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3.A Convergence analysis for gradient descent



Pseudo code for gradient descent with adaptive step size

I Choose an initial guess u0
I Choose an initial step size β
I Compute J0 = J(u0).
I for i = 1: max iters
I Compute g0 = ∇J(u0).
I Set J1 =∞ and β = 4β.
I while J1 > J0
I Set β = β/2.
I Set u1 = u0 − βg0.
I Compute J1 = J(u1).
I if convergence conditions are satisfied
I Return u1, J1.
I Set u0 = u1
I Set J0 = J1
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Example: 100 iterations of gradient descent with adaptive step size

Training of a ResNet with 100 hidden layers in R2 on 64 data points.
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GD (adapt) 12.9 s



Example: 100 iterations of gradient descent with adaptive step size
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Example: 100 iterations of gradient descent with a fixed step size

Training of a ResNet with 100 hidden layers in R2 on 64 data points.
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GD (adapt) 12.9 s
GD (fixed) 7.0 s



Example: 100 iterations of gradient descent with a fixed step size
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Convergence analysis for gradient descent
We return to the more abstract optimization problem:

min
u∈RM

J(u).

Denote the minimizer by u∗.

For simplicity, we consider a gradient descent algorithm with a fixed step size β

uk+1 = uk − β∇J(uk).

Two assumptions:
I The functional J is α-convex, i.e.

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

I The gradient ∇J(u) is Lipschitz, i.e. there is an L > 0 such that for all u and v

|∇J(u)−∇J(v)| ≤ L|u− v|.

Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2
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Observation 1

The functional J is α-convex:

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2.

Subtract expand the brackets on the LHS and subtract J(v) on both sides:

J(v + θ(u− v))− J(v) ≤ θJ(u)− θJ(v)− αθ(1− θ)
2

|u− v|2.

Divide by θ and take the limit θ → 0:

〈∇J(v), u− v〉 = lim
θ→0

J(v + θ(u− v))− J(v)
θ

≤ J(u)− J(v)− α

2
|u− v|2.

We conclude
〈∇J(v), u− v〉 ≤ J(u)− J(v)− α

2
|u− v|2.
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Observation 2

From the previous slide:

〈∇J(v), u− v〉 ≤ J(u)− J(v)− α

2
|u− v|2.

Because this holds for all u and v, we may interchange u and v to obtain:

〈∇J(u), v − u〉 ≤ J(v)− J(u)− α

2
|v − u|2.

Adding these two equations, we find

〈∇J(v)−∇J(u), u− v〉 ≤ −α|u− v|2.
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Proof
Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇J(uk)− u∗, uk − β∇J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇J(uk), uk − u∗〉 + β2〈∇J(uk),∇J(uk)〉

Using that ∇J(u∗) = 0 and Observation 2, we find

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.

Inserting these two results back into the original expression, we conclude

|uk+1 − u∗|2 ≤
(
1− 2αβ + β2L2) |uk − u∗|2

The result now follows by induction over k.
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3.B Stochastic gradient descent (SGD)



Stochastic gradient descent
For stochastic gradient descent, assume that the cost functional is of the form

J(u) =
I∑
i=1

Ji(u).

Typical in machine learning: each Ji(u) corresponds to a training sample.

Therefore also

∇J(u) =
I∑
i=1
∇Ji(u).

If all the Ji(u) are similar,

∇J(u) ≈ ∇̃J(u) = I∇Jj(u),

for a randomly selected j ∈ {1, 2, . . . , I}.

Note that

E[∇̃J(u)] =
I∑
i=1

I∇Ji(u)P[j = i] =
I∑
i=1
∇Ji(u) = ∇J(u),

because P[j = i] = 1/I .
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Pseudo code for stochastic gradient descent

In each iteration, take a step in the direction of the stochastic gradient:

uk+1 = uk − β∇̃J(uk)

I Choose an initial guess u0
I Choose a step size β
I Compute J0 = J(u0).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set u0 = u0 − βg0.
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Convergence analysis: assumptions

Three assumptions:
I The functional J is α-convex, i.e.

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

I The gradient ∇J(u) is Lipschitz, i.e. there is an L > 0 such that for all u and v

|∇J(u)−∇J(v)| ≤ L|u− v|.

I The variance of the stochastic gradient is bounded, i.e. there is a σ such that for all u

E[|∇̃J(u)−∇J(u)|2] ≤ σ2.
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Convergence analysis: proof (1/2)

In each iteration, take a step in the direction of the stochastic gradient:

uk+1 = uk − β∇̃J(uk)

It then follows that

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇̃J(uk)− u∗, uk − β∇̃J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇̃J(uk), uk − u∗〉 + β2〈∇̃J(uk), ∇̃J(uk)〉

Taking the expectation, using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|uk+1 − u∗|2 | uk] = |uk − u∗|2 − 2β〈∇J(uk), uk − u∗〉 + β2E[|∇̃J(uk)|2 | uk].

For the second term on the RHS, Observation 2 shows that

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Therefore,

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].
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Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].

For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .
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|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .
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Convergence of SGD

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

Observe:
I the variance E[|∇̃J(u)−∇J(u)|2] ≤ σ2 leads to an offset

that does not converge to zero for k →∞.
But the offset can be reduced by choosing the step size β smaller.

I The convergence rate 1− 2αβ + β2L2 is the same as for gradient descent,
but the cost for one iteration is reduced by a factor 1/I .

I One epoch is defined as I iterations SGD.
⇒ The computational cost for one epoch of SGD

is approximately the same as one iteration of GD.
Convergence rate per epoch is

|1− 2αβ + β2L2|I .

When the offset is sufficiently small,
the computational efficiency of SGD is much higher than the one of GD.
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Pseudo code for stochastic gradient descent

I Choose an initial guess u0
I Choose a step size β
I Compute J0 = J(u0).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set u0 = u0 − βg0.
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Example: 100 epochs of stochastic gradient descent

Training of a ResNet with 100 hidden layers in R2 on 64 data points.
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GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s



Example: 100 epochs of stochastic gradient descent
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Mini-batch methods

Setting:

J(u) =
I∑
i=1

Ji(u), ⇒ ∇J(u) =
I∑
i=1
∇Ji(u).

Now define the stochastic gradient as the average of b randomly chosen gradients

∇̃J(u) = I

b

∑
j∈B
∇Jj(u),

where B is a randomly selected subset of {1, 2, . . . , I} of size b.

Again, it holds that
E[∇̃J(u)] = ∇J(u),

so it still makes sense to do updates as

uk+1 = uk − β∇̃J(uk).
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Mini-batch methods: advantages and disadvantages

I Disadvatange:
The computational cost is now b times higher than for SGD.
⇒ An epoch is now consists of I/b iterations.

Because E[∇̃J(u)] = ∇J(u), the convergence rate is |1− 2αβ + β2L2| per iteration.
The convergence rate per epoch is thus

|1− 2αβ + β2L2|I/b.

The convergence rate is lower than for SGD!

I Advantage:
The variance is reduced by a factor 1/b, i.e. it now holds that

E[|∇̃J(u)−∇J(u)|2] ≤ σ2
SGD
b

.
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Pseudo code for stochastic gradient descent with batch size b

I Choose an initial guess u0
I Choose a step size β and batch size b
I Compute J0 = J(u0).
I for k = 1: max iters
I for j = 1: I/b
I Select a random subset B of i ∈ {1, 2, . . . , I} of size b.
I Compute g0 = I/b

∑
i∈B∇Ji(u0).

I Set u0 = u0 − βg0.
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Example: 100 epochs of stochastic gradient descent with batch size 4

Training of a ResNet with 100 hidden layers in R2 on 64 data points.
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GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s
minibatch 10.1 s



Example: 100 epochs of stochastic gradient descent with batch size 4
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3.C SGD with momentum and ADAM



SGD with momentum

Problem in SGD: the gradient changes rapidly in each iteration.
This leads to a highly oscillatory trajectory.

Idea: to reduce oscillations, take an average over the previously computed gradients.
However, we should also ‘forget’ gradients that have been computed too long ago.

So now do updates as
uk+1 = uk − βvk

where

vk = ∇̃J(uk) + γ∇̃J(uk−1) + γ2∇̃J(uk−2) + . . . + γk∇̃J(u0)
= ∇̃J(uk) + γvk−1,

for some γ ∈ (0, 1). Typically, γ = 0.9 or γ = 0.99.
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Interpretation

I Gradient descent is a man walking down a hill. He follows the steepest path
downwards; his progress is slow, but steady.

I Momentum is a heavy ball rolling down the same hill. The added inertia acts both as
a smoother and an accelerator, dampening oscillations and causing us to barrel
through narrow valleys, small humps and local minima.
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Pseudo code for gradient descent with momentum

I Choose an initial guess u0 and set v0 = 0.
I Choose a step size β > 0 and momentum parameter γ ∈ (0, 1).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set v0 = g0 + γv0
I Set u0 = u0 − βv0.
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Pseudo code for gradient descent with momentum (alternative)

The iterations
uk+1 = uk − βvk, vk = ∇̃J(uk) + γvk−1

can be rewritten as
uk+1 = uk − β∇̃J(uk) + γ(uk − uk−1).

I Choose an initial guess u0 = 0 and set u1 = u0.
I Choose a step size β > 0 and momentum parameter γ ∈ (0, 1).
I Select randomly an index i ∈ {1, 2, . . . , I}.
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g1 = I∇Ji(u1).
I Set u2 = u1 − βg1 + γ(u1 − u0).
I Set u0 = u1.
I Set u1 = u2.
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Example: 100 epochs of stochastic gradient descent with momentum

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 33

GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s
minibatch 10.1 s
momentum 11.0 s



Example: 100 epochs of stochastic gradient descent with momentum
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ADAptive Moment estimation (ADAM)
Idea: estimate the first and second moment of the gradient,

i.e. estimations m̃k and ṽk such that

m̃k ≈ E[∇̃J(uk)], ṽk ≈ E[∇̃J(uk)� ∇̃J(uk)],

where � denotes the component-wise product of vectors.

Then the update is computed as

uk+1 = uk − β
m̃k√
ṽk + ε

,

for some (small) ε > 0. Note that
I the square root in

√
ṽk is computed component-wise,

I the division in m̃k/(
√
ṽk + ε) is computed component-wise.

Observe that if m̃k = ∇J(uk), ṽk = ∇J(uk)�∇J(uk), and ε = 0,
the update reduces to uk+1 = uk − βsign(∇J(uk)).
Note that −sign(∇J(uk)) is a descent direction because

〈∇J(uk),−sign(∇J(uk))〉 = −|∇J(uk)|1 ≤ 0.
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Estimation of the first and second moments
Define mk as

mk = (1− β1)∇̃J(uk) + β1(1− β1)∇̃J(uk−1) + . . . + βk1 (1− β1)∇̃J(u0)
= (1− β1)∇̃J(uk) + β1mk−1.

Note that
E[|∇̃J(uk)− ∇̃J(uk−1)|] = O(β).

Therefore,

E[mk] = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uj)

 = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uk) +O(β)


= E[∇̃J(uk)](1− β1)

k∑
j=0

βk−j1 +O(β) = E[∇̃J(uk)](1− βk+1
1 ) +O(β).

Practical implementation:

mk = (1− β1)∇̃J(uk) + β1mk−1, m̃k = mk

1− βk+1
1

.

And similarly for the second order moments:

vk = (1− β1)∇̃J(uk)� ∇̃J(uk) + β2vk−1, ṽk = vk

1− βk+1
2

.
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Pseudo code for gradient descent with momentum

I Choose an initial guess u0 and set m0 = 0 and v0 = 0.
I Choose a step size β > 0 and momentum parameter γ ∈ (0, 1).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set m0 = (1− β1)g0 + β1m0.
I Set v0 = (1− β2)g0 � g0 + β2v0.
I Set m̃0 = m0/(1− βk1 ).
I Set ṽ0 = v0/(1− βk2 ).
I Set u0 = u0 − βm̃0/(

√
ṽ0 + ε).
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Example: 100 epochs of stochastic gradient descent with momentum

Training of a ResNet with 100 hidden layers in R2 on 64 data points.
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GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s
minibatch 10.1 s
momentum 11.0 s
ADAM 11.1 s



Example: 100 epochs of stochastic gradient descent with momentum
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