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Abstract

We explore the capacity of neural ODEs for supervised learning from the per-

spective of simultaneous control. We consider the parameters as piecewise con-

stant functions in time and construct them explicitly (⇒ suboptimal controls).

First, we focus on data classification by controlling clusters of points belonging

to two classes. We estimate the number of neurons that neural ODEs require

to classify a generic pair of point sets.

Secondly, we analyze the interaction and exchangeability of depth and width for

simultaneous control. We then focus on the case of constant parameters, where

the model is autonomous.

Model

Residual networks: xk+1 = xk + ℎ𝑊𝑘𝜎 (𝐴𝑘xk + bk) , 𝑘 = 0, … , Nlayers − 1.

↓ (ℎ → 0)

Neural ordinary differential equations (neural ODEs, [5] )

{
̇x(𝑡) = ∑𝑝

𝑖=1 wi(𝑡)𝜎 (ai(𝑡) ⋅ x + 𝑏𝑖(𝑡)) , 𝑡 ∈ (0, 𝑇 ),
x(0) = x0 ∈ ℝ𝑑,

(1)

where 𝑑 ≥ 2 and

𝜃 ≔ (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ∶ (0, 𝑇 ) → (ℝ𝑑 × ℝ𝑑 × ℝ)𝑝

piecewise constant (PC) controls.

Predictive model: Flow map

Φ𝑡(⋅; 𝜃) ∶ ℝ𝑑 ⟶ ℝ𝑑, x0 ⟼ x(𝑡) solution of (1).

Complexity = Number of switches 𝐿 × constant width 𝑝.
Finite dataset 𝒟 = {(xn, yn)} ⊂ ℝ𝑑 × 𝒴

⎧{
⎨{⎩

Binary classification: 𝒴 = {1, 0} ⟷ {𝑥(𝑗) > 1}⏟⏟⏟⏟⏟
Ω1

, {𝑥(𝑗) < 1}⏟⏟⏟⏟⏟
Ω0

.

Interpolation: 𝒴 = ℝ𝑑.

Worst-case scenario:
(W-CS)

Random (xn, yn), indep. and uniformly distributed.

Basic dynamics:

a(𝑡), 𝑏(𝑡) define a hyperplane 𝐻(x) = a(𝑡) ⋅ x(𝑡) + 𝑏(𝑡) = 0 in ℝ𝑑.

𝜎(𝑧) = (𝑧)+ “activates” the half-space 𝐻(x) > 0 and “freezes” 𝐻(x) ≤ 0.
w(𝑡) determines the direction of the field in 𝐻(x) > 0.

Figure 1. Contraction (left), translation (center), expansion (right).

Problem 1: Classification (“The Rubik’s cube”)

Statement

For any 𝑇 > 0, find 𝜃 such that Φ𝑇(xn; 𝜃) ∈ Ω𝑦𝑛
for all 𝑛 with minimal com-

plexity 𝐿 (having fixed 𝑝 = 1) .

Theorem 1 (Probabilistic bound on complexity, [1])

Assume that #{xn} = #{xm} = 𝑁 and xn, xm ∼ 𝑈 ([0, 1]𝑑). For any 𝑇 > 0,
there exist 𝑗 ∈ {1, … , 𝑑} and 𝜃 ∶ (0, 𝑇 ) → ℝ2𝑑+1 PC such that for all 𝑛, 𝑚

Φ𝑇(xn; 𝜃)(𝑗) > 1 and Φ𝑇(xm; 𝜃)(𝑗) < 1,
and for 𝑘 = 0, … , 2𝑁 − 2, the number of switches 𝐿 follows
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⎝

𝑁
∑

𝑝=⌈𝑘+3
2 ⌉

(𝑁 − 1
𝑝 − 1

)
2

+
𝑁−1
∑

𝑝=⌈𝑘+1
2 ⌉

(𝑁 − 1
𝑝

)(𝑁 − 1
𝑝 − 1

)⎞⎟
⎠

𝑑

(2(𝑁!)2

(2𝑁)!
)

𝑑

.

Linear separability/Constant controls (𝑘 = 0):

ℙ(𝐿 = 0) ≥ 1 − (2(𝑁!)2

(2𝑁)!
)

𝑑

∼ 1 − exp (−
√

𝜋𝑁𝑑
22𝑁−1 ) .

(a) Case 𝑘 = 2𝑁 − 2 (b) Algorithm for theorem 1. (c) ℙ(𝐿 ≤ 𝑘) vs 𝑘 for 𝑁 = 10 and several 𝑑

Theorem 2 (Cluster-based classification inW-CS, [1])

Let {xn}, {xm} ⊂ ℝ𝑑 be in general positiona. For any 𝑇 > 0 and 𝑗 ∈ {1, … , 𝑑},
there exists 𝜃 ∶ (0, 𝑇 ) → ℝ2𝑑+1 PC such that for all 𝑛, 𝑚

Φ𝑇(xn; 𝜃)(𝑗) > 1 and Φ𝑇(xm; 𝜃)(𝑗) < 1.
Furthermore, the number of switches is

𝐿 = 4 ⌈min{#{xn}, #{xm}}
𝑑

⌉ − 1.

(d) GP in ℝ3. (e) Algorithm for theorem 2 (one iteration). (f) 𝐿 (green) and 𝐿experimental (purple) vs 𝑑.

aNo 𝑑 + 1 points lie on the same hyperplane.

Problem 2: Interpolation (“Depth vs width”)

Statement

For any 𝑇 > 0, study the relation between 𝑝, 𝐿 that guarantees the existence

of 𝜃 such that Φ𝑇(xn; 𝜃) = yn for all 𝑛.

Theorem 3 (Simultaneous control, [2])

Let {(xn, yn)}𝑁
𝑛=1 ⊂ (ℝ𝑑)2 and 𝑇 > 0. There exists 𝜃 ∶ (0, 𝑇 ) → ℝ𝑑×𝑝 × ℝ𝑝×𝑑 × ℝ𝑝

PC such that

Φ𝑇(xn; 𝜃) = yn, for all 𝑛 = 1, … , 𝑁.

Furthermore, the number of switches is 𝐿 = 2 ⌈𝑁
𝑝 ⌉ − 1.

(g) Step 1: Control 𝑑 − 1 coordinates. (h) Step 2: Control the remaining coordinate.

Is it possible to achieve 𝐿 = 0?

Special case 1: High dimensions

If 𝑑 > 𝑁 then it can improved to 𝐿 = 2 ⌈𝑁
𝑝 ⌉ − 2.

Special case 2: Semi-autonomous

In Thm 3 we can take constant w, a and 𝑏 = 𝑏(𝑡). Build new basis to eliminate Step 1.

Theorem 4 (Relaxation: Approximate control, [2])

Let {(xn, yn)}𝑁
𝑛=1 ⊂ (ℝ𝑑)2 and 𝑇 > 0. There exists 𝜃 ∈ ℝ𝑑×𝑝 × ℝ𝑝×𝑑 × ℝ𝑝 and

𝐶 > 0 independent of 𝑝 such that

sup
𝑛∈{1,…,𝑁}

|yn − Φ𝑇(xn; 𝜃)| ≤ 𝐶
log2(𝑚)

𝑚1/𝑑 , for 𝑚 = (𝑑 + 2)𝑑𝑝.

Figure 2. Handmade vector field that interpolates 𝒟, later approximated with system (1).

Conclusions

The complexity required to classify any generic dataset is 1 + 𝑂(𝑁/𝑑).
Increasing 𝑝 allows reducing 𝐿 for interpolation as 1 + 𝑂(𝑁/𝑝).
An autonomous, wide enough neural ODE can achieve approx. control.
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