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Introduction
This poster presents two main results from [1]:

▶ We construct ReLU neural networks with fixed width and explicit parameters that
achieve simultaneous controllability, ensuring the classification of any dataset with N
points and M classes.

▶ We establish a universal approximation result for Lp functions using neural networks
with a fixed width, providing explicit estimates for the required depth (number of
layers) for the approximation.

In both cases, the network parameters are explicitly constructed.

Multilayer Perceptron
We consider the following neural network architecture:

xk = σ(Wk · xk−1 + bk), k ∈ {1, . . . , L},
where L ≥ 1, and {Wk, bk}Lk=1 ⊂ Rdk+1×dk × Rdk+1, with dk ≥ 1. Here, σ is the ReLU
function σ(x) = max{0, x} for x ∈ R. If x ∈ Rd, then:

σ(x) = σ
(
x1, . . . , xd

)⊤
=
(
σ(x1), . . . , σ(xd)

)⊤
.

The following diagram illustrates this discrete dynamical system:

Denote by hk(x) = Wk · x + bk, and consider the input-output map:

ϕL(x) = ϕL({Wk, bk}Lk=1,x) = (σ ◦ hL ◦ · · · ◦ σ ◦ h1)(x).

Let WL = {Wk}Lk=1 and BL = {bk}Lk=1, and denote by:

N(W) = max
k∈{1,...,L}

{dk}

the neural network width.
Main question: Let d,N,M ≥ 1, and let {xi, yi}Ni=1 ⊂ Rd × {1, . . . ,M} be a given
dataset. Does there exist L > 0 and (WL,BL) such that:

ϕL(xi) = yi for every i ∈ {1, . . . , N}?
This is referred to as simultaneous controllability or finite sample memorization.

Dynamics Interpretation
If W ∈ R1×2 and b ∈ R, then

H(W, b) = {x ∈ R2 : W · x + b = 0},
defines a hyperplane.

In the case where (w1, w2)
T = W ∈ R2×2 and (b1, b2)

T = b ∈ R2, they define two
hyperplanes H1(w1, b1) and H2(w2, b2).

Different regions are mapped to different locations, and one region collapses
to a single point.

Main Results
Theorem 1 (Simultaneous Controllability): Consider integers d,N,M ≥ 1 and a
dataset {xi, yi}Ni=1 ⊂ Rd × {1, . . . ,M}. For L = 2N + 4M − 1 and N(W) = 2, there
exist parameters WL and BL such that the input-output map satisfies:

ϕL(WL,BL, xi) = yi, for every i ∈ {1, . . . , N}.
Moreover, this result cannot be achieved with a width of 1.
Proof: The proof consists of 4 steps:

Step 1 We define ϕL1
1 that projects d-dimensional points into 1-dimensional points.

Step 2 We define ϕL2
2 that collapses points of the same class into a single point.

Step 3 We define ϕL3
3 that sorts the data based on the labels.

Step 4 We define ϕL4
4 that maps the sorted data to their respective labels.

Finally, ϕL = (ϕL4
4 ◦ ϕL3

3 ◦ ϕL2
2 ◦ ϕL1

1 ) satisfies simultaneous controllability. □

Theorem 2 (Universal Approximation Theorem for Lp): Let 1 ≤ p < ∞, d ≥ 1 be an
integer, and Ω ⊂ Rd a bounded domain. For any f ∈ Lp(Ω;R+) and ε > 0, there exist a
depth L = L(ε) ≥ 1 and parameters WL and BL such that the input-output map ϕL

with N(W) = d + 1 satisfies:

∥ϕL(WL,BL, ·)− f (·)∥Lp(Ω;R+) < ε.

Additionally, for all f (·) ∈ W 1,p(Ω;R+), we have:

L(ε) ≤ C∥f (·)∥dpW 1,p(Ω;R+)
ε−dp, (1)

where C is a positive constant independent of f and ε.
Proof: Two-step approximation:

Let

fh(x) =
∑
H∈Hh

fHχH(x), where fH :=
1

md(H)

∫
H

f (x) dx,

for each H ∈ Hh. Then, there exists h1 > 0 such that for all h < h1, we have
∥f − fh∥Lp(C;R+) < ε/2. Next, we construct two neural networks such that:

We define ϕL = ϕ2 ◦ ϕ1 and show that:

∥fh − ϕL∥Lp(H;R+) = 0 and ∥fh − ϕL∥Lp(Gδ
h;R+) < ε/2.

Finally, we deduce:

∥f − ϕL∥Lp(Ω;R+) ≤ ∥f − fh∥Lp(C;R+) + ∥fh − ϕL∥Lp(C;R+) < ε. □

Remarks
▶ Our work is motivated by [2], where simultaneous controllability results

and the UAT were proven using a geometrical interpretation of NODEs.

▶ In [1], simultaneous controllability is also proven when labels are in Rm,
as well as the universal approximation for functions in Lp(Ω;Rm

+ ). In
both cases, the parameters are explicitly characterized.

▶ The explicit parameters can be used for classification problems; see ⇒
▶ The neural network width in Theorem 2 is near optimal. In [3], it was

proven that the UAT does not hold for networks with a width less than d.
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