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Daniël Veldman
Chair in Dynamics, Control, and Numerics, Friedrich-Alexander-University Erlangen-Nürnberg

Contents

1.A Introduction
1.B A basic gradient descent algorithm
1.C Gradient computation in optimal control problems
1.D Time discretization of optimal control problems
1.E Appendix: Existence and uniqueness of minimizers
1.F Appendix: Inequality constraints



1.A Introduction



A Practical Introduction to Control, Numerics and Machine Learning
Prof. Enrique Zuazua, Dr. Daniël Veldman.

This course covers the interface between Control, Numerics, and Machine Learning
(Supervised Learning and Universal Approximation)

Control Theory Numerical Analysis

Machine Learning

I Day 1: Discretization of optimal control problems
I Day 2: Backpropagation in (residual) neural networks
I Day 3: Stochastic algorithms for the training of (residual) neural networks

There is a Matlab (Octave) exercise for every day.
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Finite-dimensional optimal control problem

Prototypical problem:

min
u∈L2([0,T ],Rq)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

subject to the dynamics

Eẋ(t) = Ax(t) + Bu(t) + w(t), x(0) = xinit.

Here,
I u(t) : [0, T ]→ Rq is the control,
I x(t) : [0, T ]→ RN is the state,
I xd(t) : [0, T ]→ RN is the desired state (target),
I w(t) : [0, T ]→ RN is an offset (disturbance),
I xinit ∈ RN is the initial state,
I A ∈ RN×N is the system matrix,
I E ∈ RN×N is the (invertible) mass matrix,
I Q ∈ RN×N is a positive semi-definite weighting matrix,
I R ∈ Rq×q is a positive definite weighting matrix.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 4



Finite-dimensional optimal control problem

Prototypical problem:

min
u∈L2([0,T ],Rq)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

subject to the dynamics
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Finite-dimensional optimal control problem

Tomorrow, we will also consider the nonlinear version

min
u∈L∞([0,T ],Rq)

J(u) =
∫ T

0
f0(t,x(t),u(t)) dt + g0(x(T )),

subject to the dynamics

ẋ(t) = F(t,x(t),u(t)), x(0) = xinit.

Here,
I u(t) : [0, T ]→ Rq is the control,
I x(t) : [0, T ]→ RN is the state,
I xinit ∈ RN is the initial state,
I F : [0, T ]× RN × Rq → RN describes the dynamics,
I f0 : [0, T ]× RN × Rq → R+ is the running cost,
I g0 : RN → R+ is the terminal cost.
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Remarks

I Problems of this form appear in numerous applications.
Mechatronics, Aeronautics, Chemical Engineering, etc.
An example will be provided in the Matlab exercise at the end of the lecture.

I We focus on the case where the dimension N of the state space is large.
This case for example happens when considering
. the (spatial) discretization of Partial Differential Equations (PDEs),
. large scale systems of interacting particles or agents,
. training of neural networks on large data sets.

Riccati theory cannot be applied because of large computational cost.

I For the Linear-Quadratic (LQ) problem, the minimizer u∗(t) exists and is unique
when Q < 0 and R � 0.
(see slides in Appendix E)
For the nonlinear problem, the minimizer u∗(t) exists (under suitable assumptions),
but it does not need to be unique.
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1.B A basic gradient descent algorithm



Gradient descent

Question: How to we compute the minimizer u∗ of a (convex) functional J(u).

Basic idea: Start from an initial guess u0.
Compute iterates by updating uk in the direction of the steepest descent (i.e. −∇J ),

uk+1 = uk − βk∇J(uk), βk > 0,

where β denotes the step size.

Three problems:
I How to compute ∇J?
I How to choose the stepsize βk?
I When do we stop the iterations?
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Computation of the gradient/ sensitivity analysis
By definition of the gradient, we have that

〈∇J, ũ〉 := lim
h→0

J(u + hũ)− J(u)
h

= ∂J

∂u
(u)ũ,

for all perturbations ũ.

Note:
I ∇J(u) and ∂J

∂u are not the same:
∇J(u) is a column vector and ∂J

∂u is a row vector.
I We can use any innerproduct 〈·, ·〉 at the LHS.

This will not affect ∂J∂u but it will change ∇J !

Two examples:
I When 〈x, y〉 = x>y, i.e. when we use the standard Euclidean inner product

∇J =
(
∂J

∂u

)>
.

I When we use a weighted inner product 〈x, y〉 = x>Wy, for a symmetric and positive
definite matrix W, we get that

∇J = W−1
(
∂J

∂u

)>
.
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Constrained optimization
Consider the optimization problem

min
u∈Uad

J(x,u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to

Ax + Bu = 0.

Assume that A is invertible such that we can consider J(x(u),u) =: J̃(u).

Question: How to compute the Jacobian?

ANSWER 1: By finite differences.
Choose a step size h (typically 10−5) and approximate for every m ∈ {1, 2, . . . ,M}(

dJ̃
du

(u)
)
m

= dJ̃
dum

(u) ≈ J̃(u + hem)− J(u)
h

= J(x + δxm,u + hem)− J(x,u)
h

,

where δxm satisfies
Aδxm + hBem = 0.

Note: we need to solve M linear systems in N unknowns.
This is very time-consuming when M and N are large.
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Constrained optimization
Consider the optimization problem

min
u∈Uad

J(x,u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to

Ax + Bu = 0.
Assume that A is invertible such that we can consider J(−A−1Bu,u) =: J̃(u).

Question: How to compute the Jacobian?

ANSWER 2: Analytically.
Similarly, as in the exercise we can use the chain rule to find

dJ̃
du

= ∂J

∂x
∂x
∂u

+ ∂J

∂u
= −∂J

∂x
A−1B + ∂J

∂u
.

The computational cost depends on where you put the brackets:

dJ̃
du

= −∂J
∂x
(
A−1B

)
+ ∂J

∂u
= −

(
∂J

∂x
A−1

)
B + ∂J

∂u
.

Note: the first expression requires the solution of M linear system in N unknowns,
whereas the second requires requires the solution of 1 linear system in N unknowns.
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Constrained optimization
Consider the optimization problem

min
u∈Uad

J(x,u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to
Ax + Bu = 0.

Assume that A is invertible such that we can consider J(x(u),u) =: J̃(u).

Question: How to compute the Jacobian?

ANSWER 3: Using the Lagrangian.
Introduce the vector of Lagrange multipliers λ and form the Lagrangian

L(x,u,λ) = J(x,u) + λ> (Ax + Bu) .
Take the partial derivative w.r.t. u to find the Jacobian

dJ̃
du

= ∂L
∂u

= ∂J

∂u
+ λ>Bu.

Set the partial derivative w.r.t. x to zero to determine λ:

0 = ∂L
∂x

= ∂J

∂x
+ λ>A, −λ> = ∂J

∂x
A−1, λ = −

(
A>
)−1

(
∂J

∂x

)>
.

The result is the same as for answer 2 (with well-placed brackets).
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The choice of the step size

We have that

J(uk+1) = J(uk − βk∇J(uk)) = J(uk)− βk
∂J

∂uk
∇J(uk) + O(β2

k)

= J(uk)− βk〈∇J(uk),∇J(uk)〉 + O(β2
k).

As long as we are not at a critical point (∇J(uk) = 0) 〈∇J(uk),∇J(uk)〉 > 0, so

J(uk+1) < J(uk)

for βk > 0 small enough.

We can thus take the following simple but effective approach (used at every iteration).
I Choose a step size β > 0.
I Compute J(uk − β∇J(uk)).
I If J(uk − β∇J(uk)) < J(uk), we accept this step size.

If not, we reduce the step size (e.g. by a factor 2) and recompute J(uk − β∇J(uk)).
This should always lead to a βk > 0 such that J(uk − βk∇J(uk)) < J(uk).
(Provided that ∇J(uk) is computed sufficiently accurate)

A proof for the convergence of the gradient descent algorithm is in the lecture for Day 3.
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Termination/convergence conditions

Typical convergence conditions:
I Relative decrease in the cost functional is sufficiently small:

J(uk)− J(uk+1) < tolJ(uk).

I Relative change in iterates is sufficiently small:

|uk−1 − uk| < tol|uk|.

I The gradient is sufficiently small:

|∇J(uk)| < tol.

In the first two conditions, we typically use tol ∈ [10−6, 10−3].

Often not all three conditions are checked simultaneously, but only one or two are used.

Note: tol in the last condition is an absolute tolerance, while tol in the first two
conditions is a relative tolerance.
A reasonable magnitude for the absolute tolerance might be difficult to estimate.
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Pseudo code of the resulting gradient descent algorithm

I Choose an initial guess u0
I Choose an initial step size β
I Compute J0 = J(u0).
I for i = 1: max iters
I Compute g0 = ∇J(u0).
I Set J1 =∞ and β = 4β.
I while J1 > J0
I Set β = β/2.
I Set u1 = u0 − βg0.
I Compute J1 = J(u1).
I if convergence conditions are satisfied
I Return u1, J1.
I Set u0 = u1
I Set J0 = J1
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Improved step size selection
For a convex C2-functional J(u),
we can estimate the stepsize based on a quadratic approximation:

uk+1 = uk − βk∇J(uk), βk > 0,

J(uk+1) ≈ J(uk)− βkG + H

2
β2
k + O(β3

k),
with

G = 〈∇J(uk),∇J(uk)〉,

H =
[

d2

dθ2J(uk + θ∇J(uk))
]
θ=0

.

Note: G is positive because we update in a descent direction.
H is positive because J is convex.

Set derivative of the quadratic approximation to zero:

−G + Hβk,opt = 0, βk,opt = G

H
.

When J is quadratic, J(uk + βk,opt∇J(uk)) = J(uk)− βk,optG + H
2 β

2
k,opt = J(uk)− G2

2H
When J is not quadratic, there are higher order terms and we cannot guarantee that
J(uk + βk,opt∇J(uk)) ≤ J(uk). We still need to do a line search (starting from βk,opt).
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Computation of H (example)
Consider the optimization problem

min
u∈Uad

1
2x>Qx + 1

2u>Ru

with Q = Q>, R = R>, u ∈ Uad ⊂ RM , and x ∈ RN subject to
Ax + Bu = 0.

As explained before, we can compute the gradient ∇J(uk) at the current iterate uk.
We want to compute

H =
[

d2

dθ2J(uk + θ∇J(uk))
]
θ=0

.

Observe that
J(uk + θ∇J) = 1

2(xk + θx∇k )>Q(xk + θx∇k ) + 1
2(uk + θ∇J(uk))>R(uk + θ∇J(uk))

= 1
2x>k Qxk + 1

2u>k Ruk + θ
(

x>k Qx∇k + u>k R∇J(uk)
)

θ2
(

1
2

(
x∇k
)>

Qx∇k + 1
2 (∇J(uk))>R∇J(uk)

)
,

where xk = A−1Buk and x∇k = A−1B∇J(uk). Differentiating twice to θ, we obtain

H =
(

x∇k
)>

Qx∇k + (∇J(uk))>R∇J(uk).
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Pseudo code of the gradient descent algorithm with improved step size

For the Linear-Quadratic (LQ) problem, the following algorithm can be used.

I Choose an initial guess u0
I Choose an initial step size β
I Compute J0 = J(u0).
I for i = 1: max iters
I Compute g0 = ∇J(u0).
I Compute H = d2

dθ2∇J(u0 + θg0).
I Set βopt = G/H .
I Set u1 = u0 − βoptg0.
I Compute J1 = J(u1).
I if convergence conditions are satisfied
I Return u1, J1.
I Set u0 = u1
I Set J0 = J1
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Other algorithms
There are many more gradient-based algorithms.
Gradient-descent/steepest descent is the simplest one.
For quadratic problems, the Conjugate Gradient (CG) method is the best method.
When optimizing u ∈ RM , it converges in at most M iterations to the minimizer.
For nonquadratic problems, other algorithms can be more effective.
see e.g. Ascher, The chaotic nature of faster gradient descent methods
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1.C Gradient computation in optimal control problems



Optimal control
We now consider optimization over time dependent functions u(t) ∈ L2([0, T ],RM).

The prototypical problem:

min
u∈L2([0,T ],Rq)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

subject to the dynamics

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

Assumption: Q and R are symmetric.
Assumption: the matrix Q is positive semi-definite and the matrix R is positive definite,
i.e.

x>Qx ≥ 0, u>Ru > 0,
for all x ∈ RN , 0 6= u ∈ RM .

Theorem

Under this assumption, the minimizer u∗(t) of J(u) exists and is unique.

This follows because J is α-convex, with α = λmin(R) > 0.
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What is the gradient now?

We are now optimizing over the infinite-dimensional space L2([0, T ],RM).
We can therefore no longer use that

〈∇J(u), ũ〉 = dJ
du

(u)ũ,

and simply use the chain rule to find dJ
du(u).

(It is not so clear what dJ
du(u) now is supposed to mean!)

We therefore start from the basic definition:

〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
h

.

Note: this is the Gateaux derivative of J at point u in the direction ũ.
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The directional derivative (1/2)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

J(u+hũ) = 1
2

∫ T

0
(xh(t)−xd(t))>Q(xh(t)−xd(t)) dt+1

2

∫ T

0
(u(t)+hũ(t))>R(u(t)+hũ(t)) dt,

Eẋh(t) = Axh(t) + B(u(t) + hũ(t)), xh(0) = xinit.

Write:

xh(t) = x(t) + hx̃(t), x̃(t) = xh(t)− x(t)
h

,

Then:

E ˙̃x(t) = E
ẋh(t)− ẋ(t)

h
= 1
h

(
Axh(t) + B(u(t) + hũ(t))−Ax(t) + Bu(t)

)
= Ax̃(t) + Bũ(t), x̃(0) = 0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 23



The directional derivative (1/2)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,
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The directional derivative (2/2)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

J(u + hũ) = 1
2

∫ T

0
(x(t) + hx̃(t)− xd(t))>Q(x(t) + hx̃(t)− xd(t)) dt

+ 1
2

∫ T

0
(u(t) + hũ(t))>R(u(t) + hũ(t)) dt,

E ˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = 0.

It is now easy to verify that

〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
h

=
∫ T

0
(x(t)−xd(t))>Qx̃(t) dt+

∫ T

0
(u(t))>Rũ(t) dt.
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But what is the gradient now?

We have found a way to compute the directional derivative:

〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
h

=
∫ T

0
(x(t)−xd(t))>Qx̃(t) dt+

∫ T

0
(u(t))>Rũ(t) dt.

E ˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = 0.

But how do we find the gradient now?

Not so obvious:
In a finite dimensional space,
we could choose a basis for the space of perturbations ũ(t)
and evaluate the directional gradient for all basis vectors.

However, in an infinite-dimensional space, this is not possible.
(we never finish evaluating the directional gradient for all basis functions)
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The way out: the adjoint state

〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
h

=
∫ T

0
(x(t)−xd(t))>Qx̃(t) dt+

∫ T

0
(u(t))>Rũ(t) dt.

E ˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = 0.
We define the adjoint state ϕ(t) as the solution of

−E>ϕ̇(t) = A>ϕ(t) + Q(x(t)− xd(t)), ϕ(T ) = 0.
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Question 1

We have that:
E ˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = 0.

−E>ϕ̇(t) = A>ϕ(t) + Q(x(t)− xd(t)), ϕ(T ) = 0.
What is ∫ T

0

d

dt

(
(ϕ(t))>Ex̃(t)

)
dt?

A) (ϕ(0))>Ex̃(0)− (ϕ(T ))>Ex̃(T )

B) (ϕ(T ))>Ex̃(T )− (ϕ(0))>Ex̃(0)

C) (ϕ(T ))>Ex̃(T )

D) 0

E) None of the above.
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Question 2

We have that:
E ˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = 0.

−E>ϕ̇(t) = A>ϕ(t) + Q(x(t)− xd(t)), ϕ(T ) = 0.
What is∫ T

0

d

dt

(
(ϕ(t))>Ex̃(t)

)
dt =

∫ T

0

(
E>ϕ̇(t)

)>
x̃(t) dt +

∫ T

0
(ϕ(t))>E ˙̃x(t) dt?

A)
∫ T

0
(
A>ϕ(t) + Q(x(t)− xd(t))

)> x̃(t) dt +
∫ T

0 (ϕ(t))> (Ax̃(t) + Bũ(t)) dt

B) −
∫ T

0
(
A>ϕ(t) + Q(x(t)− xd(t))

)> x̃(t) dt +
∫ T

0 (ϕ(t))> (Ax̃(t) + Bũ(t)) dt

C)
∫ T

0 (Q(x(t)− xd(t)))> x̃(t) dt +
∫ T

0 (ϕ(t))> (Bũ(t)) dt

D) −
∫ T

0 (Q(x(t)− xd(t)))> x̃(t) dt +
∫ T

0 (ϕ(t))> (Bũ(t)) dt
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Answer question 2

∫ T

0

d

dt

(
(ϕ(t))>Ex̃(t)

)
dt =

∫ T

0

(
E>ϕ̇(t)

)>
x̃(t) dt +

∫ T

0
(ϕ(t))>E ˙̃x(t) dt

= −
∫ T

0

(
A>ϕ(t) + Q(x(t)− xd(t))

)>
x̃(t) dt +

∫ T

0
(ϕ(t))> (Ax̃(t) + Bũ(t)) dt

= −
∫ T

0
(x(t)− xd(t))>Qx̃(t) dt +

∫ T

0
(ϕ(t))>Bũ(t) dt

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 29



The gradient

Expression for the directional derivative:

〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
h

=
∫ T

0
(x(t)−xd(t))>Qx̃(t) dt+

∫ T

0
(u(t))>Rũ(t) dt.

Combining the answers from question 1 and 2:

−
∫ T

0
(x(t)− xd(t))>Qx̃(t) dt +

∫ T

0
(ϕ(t))>Bũ(t) dt = 0.

Therefore also:

〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
h

=
∫ T

0
(ϕ(t))>Bũ(t) dt +

∫ T

0
(u(t))>Rũ(t) dt

=
∫ T

0

(
B>ϕ(t) + Ru(t)

)>
ũ(t) dt = 〈B>ϕ + Ru, ũ〉L2

Resulting gradient (w.r.t. the standard L2-innerproduct):

(∇J(u)) (t) = B>ϕ(t) + Ru(t).
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〈∇J(u), ũ〉 = lim
h→0

J(u + hũ)− J(u)
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An algorithm for the computation of the gradient

Computation of ∇J(u) (gradient in the point u(t))
I Compute the solution x(t) (the state) of

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

I Compute the solution of ψ(t) = ϕ(T − t) of

E>ψ̇(t) = A>ψ(t) + Q(x(T − t)− xd(T − t)), ψ(0) = 0.

I The gradient is now given by

(∇J(u)) (t) = B>ϕ(t) + Ru(t) = B>ψ(T − t) + Ru(t).

Step size selection can be done in the same way as explained the previous lecture.

Remaining problem: we still need to discretize time!
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1.D Time discretization of optimal control problems



Two main approaches

I Discretize-then-optimize
Approach: First discretize the cost functional and the forward dynamics,
then compute the gradient for the discretized problem,
and use a gradient-based optimization algorithm
(e.g., conjugate gradients or the one from the previous lecture).

I Optimize-then-discretize
Approach: first find the equation for the adjoint state,
then discretize the cost functional, the forward dynamics, and the adjoint equation,
use the discretized adjoint equation to compute the gradient,
which can again be used in a gradient-based optimization algorithm.

Discretize-then-optimize leads to the most accurate solutions of the discretized problem.

In certain cases, solutions of the discretized optimal control contain spurious artefacts,
that can be avoided by certain the optimize-then-discretize approaches.
see e.g. Dogin, Morin, Nochetto, Verani, discrete gradient flows for shape optimization and applications, 2007

Ervedoza, Zuazua, Numerical Approximation of Exact Controls for Waves, 2013

In some cases, the result of both approaches coincide.
In this case, we say that the approximation of the gradient is discretely consistent.

These ideas will now be demonstrated for a particular example.
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Discretization of the forward dynamics

We want to discretize the problem:

min
u∈L2([0,T ],Rq)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

subject to the dynamics

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

We consider a uniform grid tk = (k − 1)∆t (k = 1, 2, . . . , NT ), so ∆t = T/(NT − 1).
We denote xk ≈ x(tk) and uk = u(tk).

We discretize the dynamics with the Crank-Nicolson scheme:

E
xk − xk−1

∆t
= 1

2 (Axk + Buk) + 1
2 (Axk−1 + Buk−1) = A

xk + xk−1
2

+ B
uk + uk−1

2
.

Starting from the given initial condition x1 = xinit, we compute xk from xk−1 by solving(
E− ∆t

2 A
)

xk =
(
E + ∆t

2 A
)

xk−1 + ∆tBuk + uk−1
2

, k = 2, 3, . . . , NT .
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Discretization of the forward dynamics

We want to discretize the problem:

min
u∈L2([0,T ],Rq)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

subject to the dynamics

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

Observe: We only use
I NT state variables x1, x2, . . . , xNT

,
I NT − 1 control variables

uk−1/2 = uk + uk−1
2

, k = 2, 3, . . . NT

In these new variables, the discretization of the forward dynamics becomes:(
E− ∆t

2 A
)

xk =
(
E + ∆t

2 A
)

xk−1 + ∆tBuk−1/2, x1 = xinit
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Discretization of the cost functional
We want to discretize the problem:

min
u∈L2([0,T ],Rq)

J(u) = 1
2

∫ T

0
(x(t)− xd(t))>Q(x(t)− xd(t)) dt + 1

2

∫ T

0
(u(t))>Ru(t) dt,

subject to the dynamics

Eẋ(t) = Ax(t) + Bu(t), x(0) = xinit.

We consider a uniform grid tk = (k − 1)∆t (k = 1, 2, . . . , NT ), so ∆t = T/(NT − 1).
We denote xk ≈ x(tk) and uk = u(tk).

We discretize the first part with the trapezoid rule and the second part with the midpoint
rule.

J = ∆t
4

NT∑
k=2

[
(xk−1 − xd(tk−1))>Q (xk−1 − xd(tk−1)) + (xk − xd(tk))>Q (xk − xd(tk))

]
+ ∆t

2

NT∑
k=2

u>k−1/2Ruk−1/2
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Discretization of the adjoint state (optimize-then-discretize)

In the continuous time setting, we could compute the gradient from the adjoint state:

−E>ϕ̇(t) = A>ϕ(t) + Q(x(t)− xd(t)), ϕ(T ) = 0.

(∇J(u)) (t) = B>ϕ(t) + Ru(t).

We can now also use the Crank-Nicolson scheme to discretize the adjoint equation.
We therefore introduce the adjoint variables in the grid points

ϕk, k = 1, 2, . . . , NT .

We then integrate backward in time starting from the final condition ϕNT
= 0

−E>
ϕk −ϕk−1

∆t
= A>

ϕk +ϕk−1
2

+ Q
xk + xk−1 − xd(tk)− xd(tk−1)

2
,(

E> − ∆t
2 A>

)
ϕk−1 =

(
E> + ∆t

2 A>
)
ϕk + ∆t

2 Q (xk + xk−1 − xd(tk)− xd(tk−1)) ,

which is an equation from which ϕk−1 can be solved from ϕk.
Note gradient is (just as the control uk−1/2) defined in the intermediate grid points

(∇J)k−1/2 = B>
ϕk +ϕk−1

2
+ Ruk−1/2.
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Discretely consistent gradient (discretize-then-optimize)
In the continuous time setting, we could compute the gradient from the adjoint state:

−E>ϕ̇(t) = A>ϕ(t) + Q(x(t)− xd(t)), ϕ(T ) = 0.

(∇J(u)) (t) = B>ϕ(t) + Ru(t).
We use the same discretization for the forward dynamics and cost functional as before.
We now use adjoint variables defined in the intermediate points (just as the controls):

ϕk−1/2, k = 2, 3, . . . NT .

We then form the (discretized) Lagrangian

L = ∆t
4

NT∑
k=2

[
(xk−1 − xd(tk−1))>Q (xk−1 − xd(tk−1)) + (xk − xd(tk))>Q (xk − xd(tk))

]
+∆t

2

NT∑
k=2

u>k−1/2Ruk−1/2 + ∆t
NT∑
k=2
ϕ>k−1/2

(
A

xk + xk−1
2

+ Buk−1/2 − E
xk − xk−1

∆t

)
+ϕ>0 (x1 − xinit).

Note: the adjoint states are introduced as Lagrange multipliers.
Note: we have also introduced ϕ0 as Lagrange multiplier for the initial condition, but we
will see that we do not need ϕ0 to compute the gradient.
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Equations for the adjoint state (discretize-then-optimize)
We have defined the (discretized) Lagrangian

L = ∆t
4

NT∑
k=2

[
(xk−1 − xd(tk−1))>Q (xk−1 − xd(tk−1)) + (xk − xd(tk))>Q (xk − xd(tk))

]
+∆t

2

NT∑
k=2

u>k−1/2Ruk−1/2 + ∆t
NT∑
k=2
ϕ>k−1/2

(
A

xk + xk−1
2

+ Buk−1/2 − E
xk − xk−1

∆t

)
+ϕ>0 (x1 − xinit).

Setting the derivatives of L w.r.t. the adjoint variables ϕk−1/2 gives the equations for the
forward dynamics.
Requiring that the derivatives of L w.r.t. the state variables xk are zero gives the
equations for the adjoint state:

0 = ∂L
∂xNT

= ∆t
2 (xNT

− xd(tNT
))>Q +ϕ>NT−1/2

(∆t
2 A− E

)
and, for k = NT − 1, NT − 2, . . . , 2 and for k = 1

0 = ∂L
∂xk

= ∆t (xk − xd(tk))>Q +ϕ>k−1/2
(∆t

2 A− E
)

+ϕ>k+1/2
(∆t

2 A + E
)
,

0 = ∂L
∂x1

= ∆t
2 (x1 − xd(t1))>Q +ϕ>1+1/2

(∆t
2 A + E

)
+ϕ>0 .
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Equations for the adjoint state (discretize-then-optimize)
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A
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∆t

)
+ϕ>0 (x1 − xinit).

Setting the derivatives of L w.r.t. the adjoint variables ϕk−1/2 gives the equations for the
forward dynamics.

Requiring that the derivatives of L w.r.t. the state variables xk are zero gives the
equations for the adjoint state:

0 = ∂L
∂xNT

= ∆t
2 (xNT

− xd(tNT
))>Q +ϕ>NT−1/2

(∆t
2 A− E

)
and, for k = NT − 1, NT − 2, . . . , 2 and for k = 1

0 = ∂L
∂xk

= ∆t (xk − xd(tk))>Q +ϕ>k−1/2
(∆t

2 A− E
)

+ϕ>k+1/2
(∆t

2 A + E
)
,

0 = ∂L
∂x1

= ∆t
2 (x1 − xd(t1))>Q +ϕ>1+1/2

(∆t
2 A + E

)
+ϕ>0 .
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NT∑
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NT∑
k=2
ϕ>k−1/2

(
A

xk + xk−1
2

+ Buk−1/2 − E
xk − xk−1

∆t

)
+ϕ>0 (x1 − xinit).

Requiring that the derivatives of L w.r.t. the state variables xk are zero gives the
equations for the adjoint state.
We can now compute the adjoint states as follows: Start by solving ϕNT−1/2 from(

E> − ∆t
2

A>
)
ϕNT−1/2 = ∆t

2
Q(xNT

− xd(tNT
)),

and then iteratively compute ϕk−1/2 from(
E> − ∆t

2
A>
)
ϕk−1/2 =

(
E> + ∆t

2
A>
)
ϕk+1/2 + ∆tQ(xk − xd(tk)),

for k = NT − 1, NT − 2, . . . , 2 using the previously obtained ϕk+1/2.
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Gradient computation (discretize-then-optimize)
We have defined the (discretized) Lagrangian

L = ∆t
4

NT∑
k=2

[
(xk−1 − xd(tk−1))>Q (xk−1 − xd(tk−1)) + (xk − xd(tk))>Q (xk − xd(tk))

]
+∆t

2

NT∑
k=2

u>k−1/2Ruk−1/2 + ∆t
NT∑
k=2
ϕ>k−1/2

(
A

xk + xk−1
2

+ Buk−1/2 − E
xk − xk−1

∆t

)
+ϕ>0 (x1 − xinit).

Taking the partial derivative of L w.r.t. uk−1/2 gives the (total) derivative(
dJ

duk−1/2

)
k−1/2

= ∆tϕ>k−1/2B + ∆tu>k−1/2R.

The gradient then follows after defining an inner product

〈u,v〉 = ∆t
NT∑
k=2

u>k−1/2vk−1/2, (∇J)k−1/2 = B>ϕk−1/2 + Ruk−1/2.

Remark: The resulting equations have a similar structure as the equations for the
optimize-then-discretize approach, but the schemes are different.
(this example was inspired by Apel and Flaig, Crank-Nicolson Schemes for Optimal Control Problems with Evolution Equations)
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Step size selection

The step size can again be selected based on a quadratic expansion:

J(u− β∇J) = J(u)− βG + β2

2 H, βopt = G/H.

Linear term:

G = ∆t
NT∑
k=2

(∇J)>k−1/2(∇J)k−1/2.

For the quadratic term, we need the solution of

Eẋ∇(t) = Ax∇(t) + B(∇J)(t), x∇(0) = 0.

In discretized form:(
E− ∆t

2 A
)

x∇k =
(
E + ∆t

2 A
)

x∇k−1 + ∆tB(∇J)k−1/2, x∇1 = 0.

The quadratic term H is then given by

H = ∆t
2

NT∑
k=2

[(
x∇k
)>

Qx∇k +
(

x∇k−1

)>
Qx∇k−1

]
+ ∆t

NT∑
k=2

(∇J)>k−1/2R(∇J)k−1/2.

Note: we do not need a line search because the considered cost functional is quadratic.
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1.E Appendix: Existence and uniqueness of minimizers



Existence of the infimum

We consider the minimization of a functional J : U → R over a normed space U .
Note: U can be infinite dimensional.

We assume that J(u) ≥ 0 for all u ∈ U .

We are also given a subset Uad ⊆ U of admissible values for u.

Then {J(u) | u ∈ Uad} is a subset of R that is bounded from below (by 0). Therefore,

inf
u∈Uad

J(u) = inf{J(u) | u ∈ Uad},

exists.
By definition of the infimum, there thus exists a sequence u1, u2, u3, . . . in Uad such that

J(uk)→ inf
u∈Uad

J(u).

This sequence is called a minimizing sequence.
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Existence of the minimizer (finite dimensional case)
Question: does

min
u∈Uad

J(u)

exist? In other words, is there a minimizer u∗ ∈ Uad such that
J(u∗) = inf

u∈Uad
J(u)?

First consider the case where U is finite dimensional.

Observe, if Uad is closed and the minimizing sequence u1, u2, u3, . . . is bounded,
then it also has a limit in Uad. This limit is a minimizer u∗.

Two important cases:
I Uad is bounded and closed.

It is immediate that the minimizing sequence is bounded.
I J(u) is coercive, i.e. J(uk)→∞ if |uk| → ∞. Note: it is sufficient that J(u) ≥ |u|2.

Then we can reason as follows.
Suppose that the minimizing sequence u1, u2, u3, . . . is unbounded.
Then there exists a subsequence uk1, uk2, uk3, . . . such that |ukj

| → ∞.
But J(ukj

) > |ukj
|2, so also J(ukj

)→∞.
But then J(ukj

) is not a minimizing sequence. Contradiction.
Conclusion: the minimizing sequence must be bounded.
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Existence of the minimizer (infinite dimensional case)

Question: does
min
u∈Uad

J(u)

exist? In other words, is there a minimizer u∗ ∈ Uad such that

J(u∗) = inf
u∈Uad

J(u)?

The infinite dimensional case is much more subtle.

Problem: We can no longer be sure that a bounded sequence has a (strong) limit.
In other words, we do no longer have compactness.

Typical example: consider Uad = L2(0, π) and consider the sequence uk = sin(kx).
This sequence converges weakly to zero, but does not have a strong limit.

We will come back to this problem in a few slides.
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Uniqueness of the minimizer (convex analysis)
The functional J(u) is called α-convex iff

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

u vθu + (1− θ)v

J

The admissible set Uad is convex when u, v ∈ Uad

θu + (1− θ)v ∈ Uad, θ ∈ [0, 1].

Uniqueness of the minimizer:
Suppose that there are two points u, v ∈ Uad such that J(u) = J(v) = minu∈Uad J(u).

J(θu + (1− θ)v) ≤ min
u∈Uad

J(u)− αθ(1− θ)
2

|u− v|2 < min
u∈Uad

J(u),

and θu + (1− θ)v ∈ Uad. Contradiction.
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Existence of the minimizer (infinite dimensional case, revisited)
Question: does

min
u∈Uad

J(u)

exist? In other words, is there a minimizer u∗ ∈ Uad such that

J(u∗) = inf
u∈Uad

J(u)?

Consider a minimizing sequence u1, u2, u3, . . ..
The minimizing sequence is bounded when Uad is bounded or when J is coercive.
The bounded minimizing sequence u1, u2, u3, . . . has a weak limit v.

Now three problems remain:
I Is the weak limit v ∈ Uad?

If Uad is strongly closed and convex, it is also weakly closed (Hahn-Banach).
I Do we have that J(v) = limk→∞ J(uk) = infu∈Uad J(u)?

This is achieved by assuming that J is weakly lower semi-continuous (by definition).
I Does the minimizing sequence u1, u2, u3, . . . also converge strongly to v?

This follows from the previous point and the strong convexity of J (with θ = 1
2):

J(v) ≤ J(uk+v
2 ) ≤ J(uk) + J(v)

2
−α

8
|uk−v|2, ⇒

α

8
|uk−v|2 ≤

J(uk)− J(v)
2

→ 0.
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1.F Appendix: Inequality constraints



Inequality constraints

Consider the optimization problem

min
u∈Uad

J(u) = J(x(u),u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to

Ax + Bu = 0.

We distinguish between two types of constraints:
I Constraints on u (‘input constraints’), g(u) ≥ 0
I Constraints on x(u) (‘state constraints’) h(x(u)) ≥ 0.

Input constraints can be easily incorporated with the projected gradient method.
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Projected gradient method

Suppose we want to solve an optimization problem with the constraints:

a ≤ um ≤ b, m ∈ {1, 2, . . . ,M}.

(This thus defines the admissible set Uad)

Problem: We do not know whether uk+1 = uk − βk∇J(uk) is in Uad.
(Even when uk ∈ Uad)

Solution: Project uk − βk∇J(uk) onto the Uad, i.e. do the update as

uk+1 = ΠUad (uk − βk∇J(uk)) ∈ Uad.

In general, the projection onto the admissible set is difficult to compute
(it requires the solution of another optimization problem).

However, for the considered admissible set, the computation is straightforward:

(ΠUad (u))m =

 a um ≤ a,
um a < um < b,
b um ≥ b.
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Projected gradient method (graphical illustration)

a ≤ um ≤ b, m ∈ {1, 2, . . . ,M}.
uk+1 = ΠUad (uk − βk∇J(uk)) ∈ Uad

(ΠUad (u))m =

 a um ≤ a
um a < um < b
b um ≥ b

b

a

uk

uk − βk∇J(uk)
ΠUad(uk − βk∇J(uk))
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Quadratic approximation for the projected gradient
We replace ∇J(uk) by

∇ΠJ(uk) = − lim
h↓0

Π(uk − h∇J(uk))− uk
h

∇ΠJ(uk) is equal to ∇J(uk) except for entries where the −∇J(uk) is pointing out of
the admissible set.

Explicitly,

(∇ΠJ(uk))m =

 0 (uk)m = a and (∇J(uk))m ≥ 0
or (uk)m = b and (∇J(uk))m ≤ 0

(∇J(uk))m otherwise.

We then can use the quadratic approximation:

J(uk+1) ≈ J(uk)− βkG + H

2
β2
k + O(β3

k)

with
G = 〈∇J(uk),∇ΠJ(uk)〉

H =
[

d2

dθ2J(uk + θ∇ΠJ(uk))
]
θ=0

.
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Computation of H with projected gradient (example)

Consider the optimization problem

min
u∈Uad

1
2x>Qx + 1

2u>Ru

with Q = Q>, R = R>, u ∈ Uad ⊂ RM , and x ∈ RN subject to

Ax + Bu = 0.

We have the ‘projected gradient’ (which is a bad name) ∇ΠJ(uk).

Compute the state resulting from the projected gradient

x∇Π
k = −A−1 (B∇ΠJ(uk)) .

We can then compute

H =
(

x∇Π
k

)>
Qx∇Π

k + (∇ΠJ(uk))>R∇ΠJ(uk).
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State constraints

For state constraints (i.e. constraints on x(u)),
it is not so straightforward to determine the projection on the admissible set.

State constraints can for example be included using a penalty function method, but we
will not discuss this further in this course.
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