \mathbb{R}^{n \times W}$ and outputs a prediction $\hat{y} \in \mathbb{R}$, using three components with explainable roles:

- **Embedding:** select meaningful words as leaders.
- Transformer: capture 'context' and reduce dimensionality by clustering tokens around leaders.
- Decoder: project clustered token values to a positive or negative sentiment prediction.



Training and results. We fix depth K = 8 and encoder dimension d = 2, and train embedding $m{E} \in \mathbb{R}^{W imes d}$, decoder vector $m{w} \in \mathbb{R}^d$, decoder bias $\boldsymbol{v} \in \mathbb{R}$, and step-size $\boldsymbol{\alpha} > 0$. Our results confirm:

 \blacktriangleright K = 8 layers are enough to approximate the asymptotic clustered state the leaders furthest away from decision hyperplane (dashed black line) indeed convey sentiment: **amazing**, **torture**

token z_i is attracted to the tokens with largest orthogonal projection in the direction of Az_i , α acting as an intensity regulator.

Theoretical contribution

Motivated by the increasing depth of transformers, we study the asymptotic behavior of tokens evolving according to (1). We prove that, as $k \to \infty$, tokens converge to a clustered equilibrium where the cluster points are either special tokens that we call **leaders**, or particular convex combinations thereof.

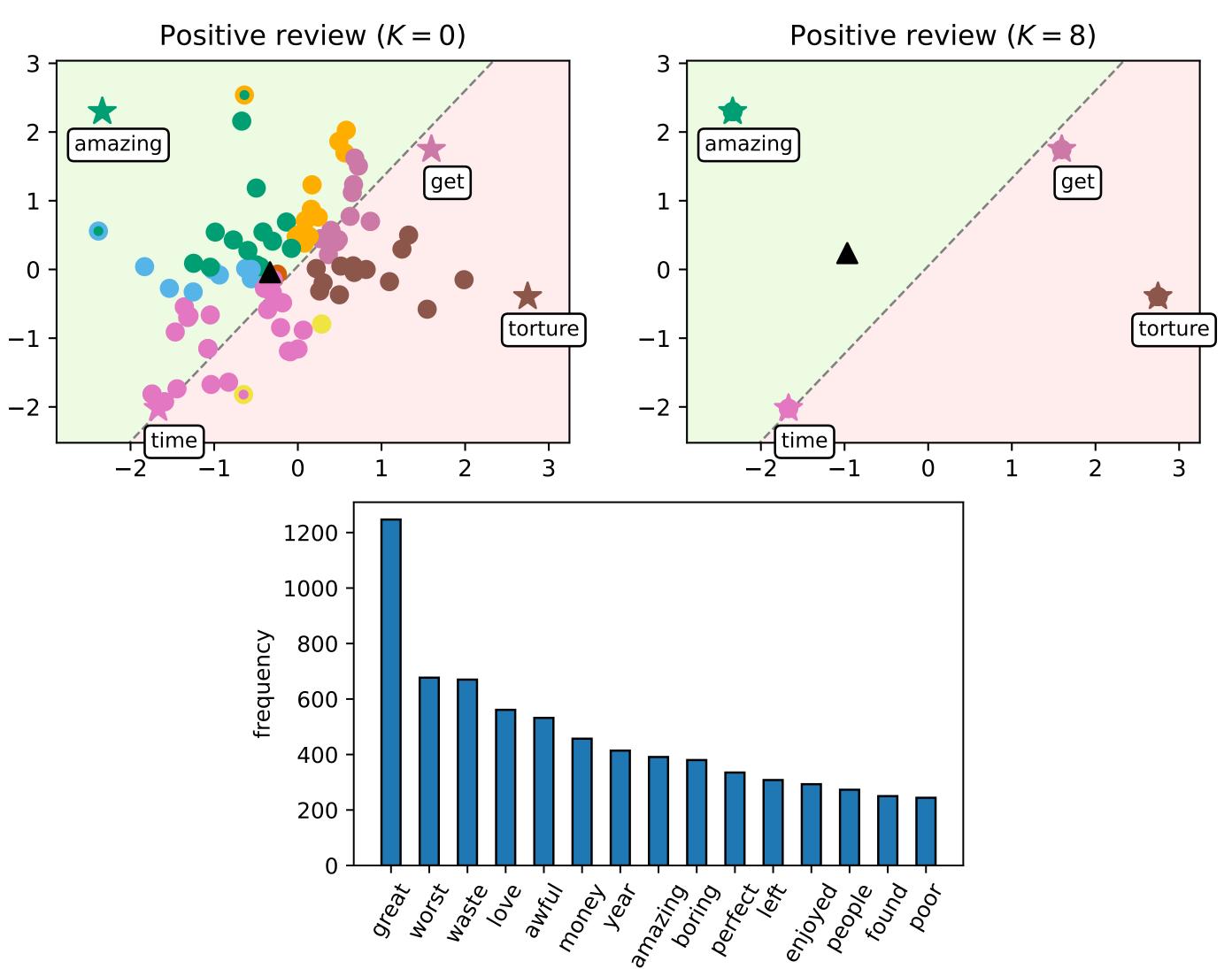
Definition. Token z_i is a *leader* if $\exists k \in \mathbb{N}$ such that $\mathcal{C}_i^k = \{i\}$.

Theorem. Assume the initial token values $z_1^0, \ldots, z_n^0 \in \mathbb{R}^d$ are nonzero and distinct, and $A \in \mathbb{R}^{d \times d}$ is symmetric positive definite. Then, the set of leaders \mathcal{L} is not empty, and there exist a convex polytope \mathcal{K} with $|\mathcal{L}|$ vertices and a finite set $S \subset \partial \mathcal{K}$ such that:

- (i) Every token converges to a point in \mathcal{S} .
- (ii) Every leader converges to a distinct vertex of \mathcal{K} in finite layers.
- (iii) If $s \in S$ is not a vertex of \mathcal{K} , then it is a projection of the origin onto a face of \mathcal{K} w.r.t. the norm associated with A.

Selected publications

▶ the 15 most frequent leaders in correctly classified test reviews furthest from decision hyperplane mostly related with sentiment.



[1] Alcalde, A., Fantuzzi G., Zuazua **Clustering in pure-**E. (2024). attention hardmax transformers and its role in sentiment analy**sis.** arXiv:2407.01602.

[3] Geshkovski, B., Letrouit, C., Polyanskiy, Y., Rigollet, P. (2023). A mathematical perspective on transformers. arXiv:2312.10794.

[2] Geshkovski, B., Letrouit, C., Polyanskiy, Y., Rigollet, P. (2024). The emergence of clusters in self-attention dynamics. Advances in NeurIPS, 36.

[4] Maas A. L. *et al.* (2011). Learning word vectors for sentiment analysis. In Proceedings of HLT '11, pages 142–150.

Conclusions and further work

- Clustering has been rigorously proven for a class of transformers, and directly related to 'context' emergence in a language modelling application.
- ▶ It remains to extend the analysis for general $A \in \mathbb{R}^{d \times d}$, specially relevant in applications where this matrix is typically low-rank.
- \triangleright As further research, one could constructively choose A and α to control a full transformer. The dimensionality reduction of self-attention should help obtain a simpler control.

Alexander von Humboldt Stiftung/Foundation