

NATURWISSENSCHAFTLICHE FAKULTÄT

A Practical Introduction to Control, Numerics and Machine Learning

Day 3

Summer School IFAC CPDE 2022 Workshop on Control of Systems Governed by Partial Differential Equations

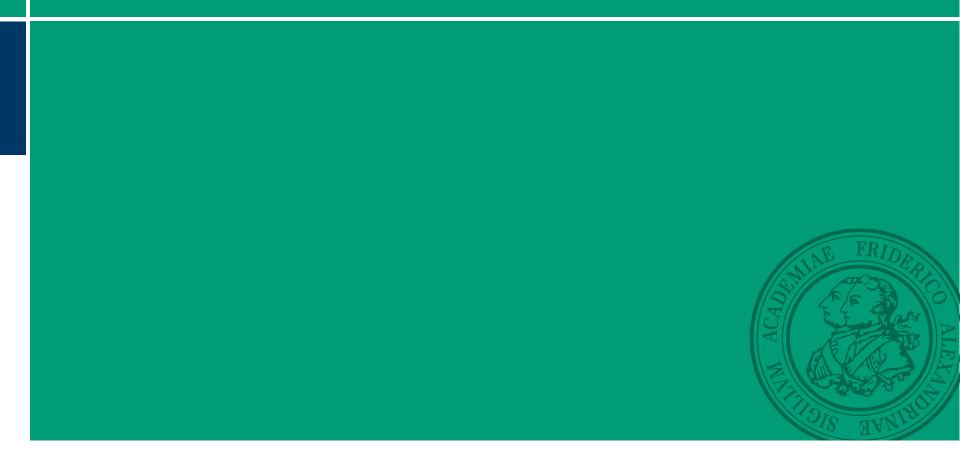
Daniël Veldman

Chair in Dynamics, Control, and Numerics, Friedrich-Alexander-University Erlangen-Nürnberg

Contents

- 2.A Convergence analysis for gradient descent
- 2.B Stochastic gradient descent
- 2.C SGD with momentum and ADAM

3.A Convergence analysis for gradient descent



Pseudo code for gradient descent with adaptive step size

• Choose an initial guess
$$u_0$$

- Choose an initial step size β
- Compute $J_0 = J(u_0)$.
- for $i = 1: \max_{i \in I}$
- Compute $g_0 = \nabla J(u_0)$.
- Set $J_1 = \infty$ and $\beta = 4\beta$.
- while $J_1 > J_0$
- $\blacktriangleright \qquad \text{Set } \beta = \beta/2.$
- Set $u_1 = u_0 \beta g_0$.
 - Compute $J_1 = J(u_1)$.
- if convergence conditions are satisfied

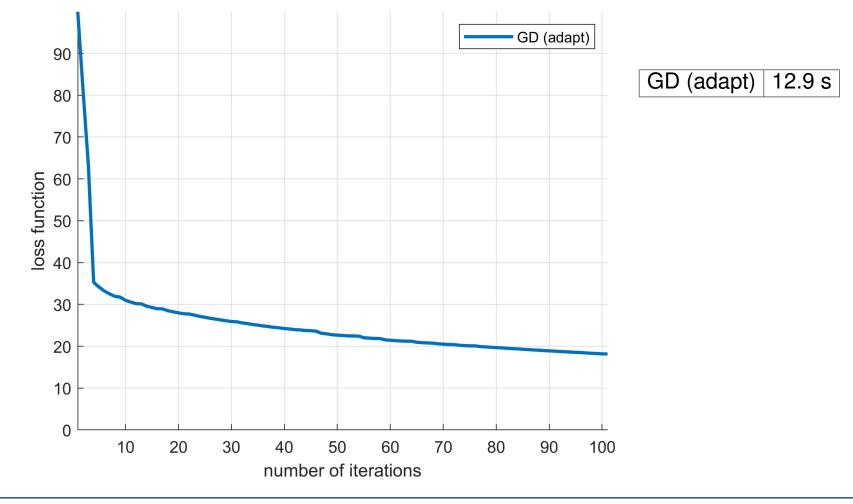
Return
$$u_1$$
, J_1 .

• Set
$$u_0 = u_1$$

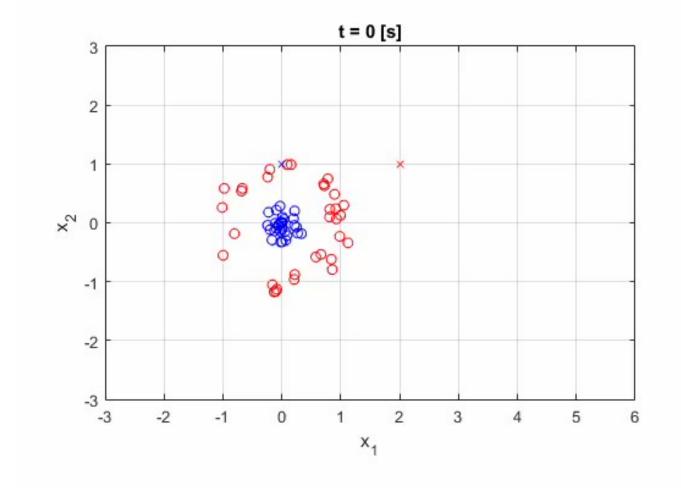
Set $J_0 = J_1$

Example: 100 iterations of gradient descent with adaptive step size

Training of a ResNet with 100 hidden layers in \mathbb{R}^2 on 64 data points.



Example: 100 iterations of gradient descent with adaptive step size



Pseudo code for gradient descent with adaptive step size

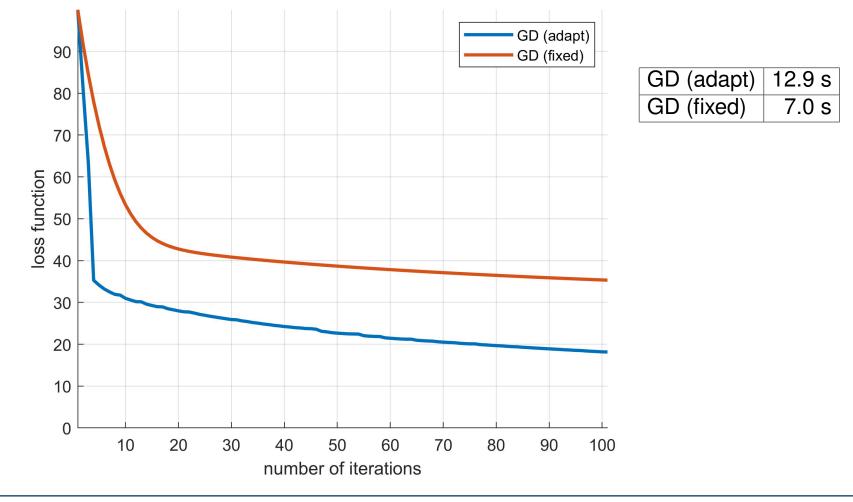
- Choose an initial guess u_0
- Choose a step size β
- Compute $J_0 = J(u_0)$.
- ▶ for i = 1: max_iters
- Compute $g_0 = \nabla J(u_0)$.
- Set $u_1 = u_0 \beta g_0$.
- Compute $J_1 = J(u_1)$.
- if convergence conditions are satisfied
- **•** Return u_1 , J_1 .

$$\blacktriangleright \qquad \mathsf{Set} \ u_0 = u_1$$

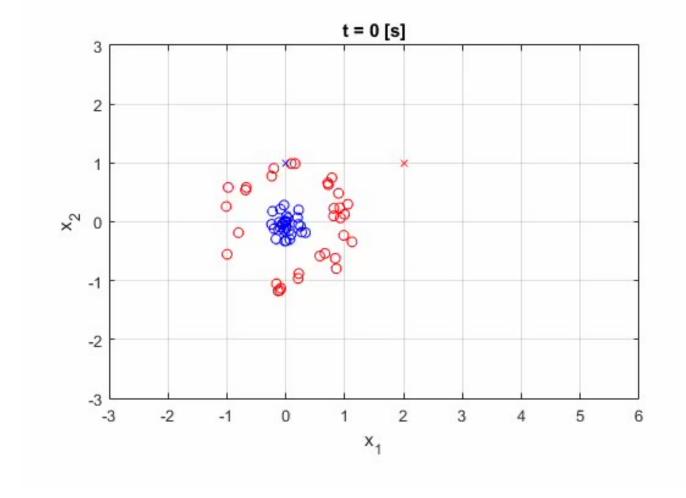
$$\blacktriangleright \qquad \text{Set } J_0 = J_1$$

Example: 100 iterations of gradient descent with a fixed step size

Training of a ResNet with 100 hidden layers in \mathbb{R}^2 on 64 data points.



Example: 100 iterations of gradient descent with a fixed step size



Convergence analysis for gradient descent

We return to the more abstract optimization problem:

 $\min_{u\in\mathbb{R}^M}J(u).$

Denote the minimizer by u^* .

For simplicity, we consider a gradient descent algorithm with a fixed step size β

 $u_{k+1} = u_k - \beta \nabla J(u_k).$

Convergence analysis for gradient descent

We return to the more abstract optimization problem:

 $\min_{u\in\mathbb{R}^M}J(u).$

Denote the minimizer by u^* .

For simplicity, we consider a gradient descent algorithm with a fixed step size β

$$u_{k+1} = u_k - \beta \nabla J(u_k).$$

Two assumptions:

▶ The functional J is α -convex, i.e.

$$J(\theta u + (1-\theta)v) \le \theta J(u) + (1-\theta)J(v) - \frac{\alpha\theta(1-\theta)}{2}|u-v|^2, \qquad \theta \in [0,1].$$

▶ The gradient $\nabla J(u)$ is Lipschitz, i.e. there is an L > 0 such that for all u and v

$$|\nabla J(u) - \nabla J(v)| \le L|u - v|.$$

Theorem

$$|u_k - u^*|^2 \le (1 - 2\alpha\beta + \beta^2 L^2)^k |u_0 - u^*|^2$$

Observation 1

The functional J is α -convex:

$$J(\theta u + (1-\theta)v) \le \theta J(u) + (1-\theta)J(v) - \frac{\alpha\theta(1-\theta)}{2}|u-v|^2.$$

Subtract expand the brackets on the LHS and subtract J(v) on both sides:

$$J(v+\theta(u-v)) - J(v) \le \theta J(u) - \theta J(v) - \frac{\alpha \theta(1-\theta)}{2} |u-v|^2.$$

Divide by θ and take the limit $\theta \to 0$:

$$\langle \nabla J(v), u - v \rangle = \lim_{\theta \to 0} \frac{J(v + \theta(u - v)) - J(v)}{\theta} \le J(u) - J(v) - \frac{\alpha}{2}|u - v|^2.$$

We conclude

$$\langle \nabla J(v), u - v \rangle \le J(u) - J(v) - \frac{\alpha}{2} |u - v|^2.$$

Observation 2

From the previous slide:

$$\langle \nabla J(v), u - v \rangle \le J(u) - J(v) - \frac{\alpha}{2} |u - v|^2.$$

Because this holds for all u and v, we may interchange u and v to obtain:

$$\langle \nabla J(u), v - u \rangle \le J(v) - J(u) - \frac{\alpha}{2} |v - u|^2.$$

Adding these two equations, we find

$$\langle \nabla J(v) - \nabla J(u), u - v \rangle \le -\alpha |u - v|^2.$$

Proof

Theorem

$$|u_k - u^*|^2 \le (1 - 2\alpha\beta + \beta^2 L^2)^k |u_0 - u^*|^2$$

$$|u_{k+1} - u^*|^2 = \langle u_{k+1} - u^*, u_{k+1} - u^* \rangle$$

= $\langle u_k - \beta \nabla J(u_k) - u^*, u_k - \beta \nabla J(u_k) - u^* \rangle$
= $\langle u_k - u^*, u_k - u^* \rangle - 2\beta \langle \nabla J(u_k), u_k - u^* \rangle + \beta^2 \langle \nabla J(u_k), \nabla J(u_k) \rangle$

Proof

Theorem

$$|u_k - u^*|^2 \le (1 - 2\alpha\beta + \beta^2 L^2)^k |u_0 - u^*|^2$$

$$|u_{k+1} - u^*|^2 = \langle u_{k+1} - u^*, u_{k+1} - u^* \rangle$$

= $\langle u_k - \beta \nabla J(u_k) - u^*, u_k - \beta \nabla J(u_k) - u^* \rangle$
= $\langle u_k - u^*, u_k - u^* \rangle - 2\beta \langle \nabla J(u_k), u_k - u^* \rangle + \beta^2 \langle \nabla J(u_k), \nabla J(u_k) \rangle$

Using that $\nabla J(u^*) = 0$ and Observation 2, we find

$$-\langle \nabla J(u_k), u_k - u^* \rangle = -\langle \nabla J(u_k) - \nabla J(u^*), u_k - u^* \rangle \le -\alpha |u_k - u^*|^2.$$

Again using that $\nabla J(u^*) = 0$ and the Lipschitz continuity of $\nabla J(u)$, we also have that

$$\langle \nabla J(u_k), \nabla J(u_k) \rangle = |\nabla J(u_k) - \nabla J(u^*)|^2 \le L^2 |u_k - u^*|^2.$$

Proof

Theorem

$$|u_k - u^*|^2 \le (1 - 2\alpha\beta + \beta^2 L^2)^k |u_0 - u^*|^2$$

$$|u_{k+1} - u^*|^2 = \langle u_{k+1} - u^*, u_{k+1} - u^* \rangle$$

= $\langle u_k - \beta \nabla J(u_k) - u^*, u_k - \beta \nabla J(u_k) - u^* \rangle$
= $\langle u_k - u^*, u_k - u^* \rangle - 2\beta \langle \nabla J(u_k), u_k - u^* \rangle + \beta^2 \langle \nabla J(u_k), \nabla J(u_k) \rangle$

Using that $\nabla J(u^*) = 0$ and Observation 2, we find

$$-\langle \nabla J(u_k), u_k - u^* \rangle = -\langle \nabla J(u_k) - \nabla J(u^*), u_k - u^* \rangle \le -\alpha |u_k - u^*|^2.$$

Again using that $\nabla J(u^*) = 0$ and the Lipschitz continuity of $\nabla J(u)$, we also have that

$$\langle \nabla J(u_k), \nabla J(u_k) \rangle = |\nabla J(u_k) - \nabla J(u^*)|^2 \le L^2 |u_k - u^*|^2.$$

Inserting these two results back into the original expression, we conclude

$$|u_{k+1} - u^*|^2 \le (1 - 2\alpha\beta + \beta^2 L^2) |u_k - u^*|^2$$

The result now follows by induction over k.

NATURWISSENSCHAFTLICHE FAKULTÄT

3.B Stochastic gradient descent (SGD)

For stochastic gradient descent, assume that the cost functional is of the form

$$J(u) = \sum_{i=1}^{I} J_i(u).$$

Typical in machine learning: each $J_i(u)$ corresponds to a training sample.

For stochastic gradient descent, assume that the cost functional is of the form

$$J(u) = \sum_{i=1}^{I} J_i(u).$$

Typical in machine learning: each $J_i(u)$ corresponds to a training sample.

Therefore also

$$\nabla J(u) = \sum_{i=1}^{I} \nabla J_i(u).$$

For stochastic gradient descent, assume that the cost functional is of the form

$$J(u) = \sum_{i=1}^{I} J_i(u).$$

Typical in machine learning: each $J_i(u)$ corresponds to a training sample.

Therefore also

$$\nabla J(u) = \sum_{i=1}^{I} \nabla J_i(u).$$

If all the $J_i(u)$ are similar,

$$\nabla J(u) \approx \tilde{\nabla} J(u) = I \nabla J_j(u),$$

for a randomly selected $j \in \{1, 2, \dots, I\}$.

For stochastic gradient descent, assume that the cost functional is of the form

$$J(u) = \sum_{i=1}^{I} J_i(u).$$

Typical in machine learning: each $J_i(u)$ corresponds to a training sample.

Therefore also

$$\nabla J(u) = \sum_{i=1}^{I} \nabla J_i(u).$$

If all the $J_i(u)$ are similar,

$$\nabla J(u) \approx \tilde{\nabla} J(u) = I \nabla J_j(u),$$

for a randomly selected $j \in \{1, 2, \dots, I\}$.

Note that

$$\mathbb{E}[\tilde{\nabla}J(u)] = \sum_{i=1}^{I} I \nabla J_i(u) \mathbb{P}[j=i] = \sum_{i=1}^{I} \nabla J_i(u) = \nabla J(u),$$
 because $\mathbb{P}[j=i] = 1/I.$

Pseudo code for stochastic gradient descent

In each iteration, take a step in the direction of the stochastic gradient:

$$u_{k+1} = u_k - \beta \tilde{\nabla} J(u_k)$$

- \blacktriangleright Choose an initial guess u_0
- Choose a step size β
- Compute $J_0 = J(u_0)$.
- ▶ for $k = 1: \max_iters$

• for
$$j = 1: I$$

- Select randomly an index $i \in \{1, 2, \dots, I\}$
- ► Set $u_0 = u_0 \beta g_0$.

Convergence analysis: assumptions

Three assumptions:

▶ The functional J is α -convex, i.e.

$$J(\theta u + (1-\theta)v) \le \theta J(u) + (1-\theta)J(v) - \frac{\alpha\theta(1-\theta)}{2}|u-v|^2, \qquad \theta \in [0,1].$$

▶ The gradient $\nabla J(u)$ is Lipschitz, i.e. there is an L > 0 such that for all u and v

$$|\nabla J(u) - \nabla J(v)| \le L|u - v|.$$

 \blacktriangleright The variance of the stochastic gradient is bounded, i.e. there is a σ such that for all u

$$\mathbb{E}[|\tilde{\nabla}J(u) - \nabla J(u)|^2] \le \sigma^2.$$

In each iteration, take a step in the direction of the stochastic gradient:

$$u_{k+1} = u_k - \beta \tilde{\nabla} J(u_k)$$

It then follows that

$$\begin{aligned} |u_{k+1} - u^*|^2 &= \langle u_{k+1} - u^*, u_{k+1} - u^* \rangle \\ &= \langle u_k - \beta \tilde{\nabla} J(u_k) - u^*, u_k - \beta \tilde{\nabla} J(u_k) - u^* \rangle \\ &= \langle u_k - u^*, u_k - u^* \rangle - 2\beta \langle \tilde{\nabla} J(u_k), u_k - u^* \rangle + \beta^2 \langle \tilde{\nabla} J(u_k), \tilde{\nabla} J(u_k) \rangle \end{aligned}$$

In each iteration, take a step in the direction of the stochastic gradient:

$$u_{k+1} = u_k - \beta \tilde{\nabla} J(u_k)$$

It then follows that

$$\begin{aligned} |u_{k+1} - u^*|^2 &= \langle u_{k+1} - u^*, u_{k+1} - u^* \rangle \\ &= \langle u_k - \beta \tilde{\nabla} J(u_k) - u^*, u_k - \beta \tilde{\nabla} J(u_k) - u^* \rangle \\ &= \langle u_k - u^*, u_k - u^* \rangle - 2\beta \langle \tilde{\nabla} J(u_k), u_k - u^* \rangle + \beta^2 \langle \tilde{\nabla} J(u_k), \tilde{\nabla} J(u_k) \rangle \end{aligned}$$

Taking the expectation, using that $\mathbb{E}[\tilde{\nabla}J(u_k) \mid u_k] = \nabla J(u_k)$, it follows that

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = |u_k - u^*|^2 - 2\beta \langle \nabla J(u_k), u_k - u^* \rangle + \beta^2 \mathbb{E}[|\tilde{\nabla} J(u_k)|^2 \mid u_k].$$

In each iteration, take a step in the direction of the stochastic gradient:

$$u_{k+1} = u_k - \beta \tilde{\nabla} J(u_k)$$

It then follows that

$$\begin{aligned} |u_{k+1} - u^*|^2 &= \langle u_{k+1} - u^*, u_{k+1} - u^* \rangle \\ &= \langle u_k - \beta \tilde{\nabla} J(u_k) - u^*, u_k - \beta \tilde{\nabla} J(u_k) - u^* \rangle \\ &= \langle u_k - u^*, u_k - u^* \rangle - 2\beta \langle \tilde{\nabla} J(u_k), u_k - u^* \rangle + \beta^2 \langle \tilde{\nabla} J(u_k), \tilde{\nabla} J(u_k) \rangle \end{aligned}$$

Taking the expectation, using that $\mathbb{E}[\tilde{\nabla}J(u_k) \mid u_k] = \nabla J(u_k)$, it follows that

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = |u_k - u^*|^2 - 2\beta \langle \nabla J(u_k), u_k - u^* \rangle + \beta^2 \mathbb{E}[|\tilde{\nabla} J(u_k)|^2 \mid u_k].$$

For the second term on the RHS, Observation 2 shows that

$$-\langle \nabla J(u_k), u_k - u^* \rangle = -\langle \nabla J(u_k) - \nabla J(u^*), u_k - u^* \rangle \le -\alpha |u_k - u^*|^2.$$

Therefore,

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

From the previous slide:

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

From the previous slide:

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

For the third term on the RHS, note that

$$|\tilde{\nabla}J(u_k)|^2 \le |\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 + 2\langle \tilde{\nabla}J(u_k) - \nabla J(u_k), \nabla J(u_k) \rangle + |\nabla J(u_k)|^2.$$

From the previous slide:

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

For the third term on the RHS, note that

$$|\tilde{\nabla}J(u_k)|^2 \le |\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 + 2\langle \tilde{\nabla}J(u_k) - \nabla J(u_k), \nabla J(u_k) \rangle + |\nabla J(u_k)|^2.$$

Taking the expectation using that $\mathbb{E}[\tilde{\nabla}J(u_k) \mid u_k] = \nabla J(u_k)$, it follows that

 $\mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k] \le \mathbb{E}[|\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 \mid u_k] + |\nabla J(u_k)|^2 \le \sigma^2 + |\nabla J(u_k)|^2.$

From the previous slide:

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

For the third term on the RHS, note that

$$\tilde{\nabla}J(u_k)|^2 \le |\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 + 2\langle \tilde{\nabla}J(u_k) - \nabla J(u_k), \nabla J(u_k) \rangle + |\nabla J(u_k)|^2.$$

Taking the expectation using that $\mathbb{E}[\tilde{\nabla}J(u_k) \mid u_k] = \nabla J(u_k)$, it follows that

 $\mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k] \le \mathbb{E}[|\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 \mid u_k] + |\nabla J(u_k)|^2 \le \sigma^2 + |\nabla J(u_k)|^2.$

Again using that $\nabla J(u^*) = 0$ and the Lipschitz continuity of $\nabla J(u)$, we also have that

 $|\nabla J(u_k)|^2 = \langle \nabla J(u_k), \nabla J(u_k) \rangle = |\nabla J(u_k) - \nabla J(u^*)|^2 \le L^2 |u_k - u^*|^2.$

From the previous slide:

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

For the third term on the RHS, note that

$$|\tilde{\nabla}J(u_k)|^2 \le |\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 + 2\langle \tilde{\nabla}J(u_k) - \nabla J(u_k), \nabla J(u_k) \rangle + |\nabla J(u_k)|^2.$$

Taking the expectation using that $\mathbb{E}[\tilde{\nabla}J(u_k) \mid u_k] = \nabla J(u_k)$, it follows that

$$\mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k] \le \mathbb{E}[|\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 \mid u_k] + |\nabla J(u_k)|^2 \le \sigma^2 + |\nabla J(u_k)|^2.$$

Again using that $\nabla J(u^*) = 0$ and the Lipschitz continuity of $\nabla J(u)$, we also have that

$$|\nabla J(u_k)|^2 = \langle \nabla J(u_k), \nabla J(u_k) \rangle = |\nabla J(u_k) - \nabla J(u^*)|^2 \le L^2 |u_k - u^*|^2.$$

Inserting the resulting estimate for the third term, it follows that

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta + \beta^2 L^2)|u_k - u^*|^2 + \beta^2 \sigma^2.$$

From the previous slide:

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta)|u_k - u^*|^2 + \beta^2 \mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k].$$

For the third term on the RHS, note that

$$|\tilde{\nabla}J(u_k)|^2 \le |\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 + 2\langle \tilde{\nabla}J(u_k) - \nabla J(u_k), \nabla J(u_k) \rangle + |\nabla J(u_k)|^2.$$

Taking the expectation using that $\mathbb{E}[\tilde{\nabla}J(u_k) \mid u_k] = \nabla J(u_k)$, it follows that

$$\mathbb{E}[|\tilde{\nabla}J(u_k)|^2 \mid u_k] \le \mathbb{E}[|\tilde{\nabla}J(u_k) - \nabla J(u_k)|^2 \mid u_k] + |\nabla J(u_k)|^2 \le \sigma^2 + |\nabla J(u_k)|^2.$$

Again using that $\nabla J(u^*) = 0$ and the Lipschitz continuity of $\nabla J(u)$, we also have that

$$|\nabla J(u_k)|^2 = \langle \nabla J(u_k), \nabla J(u_k) \rangle = |\nabla J(u_k) - \nabla J(u^*)|^2 \le L^2 |u_k - u^*|^2.$$

Inserting the resulting estimate for the third term, it follows that

$$\mathbb{E}[|u_{k+1} - u^*|^2 \mid u_k] = (1 - 2\alpha\beta + \beta^2 L^2)|u_k - u^*|^2 + \beta^2 \sigma^2.$$

Convergence of SGD

If β is such that $|1 - 2\alpha\beta + \beta^2 L^2| < 1$, then

$$\mathbb{E}[|u_k - u^*|^2] \le |1 - 2\alpha\beta + \beta^2 L^2|^k |u_0 - u^*|^2 + \beta \frac{\sigma^2}{2\alpha - \beta L^2}.$$

Convergence of SGD

$$\mathbb{E}[|u_k - u^*|^2] \le |1 - 2\alpha\beta + \beta^2 L^2|^k |u_0 - u^*|^2 + \beta \frac{\sigma^2}{2\alpha - \beta L^2}.$$

Observe:

- ► the variance $\mathbb{E}[|\tilde{\nabla}J(u) \nabla J(u)|^2] \leq \sigma^2$ leads to an offset that does not converge to zero for $k \to \infty$. But the offset can be reduced by choosing the step size β smaller.
- ► The convergence rate $1 2\alpha\beta + \beta^2 L^2$ is the same as for gradient descent, but the cost for one iteration is reduced by a factor 1/I.

 One epoch is defined as *I* iterations SGD.
The computational cost for one epoch of SGD is approximately the same as one iteration of GD.

Convergence rate per epoch is

$$|1 - 2\alpha\beta + \beta^2 L^2|^I.$$

When the offset is sufficiently small, the computational efficiency of SGD is much higher than the one of GD.

Pseudo code for stochastic gradient descent

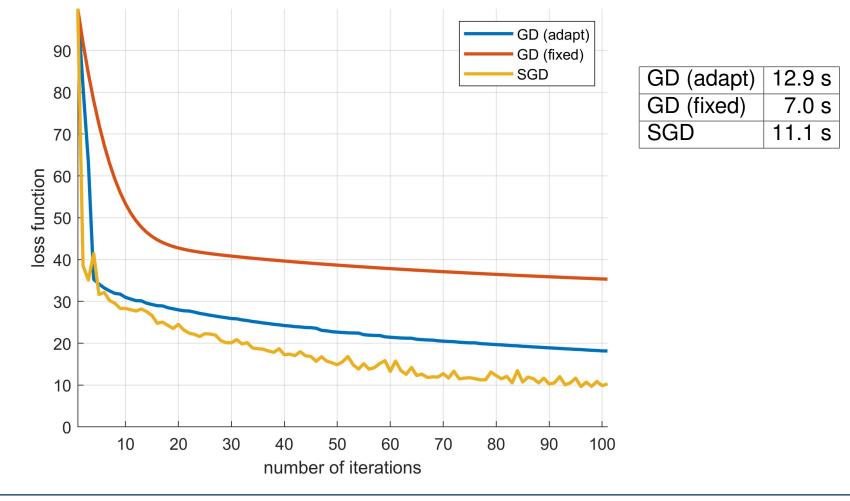
- \blacktriangleright Choose an initial guess u_0
- Choose a step size β
- Compute $J_0 = J(u_0)$.
- for $k = 1: \max_iters$

- Select randomly an index $i \in \{1, 2, \dots, I\}$

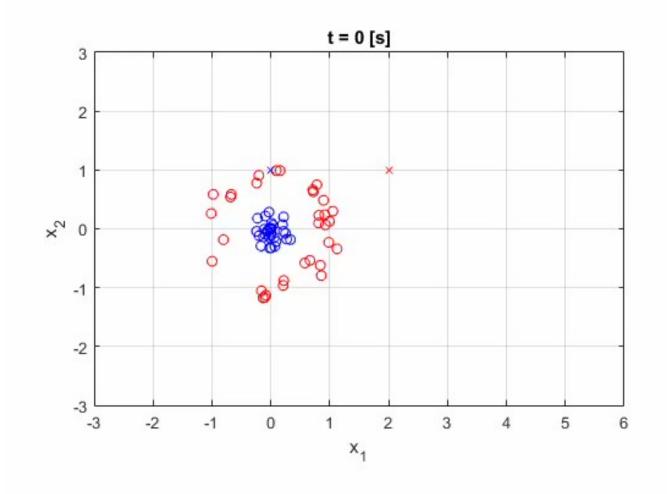
• Set
$$u_0 = u_0 - \beta g_0$$
.

Example: 100 epochs of stochastic gradient descent

Training of a ResNet with 100 hidden layers in \mathbb{R}^2 on 64 data points.



Example: 100 epochs of stochastic gradient descent



Mini-batch methods

Setting:

$$J(u) = \sum_{i=1}^{I} J_i(u), \qquad \Rightarrow \qquad \nabla J(u) = \sum_{i=1}^{I} \nabla J_i(u).$$

Now define the stochastic gradient as the average of *b* randomly chosen gradients

$$\tilde{\nabla}J(u) = \frac{I}{b} \sum_{j \in \mathcal{B}} \nabla J_j(u),$$

where \mathcal{B} is a randomly selected subset of $\{1, 2, \ldots, I\}$ of size b.

Mini-batch methods

Setting:

$$J(u) = \sum_{i=1}^{I} J_i(u), \qquad \Rightarrow \qquad \nabla J(u) = \sum_{i=1}^{I} \nabla J_i(u).$$

Now define the stochastic gradient as the average of *b* randomly chosen gradients

$$\tilde{\nabla}J(u) = \frac{I}{b} \sum_{j \in \mathcal{B}} \nabla J_j(u),$$

where \mathcal{B} is a randomly selected subset of $\{1, 2, \ldots, I\}$ of size b.

Again, it holds that

$$\mathbb{E}[\tilde{\nabla}J(u)] = \nabla J(u),$$

so it still makes sense to do updates as

$$u_{k+1} = u_k - \beta \tilde{\nabla} J(u_k).$$

Mini-batch methods: advantages and disadvantages

Disadvatange:

The computational cost is now *b* times higher than for SGD. \Rightarrow An epoch is now consists of I/b iterations.

Because $\mathbb{E}[\tilde{\nabla}J(u)] = \nabla J(u)$, the convergence rate is $|1 - 2\alpha\beta + \beta^2 L^2|$ per iteration. The convergence rate per epoch is thus

$$|1 - 2\alpha\beta + \beta^2 L^2|^{I/b}.$$

The convergence rate is lower than for SGD!

Mini-batch methods: advantages and disadvantages

Disadvatange:

The computational cost is now *b* times higher than for SGD. \Rightarrow An epoch is now consists of I/b iterations.

Because $\mathbb{E}[\tilde{\nabla}J(u)] = \nabla J(u)$, the convergence rate is $|1 - 2\alpha\beta + \beta^2 L^2|$ per iteration. The convergence rate per epoch is thus

$$|1 - 2\alpha\beta + \beta^2 L^2|^{I/b}.$$

The convergence rate is lower than for SGD!

► Advantage:

The variance is reduced by a factor 1/b, i.e. it now holds that

$$\mathbb{E}[|\tilde{\nabla}J(u) - \nabla J(u)|^2] \le \frac{\sigma_{\text{SGD}}^2}{b}.$$

Pseudo code for stochastic gradient descent with batch size \boldsymbol{b}

- Choose an initial guess u_0
- Choose a step size β and batch size b
- ► Compute $J_0 = J(u_0)$.
- for $k = 1: \max_iters$

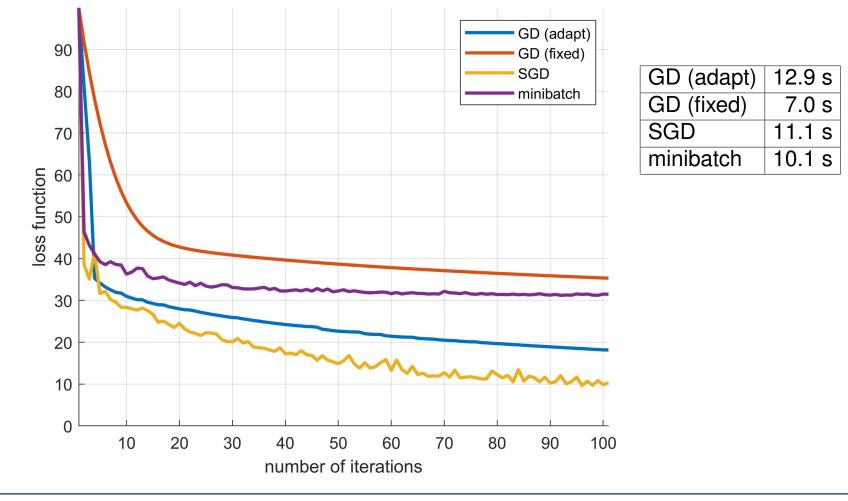
• for
$$j = 1: I/b$$

- Select a random subset \mathcal{B} of $i \in \{1, 2, \dots, I\}$ of size b.
- Compute $g_0 = I/b \sum_{i \in \mathcal{B}} \nabla J_i(u_0)$.

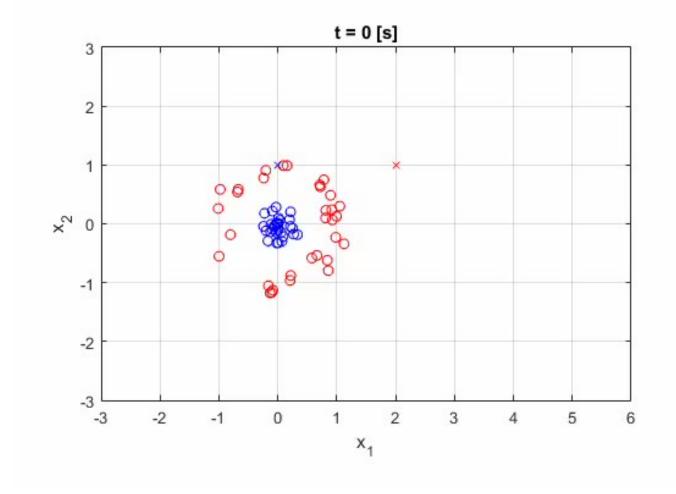
► Set
$$u_0 = u_0 - \beta g_0$$
.

Example: 100 epochs of stochastic gradient descent with batch size 4

Training of a ResNet with 100 hidden layers in \mathbb{R}^2 on 64 data points.



Example: 100 epochs of stochastic gradient descent with batch size 4



NATURWISSENSCHAFTLICHE FAKULTÄT

3.C SGD with momentum and ADAM

SGD with momentum

Problem in SGD: the gradient changes rapidly in each iteration. This leads to a highly oscillatory trajectory.

Idea: to reduce oscillations, take an average over the previously computed gradients. However, we should also 'forget' gradients that have been computed too long ago.

SGD with momentum

Problem in SGD: the gradient changes rapidly in each iteration. This leads to a highly oscillatory trajectory.

Idea: to reduce oscillations, take an average over the previously computed gradients. However, we should also 'forget' gradients that have been computed too long ago.

So now do updates as

$$u_{k+1} = u_k - \beta v_k$$

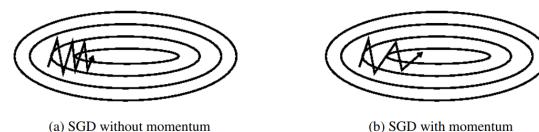
where

$$v_{k} = \tilde{\nabla}J(u_{k}) + \gamma\tilde{\nabla}J(u_{k-1}) + \gamma^{2}\tilde{\nabla}J(u_{k-2}) + \ldots + \gamma^{k}\tilde{\nabla}J(u_{0})$$

= $\tilde{\nabla}J(u_{k}) + \gamma v_{k-1},$

for some $\gamma \in (0, 1)$. Typically, $\gamma = 0.9$ or $\gamma = 0.99$.

Interpretation



(b) SGD with momentum

- Gradient descent is a man walking down a hill. He follows the steepest path downwards; his progress is slow, but steady.
- Momentum is a heavy ball rolling down the same hill. The added inertia acts both as a smoother and an accelerator, dampening oscillations and causing us to barrel through narrow valleys, small humps and local minima.

Pseudo code for gradient descent with momentum

- Choose an initial guess u_0 and set $v_0 = 0$.
- Choose a step size $\beta > 0$ and momentum parameter $\gamma \in (0, 1)$.
- for $k = 1: \max_iters$

- Select randomly an index $i \in \{1, 2, \dots, I\}$

Set
$$v_0 = g_0 + \gamma v_0$$

$$\blacktriangleright \qquad \qquad \mathsf{Set} \ u_0 = u_0 - \beta v_0.$$

Pseudo code for gradient descent with momentum (alternative)

The iterations

$$u_{k+1} = u_k - \beta v_k,$$
 $v_k = \tilde{\nabla} J(u_k) + \gamma v_{k-1}$

can be rewritten as

$$u_{k+1} = u_k - \beta \tilde{\nabla} J(u_k) + \gamma (u_k - u_{k-1}).$$

- ▶ Choose an initial guess $u_0 = 0$ and set $u_1 = u_0$.
- Choose a step size $\beta > 0$ and momentum parameter $\gamma \in (0, 1)$.
- Select randomly an index $i \in \{1, 2, \ldots, I\}$.
- ▶ for $k = 1: \max_iters$

Select randomly an index $i \in \{1, 2, \dots, I\}$

• Compute
$$g_1 = I \nabla J_i(u_1)$$

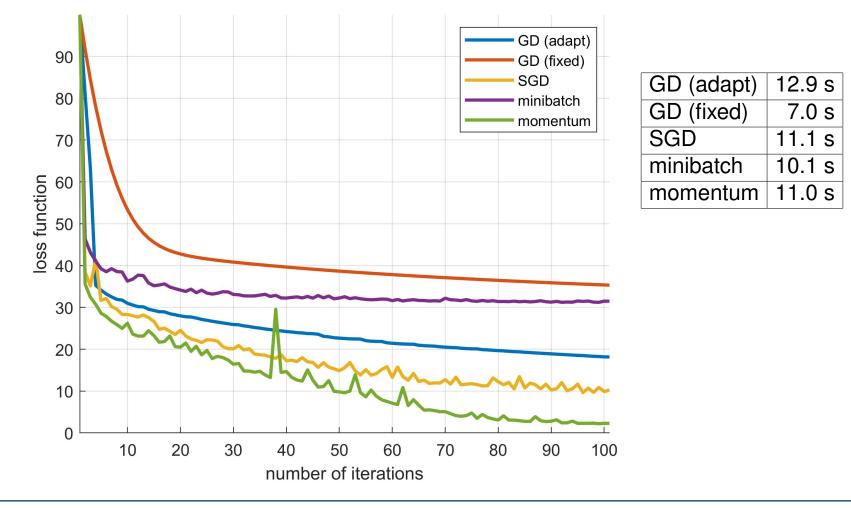
• Set
$$u_2 = u_1 - \beta g_1 + \gamma (u_1 - u_0)$$
.

$$\blacktriangleright \qquad \qquad \mathsf{Set} \ u_0 = u_1.$$

Set
$$u_1 = u_2$$
.

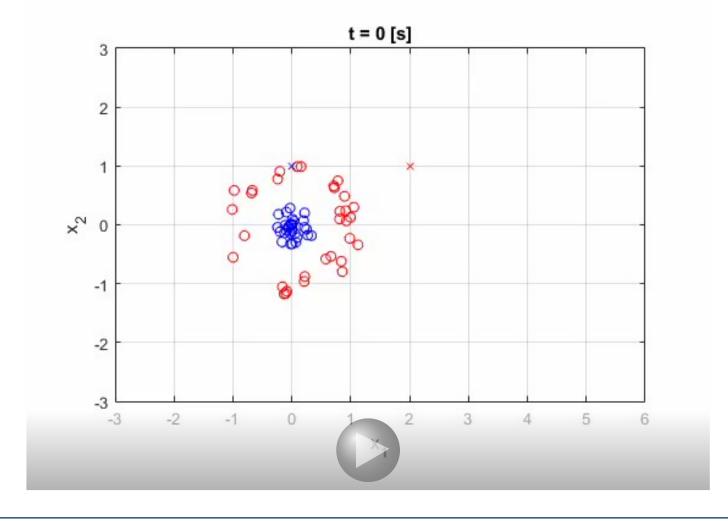
Example: 100 epochs of stochastic gradient descent with momentum

Training of a ResNet with 100 hidden layers in \mathbb{R}^2 on 64 data points.



D.W.M. Veldman $\,\,\cdot\,\,$ DCN $\,\,\cdot\,\,$ A Practical Introduction to Control, Numerics and Machine Learning

Example: 100 epochs of stochastic gradient descent with momentum



ADAptive Moment estimation (ADAM)

Idea: estimate the first and second moment of the gradient, i.e. estimations \tilde{m}_k and \tilde{v}_k such that

$$\tilde{m}_k \approx \mathbb{E}[\tilde{\nabla}J(u_k)], \qquad \qquad \tilde{v}_k \approx \mathbb{E}[\tilde{\nabla}J(u_k) \odot \tilde{\nabla}J(u_k)],$$

where \odot denotes the component-wise product of vectors.

ADAptive Moment estimation (ADAM)

Idea: estimate the first and second moment of the gradient, i.e. estimations \tilde{m}_k and \tilde{v}_k such that

$$\tilde{m}_k \approx \mathbb{E}[\tilde{\nabla}J(u_k)], \qquad \qquad \tilde{v}_k \approx \mathbb{E}[\tilde{\nabla}J(u_k) \odot \tilde{\nabla}J(u_k)],$$

where \odot denotes the component-wise product of vectors.

Then the update is computed as

$$u_{k+1} = u_k - \beta \frac{\tilde{m}_k}{\sqrt{\tilde{v}_k} + \varepsilon},$$

for some (small) $\varepsilon > 0$. Note that

- ▶ the square root in $\sqrt{\tilde{v}_k}$ is computed component-wise,
- ▶ the division in $\tilde{m}_k/(\sqrt{\tilde{v}_k} + \varepsilon)$ is computed component-wise.

ADAptive Moment estimation (ADAM)

Idea: estimate the first and second moment of the gradient, i.e. estimations \tilde{m}_k and \tilde{v}_k such that

$$\tilde{m}_k \approx \mathbb{E}[\tilde{\nabla}J(u_k)], \qquad \qquad \tilde{v}_k \approx \mathbb{E}[\tilde{\nabla}J(u_k) \odot \tilde{\nabla}J(u_k)],$$

where \odot denotes the component-wise product of vectors.

Then the update is computed as

$$u_{k+1} = u_k - \beta \frac{\tilde{m}_k}{\sqrt{\tilde{v}_k} + \varepsilon},$$

for some (small) $\varepsilon > 0$. Note that

- ▶ the square root in $\sqrt{\tilde{v}_k}$ is computed component-wise,
- ▶ the division in $\tilde{m}_k/(\sqrt{\tilde{v}_k} + \varepsilon)$ is computed component-wise.

Observe that if $\tilde{m}_k = \nabla J(u_k)$, $\tilde{v}_k = \nabla J(u_k) \odot \nabla J(u_k)$, and $\varepsilon = 0$, the update reduces to $u_{k+1} = u_k - \beta \operatorname{sign}(\nabla J(u_k))$. Note that $-\operatorname{sign}(\nabla J(u_k))$ is a descent direction because

$$\langle \nabla J(u_k), -\operatorname{sign}(\nabla J(u_k)) \rangle = -|\nabla J(u_k)|_1 \le 0.$$

Estimation of the first and second moments

Define m_k as

$$m_{k} = (1 - \beta_{1})\tilde{\nabla}J(u_{k}) + \beta_{1}(1 - \beta_{1})\tilde{\nabla}J(u_{k-1}) + \ldots + \beta_{1}^{k}(1 - \beta_{1})\tilde{\nabla}J(u_{0})$$

= $(1 - \beta_{1})\tilde{\nabla}J(u_{k}) + \beta_{1}m_{k-1}.$

Estimation of the first and second moments

Define m_k as

$$m_{k} = (1 - \beta_{1})\tilde{\nabla}J(u_{k}) + \beta_{1}(1 - \beta_{1})\tilde{\nabla}J(u_{k-1}) + \ldots + \beta_{1}^{k}(1 - \beta_{1})\tilde{\nabla}J(u_{0}) = (1 - \beta_{1})\tilde{\nabla}J(u_{k}) + \beta_{1}m_{k-1}.$$

Note that

$$\mathbb{E}[|\tilde{\nabla}J(u_k) - \tilde{\nabla}J(u_{k-1})|] = O(\beta).$$

Therefore,

$$\mathbb{E}[m_k] = \mathbb{E}\left[(1-\beta_1) \sum_{j=0}^k \beta_1^{k-j} \tilde{\nabla} J(u_j) \right] = \mathbb{E}\left[(1-\beta_1) \sum_{j=0}^k \beta_1^{k-j} \tilde{\nabla} J(u_k) + O(\beta) \right]$$
$$= \mathbb{E}[\tilde{\nabla} J(u_k)] (1-\beta_1) \sum_{j=0}^k \beta_1^{k-j} + O(\beta) = \mathbb{E}[\tilde{\nabla} J(u_k)] (1-\beta_1^{k+1}) + O(\beta).$$

Estimation of the first and second moments

Define m_k as

$$m_{k} = (1 - \beta_{1})\tilde{\nabla}J(u_{k}) + \beta_{1}(1 - \beta_{1})\tilde{\nabla}J(u_{k-1}) + \ldots + \beta_{1}^{k}(1 - \beta_{1})\tilde{\nabla}J(u_{0}) = (1 - \beta_{1})\tilde{\nabla}J(u_{k}) + \beta_{1}m_{k-1}.$$

Note that

$$\mathbb{E}[|\tilde{\nabla}J(u_k) - \tilde{\nabla}J(u_{k-1})|] = O(\beta).$$

Therefore,

$$\begin{split} \mathbb{E}[m_k] &= \mathbb{E}\left[\left(1 - \beta_1\right) \sum_{j=0}^k \beta_1^{k-j} \tilde{\nabla} J(u_j) \right] = \mathbb{E}\left[\left(1 - \beta_1\right) \sum_{j=0}^k \beta_1^{k-j} \tilde{\nabla} J(u_k) + O(\beta) \right] \\ &= \mathbb{E}[\tilde{\nabla} J(u_k)](1 - \beta_1) \sum_{j=0}^k \beta_1^{k-j} + O(\beta) = \mathbb{E}[\tilde{\nabla} J(u_k)](1 - \beta_1^{k+1}) + O(\beta). \end{split}$$

Practical implementation:

$$m_k = (1 - \beta_1) \tilde{\nabla} J(u_k) + \beta_1 m_{k-1}, \qquad \tilde{m}_k = \frac{m_k}{1 - \beta_1^{k+1}}.$$

And similarly for the second order moments:

$$v_k = (1 - \beta_1) \tilde{\nabla} J(u_k) \odot \tilde{\nabla} J(u_k) + \beta_2 v_{k-1}, \qquad \tilde{v}_k = \frac{v_k}{1 - \beta_2^{k+1}}.$$

Pseudo code for gradient descent with momentum

- Choose an initial guess u_0 and set $m_0 = 0$ and $v_0 = 0$.
- Choose a step size $\beta > 0$ and momentum parameter $\gamma \in (0, 1)$.
- for $k = 1: \max_iters$
- ▶ for *j* = 1: *I*
- Select randomly an index $i \in \{1, 2, \dots, I\}$
- $\blacktriangleright \qquad \text{Compute } g_0 = I \nabla J_i(u_0).$

• Set
$$m_0 = (1 - \beta_1)g_0 + \beta_1 m_0$$
.

Set
$$v_0 = (1 - \beta_2)g_0 \odot g_0 + \beta_2 v_0$$
.

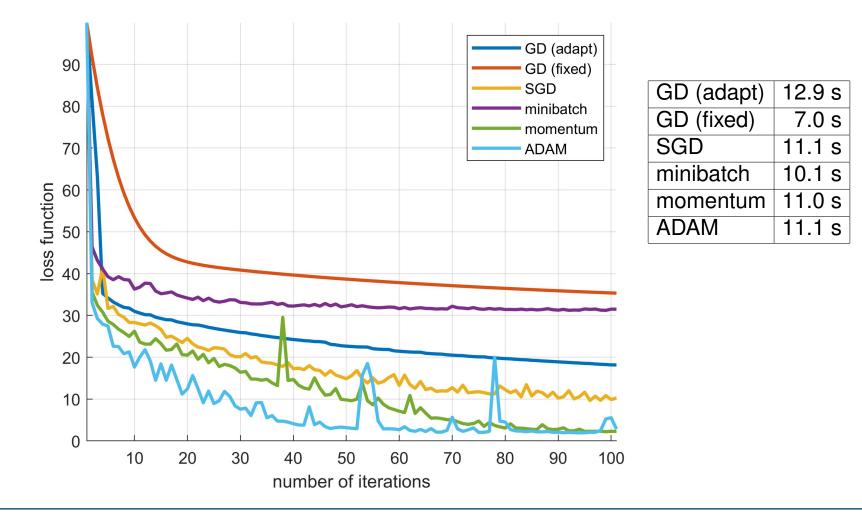
• Set
$$\tilde{m}_0 = m_0 / (1 - \beta_1^k)$$

• Set
$$\tilde{v}_0 = v_0/(1 - \beta_2^k)$$
.

Set
$$u_0 = u_0 - \beta \tilde{m}_0 / (\sqrt{\tilde{v}_0} + \varepsilon)$$
.

Example: 100 epochs of stochastic gradient descent with momentum

Training of a ResNet with 100 hidden layers in \mathbb{R}^2 on 64 data points.



Example: 100 epochs of stochastic gradient descent with momentum

