
A Practical Introduction to
Control, Numerics and Machine Learning
Day 3
Summer School IFAC CPDE 2022
Workshop on Control of Systems Governed by Partial Differential Equations

Daniël Veldman
Chair in Dynamics, Control, and Numerics, Friedrich-Alexander-University Erlangen-Nürnberg

Contents

2.A Convergence analysis for gradient descent
2.B Stochastic gradient descent
2.C SGD with momentum and ADAM

3.A Convergence analysis for gradient descent

Pseudo code for gradient descent with adaptive step size

I Choose an initial guess u0
I Choose an initial step size β
I Compute J0 = J(u0).
I for i = 1: max iters
I Compute g0 = ∇J(u0).
I Set J1 =∞ and β = 4β.
I while J1 > J0
I Set β = β/2.
I Set u1 = u0 − βg0.
I Compute J1 = J(u1).
I if convergence conditions are satisfied
I Return u1, J1.
I Set u0 = u1
I Set J0 = J1

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 3

Example: 100 iterations of gradient descent with adaptive step size

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 4

GD (adapt) 12.9 s

Example: 100 iterations of gradient descent with adaptive step size

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 5

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Pseudo code for gradient descent with adaptive step size

I Choose an initial guess u0
I Choose a step size β
I Compute J0 = J(u0).
I for i = 1: max iters
I Compute g0 = ∇J(u0).
I Set u1 = u0 − βg0.
I Compute J1 = J(u1).
I if convergence conditions are satisfied
I Return u1, J1.
I Set u0 = u1
I Set J0 = J1

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 6

Example: 100 iterations of gradient descent with a fixed step size

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 7

GD (adapt) 12.9 s
GD (fixed) 7.0 s

Example: 100 iterations of gradient descent with a fixed step size

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 8

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Convergence analysis for gradient descent
We return to the more abstract optimization problem:

min
u∈RM

J(u).

Denote the minimizer by u∗.

For simplicity, we consider a gradient descent algorithm with a fixed step size β

uk+1 = uk − β∇J(uk).

Two assumptions:
I The functional J is α-convex, i.e.

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

I The gradient ∇J(u) is Lipschitz, i.e. there is an L > 0 such that for all u and v

|∇J(u)−∇J(v)| ≤ L|u− v|.

Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 9

Convergence analysis for gradient descent
We return to the more abstract optimization problem:

min
u∈RM

J(u).

Denote the minimizer by u∗.

For simplicity, we consider a gradient descent algorithm with a fixed step size β

uk+1 = uk − β∇J(uk).

Two assumptions:
I The functional J is α-convex, i.e.

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

I The gradient ∇J(u) is Lipschitz, i.e. there is an L > 0 such that for all u and v

|∇J(u)−∇J(v)| ≤ L|u− v|.

Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 9

Observation 1

The functional J is α-convex:

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2.

Subtract expand the brackets on the LHS and subtract J(v) on both sides:

J(v + θ(u− v))− J(v) ≤ θJ(u)− θJ(v)− αθ(1− θ)
2

|u− v|2.

Divide by θ and take the limit θ → 0:

〈∇J(v), u− v〉 = lim
θ→0

J(v + θ(u− v))− J(v)
θ

≤ J(u)− J(v)− α

2
|u− v|2.

We conclude
〈∇J(v), u− v〉 ≤ J(u)− J(v)− α

2
|u− v|2.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 10

Observation 2

From the previous slide:

〈∇J(v), u− v〉 ≤ J(u)− J(v)− α

2
|u− v|2.

Because this holds for all u and v, we may interchange u and v to obtain:

〈∇J(u), v − u〉 ≤ J(v)− J(u)− α

2
|v − u|2.

Adding these two equations, we find

〈∇J(v)−∇J(u), u− v〉 ≤ −α|u− v|2.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 11

Proof
Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇J(uk)− u∗, uk − β∇J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇J(uk), uk − u∗〉 + β2〈∇J(uk),∇J(uk)〉

Using that ∇J(u∗) = 0 and Observation 2, we find

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.

Inserting these two results back into the original expression, we conclude

|uk+1 − u∗|2 ≤
(
1− 2αβ + β2L2) |uk − u∗|2

The result now follows by induction over k.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 12

Proof
Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇J(uk)− u∗, uk − β∇J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇J(uk), uk − u∗〉 + β2〈∇J(uk),∇J(uk)〉

Using that ∇J(u∗) = 0 and Observation 2, we find

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.

Inserting these two results back into the original expression, we conclude

|uk+1 − u∗|2 ≤
(
1− 2αβ + β2L2) |uk − u∗|2

The result now follows by induction over k.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 12

Proof
Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇J(uk)− u∗, uk − β∇J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇J(uk), uk − u∗〉 + β2〈∇J(uk),∇J(uk)〉

Using that ∇J(u∗) = 0 and Observation 2, we find

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.

Inserting these two results back into the original expression, we conclude

|uk+1 − u∗|2 ≤
(
1− 2αβ + β2L2) |uk − u∗|2

The result now follows by induction over k.
D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 12

3.B Stochastic gradient descent (SGD)

Stochastic gradient descent
For stochastic gradient descent, assume that the cost functional is of the form

J(u) =
I∑
i=1

Ji(u).

Typical in machine learning: each Ji(u) corresponds to a training sample.

Therefore also

∇J(u) =
I∑
i=1
∇Ji(u).

If all the Ji(u) are similar,

∇J(u) ≈ ∇̃J(u) = I∇Jj(u),

for a randomly selected j ∈ {1, 2, . . . , I}.

Note that

E[∇̃J(u)] =
I∑
i=1

I∇Ji(u)P[j = i] =
I∑
i=1
∇Ji(u) = ∇J(u),

because P[j = i] = 1/I .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 14

Stochastic gradient descent
For stochastic gradient descent, assume that the cost functional is of the form

J(u) =
I∑
i=1

Ji(u).

Typical in machine learning: each Ji(u) corresponds to a training sample.

Therefore also

∇J(u) =
I∑
i=1
∇Ji(u).

If all the Ji(u) are similar,

∇J(u) ≈ ∇̃J(u) = I∇Jj(u),

for a randomly selected j ∈ {1, 2, . . . , I}.

Note that

E[∇̃J(u)] =
I∑
i=1

I∇Ji(u)P[j = i] =
I∑
i=1
∇Ji(u) = ∇J(u),

because P[j = i] = 1/I .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 14

Stochastic gradient descent
For stochastic gradient descent, assume that the cost functional is of the form

J(u) =
I∑
i=1

Ji(u).

Typical in machine learning: each Ji(u) corresponds to a training sample.

Therefore also

∇J(u) =
I∑
i=1
∇Ji(u).

If all the Ji(u) are similar,

∇J(u) ≈ ∇̃J(u) = I∇Jj(u),

for a randomly selected j ∈ {1, 2, . . . , I}.

Note that

E[∇̃J(u)] =
I∑
i=1

I∇Ji(u)P[j = i] =
I∑
i=1
∇Ji(u) = ∇J(u),

because P[j = i] = 1/I .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 14

Stochastic gradient descent
For stochastic gradient descent, assume that the cost functional is of the form

J(u) =
I∑
i=1

Ji(u).

Typical in machine learning: each Ji(u) corresponds to a training sample.

Therefore also

∇J(u) =
I∑
i=1
∇Ji(u).

If all the Ji(u) are similar,

∇J(u) ≈ ∇̃J(u) = I∇Jj(u),

for a randomly selected j ∈ {1, 2, . . . , I}.

Note that

E[∇̃J(u)] =
I∑
i=1

I∇Ji(u)P[j = i] =
I∑
i=1
∇Ji(u) = ∇J(u),

because P[j = i] = 1/I .
D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 14

Pseudo code for stochastic gradient descent

In each iteration, take a step in the direction of the stochastic gradient:

uk+1 = uk − β∇̃J(uk)

I Choose an initial guess u0
I Choose a step size β
I Compute J0 = J(u0).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set u0 = u0 − βg0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 15

Convergence analysis: assumptions

Three assumptions:
I The functional J is α-convex, i.e.

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

I The gradient ∇J(u) is Lipschitz, i.e. there is an L > 0 such that for all u and v

|∇J(u)−∇J(v)| ≤ L|u− v|.

I The variance of the stochastic gradient is bounded, i.e. there is a σ such that for all u

E[|∇̃J(u)−∇J(u)|2] ≤ σ2.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 16

Convergence analysis: proof (1/2)

In each iteration, take a step in the direction of the stochastic gradient:

uk+1 = uk − β∇̃J(uk)

It then follows that

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇̃J(uk)− u∗, uk − β∇̃J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇̃J(uk), uk − u∗〉 + β2〈∇̃J(uk), ∇̃J(uk)〉

Taking the expectation, using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|uk+1 − u∗|2 | uk] = |uk − u∗|2 − 2β〈∇J(uk), uk − u∗〉 + β2E[|∇̃J(uk)|2 | uk].

For the second term on the RHS, Observation 2 shows that

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Therefore,

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 17

Convergence analysis: proof (1/2)

In each iteration, take a step in the direction of the stochastic gradient:

uk+1 = uk − β∇̃J(uk)

It then follows that

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇̃J(uk)− u∗, uk − β∇̃J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇̃J(uk), uk − u∗〉 + β2〈∇̃J(uk), ∇̃J(uk)〉

Taking the expectation, using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|uk+1 − u∗|2 | uk] = |uk − u∗|2 − 2β〈∇J(uk), uk − u∗〉 + β2E[|∇̃J(uk)|2 | uk].

For the second term on the RHS, Observation 2 shows that

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Therefore,

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 17

Convergence analysis: proof (1/2)

In each iteration, take a step in the direction of the stochastic gradient:

uk+1 = uk − β∇̃J(uk)

It then follows that

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇̃J(uk)− u∗, uk − β∇̃J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇̃J(uk), uk − u∗〉 + β2〈∇̃J(uk), ∇̃J(uk)〉

Taking the expectation, using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|uk+1 − u∗|2 | uk] = |uk − u∗|2 − 2β〈∇J(uk), uk − u∗〉 + β2E[|∇̃J(uk)|2 | uk].

For the second term on the RHS, Observation 2 shows that

−〈∇J(uk), uk − u∗〉 = −〈∇J(uk)−∇J(u∗), uk − u∗〉 ≤ −α|uk − u∗|2.

Therefore,

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 17

Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].

For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 18

Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].
For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.

Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 18

Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].
For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.

Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 18

Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].
For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.

Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 18

Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].
For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 18

Convergence analysis: proof (2/2)
From the previous slide:

E[|uk+1 − u∗|2 | uk] = (1− 2αβ)|uk − u∗|2 + β2E[|∇̃J(uk)|2 | uk].
For the third term on the RHS, note that

|∇̃J(uk)|2 ≤ |∇̃J(uk)−∇J(uk)|2 + 2〈∇̃J(uk)−∇J(uk),∇J(uk)〉 + |∇J(uk)|2.
Taking the expectation using that E[∇̃J(uk) | uk] = ∇J(uk), it follows that

E[|∇̃J(uk)|2 | uk] ≤ E[|∇̃J(uk)−∇J(uk)|2 | uk] + |∇J(uk)|2 ≤ σ2 + |∇J(uk)|2.
Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

|∇J(uk)|2 = 〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.
Inserting the resulting estimate for the third term, it follows that

E[|uk+1 − u∗|2 | uk] = (1− 2αβ + β2L2)|uk − u∗|2 + β2σ2.

Convergence of SGD

If β is such that |1− 2αβ + β2L2| < 1, then

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 18

Convergence of SGD

E[|uk − u∗|2] ≤ |1− 2αβ + β2L2|k|u0 − u∗|2 + β
σ2

2α− βL2 .

Observe:
I the variance E[|∇̃J(u)−∇J(u)|2] ≤ σ2 leads to an offset

that does not converge to zero for k →∞.
But the offset can be reduced by choosing the step size β smaller.

I The convergence rate 1− 2αβ + β2L2 is the same as for gradient descent,
but the cost for one iteration is reduced by a factor 1/I .

I One epoch is defined as I iterations SGD.
⇒ The computational cost for one epoch of SGD

is approximately the same as one iteration of GD.
Convergence rate per epoch is

|1− 2αβ + β2L2|I .

When the offset is sufficiently small,
the computational efficiency of SGD is much higher than the one of GD.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 19

Pseudo code for stochastic gradient descent

I Choose an initial guess u0
I Choose a step size β
I Compute J0 = J(u0).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set u0 = u0 − βg0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 20

Example: 100 epochs of stochastic gradient descent

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 21

GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s

Example: 100 epochs of stochastic gradient descent

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 22

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Mini-batch methods

Setting:

J(u) =
I∑
i=1

Ji(u), ⇒ ∇J(u) =
I∑
i=1
∇Ji(u).

Now define the stochastic gradient as the average of b randomly chosen gradients

∇̃J(u) = I

b

∑
j∈B
∇Jj(u),

where B is a randomly selected subset of {1, 2, . . . , I} of size b.

Again, it holds that
E[∇̃J(u)] = ∇J(u),

so it still makes sense to do updates as

uk+1 = uk − β∇̃J(uk).

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 23

Mini-batch methods

Setting:

J(u) =
I∑
i=1

Ji(u), ⇒ ∇J(u) =
I∑
i=1
∇Ji(u).

Now define the stochastic gradient as the average of b randomly chosen gradients

∇̃J(u) = I

b

∑
j∈B
∇Jj(u),

where B is a randomly selected subset of {1, 2, . . . , I} of size b.

Again, it holds that
E[∇̃J(u)] = ∇J(u),

so it still makes sense to do updates as

uk+1 = uk − β∇̃J(uk).

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 23

Mini-batch methods: advantages and disadvantages

I Disadvatange:
The computational cost is now b times higher than for SGD.
⇒ An epoch is now consists of I/b iterations.

Because E[∇̃J(u)] = ∇J(u), the convergence rate is |1− 2αβ + β2L2| per iteration.
The convergence rate per epoch is thus

|1− 2αβ + β2L2|I/b.

The convergence rate is lower than for SGD!

I Advantage:
The variance is reduced by a factor 1/b, i.e. it now holds that

E[|∇̃J(u)−∇J(u)|2] ≤ σ2
SGD
b

.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 24

Mini-batch methods: advantages and disadvantages

I Disadvatange:
The computational cost is now b times higher than for SGD.
⇒ An epoch is now consists of I/b iterations.

Because E[∇̃J(u)] = ∇J(u), the convergence rate is |1− 2αβ + β2L2| per iteration.
The convergence rate per epoch is thus

|1− 2αβ + β2L2|I/b.

The convergence rate is lower than for SGD!

I Advantage:
The variance is reduced by a factor 1/b, i.e. it now holds that

E[|∇̃J(u)−∇J(u)|2] ≤ σ2
SGD
b

.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 24

Pseudo code for stochastic gradient descent with batch size b

I Choose an initial guess u0
I Choose a step size β and batch size b
I Compute J0 = J(u0).
I for k = 1: max iters
I for j = 1: I/b
I Select a random subset B of i ∈ {1, 2, . . . , I} of size b.
I Compute g0 = I/b

∑
i∈B∇Ji(u0).

I Set u0 = u0 − βg0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 25

Example: 100 epochs of stochastic gradient descent with batch size 4

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 26

GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s
minibatch 10.1 s

Example: 100 epochs of stochastic gradient descent with batch size 4

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 27

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

3.C SGD with momentum and ADAM

SGD with momentum

Problem in SGD: the gradient changes rapidly in each iteration.
This leads to a highly oscillatory trajectory.

Idea: to reduce oscillations, take an average over the previously computed gradients.
However, we should also ‘forget’ gradients that have been computed too long ago.

So now do updates as
uk+1 = uk − βvk

where

vk = ∇̃J(uk) + γ∇̃J(uk−1) + γ2∇̃J(uk−2) + . . . + γk∇̃J(u0)
= ∇̃J(uk) + γvk−1,

for some γ ∈ (0, 1). Typically, γ = 0.9 or γ = 0.99.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 29

SGD with momentum

Problem in SGD: the gradient changes rapidly in each iteration.
This leads to a highly oscillatory trajectory.

Idea: to reduce oscillations, take an average over the previously computed gradients.
However, we should also ‘forget’ gradients that have been computed too long ago.

So now do updates as
uk+1 = uk − βvk

where

vk = ∇̃J(uk) + γ∇̃J(uk−1) + γ2∇̃J(uk−2) + . . . + γk∇̃J(u0)
= ∇̃J(uk) + γvk−1,

for some γ ∈ (0, 1). Typically, γ = 0.9 or γ = 0.99.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 29

Interpretation

I Gradient descent is a man walking down a hill. He follows the steepest path
downwards; his progress is slow, but steady.

I Momentum is a heavy ball rolling down the same hill. The added inertia acts both as
a smoother and an accelerator, dampening oscillations and causing us to barrel
through narrow valleys, small humps and local minima.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 30

Pseudo code for gradient descent with momentum

I Choose an initial guess u0 and set v0 = 0.
I Choose a step size β > 0 and momentum parameter γ ∈ (0, 1).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set v0 = g0 + γv0
I Set u0 = u0 − βv0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 31

Pseudo code for gradient descent with momentum (alternative)

The iterations
uk+1 = uk − βvk, vk = ∇̃J(uk) + γvk−1

can be rewritten as
uk+1 = uk − β∇̃J(uk) + γ(uk − uk−1).

I Choose an initial guess u0 = 0 and set u1 = u0.
I Choose a step size β > 0 and momentum parameter γ ∈ (0, 1).
I Select randomly an index i ∈ {1, 2, . . . , I}.
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g1 = I∇Ji(u1).
I Set u2 = u1 − βg1 + γ(u1 − u0).
I Set u0 = u1.
I Set u1 = u2.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 32

Example: 100 epochs of stochastic gradient descent with momentum

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 33

GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s
minibatch 10.1 s
momentum 11.0 s

Example: 100 epochs of stochastic gradient descent with momentum

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 34

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

ADAptive Moment estimation (ADAM)
Idea: estimate the first and second moment of the gradient,

i.e. estimations m̃k and ṽk such that

m̃k ≈ E[∇̃J(uk)], ṽk ≈ E[∇̃J(uk)� ∇̃J(uk)],

where � denotes the component-wise product of vectors.

Then the update is computed as

uk+1 = uk − β
m̃k√
ṽk + ε

,

for some (small) ε > 0. Note that
I the square root in

√
ṽk is computed component-wise,

I the division in m̃k/(
√
ṽk + ε) is computed component-wise.

Observe that if m̃k = ∇J(uk), ṽk = ∇J(uk)�∇J(uk), and ε = 0,
the update reduces to uk+1 = uk − βsign(∇J(uk)).
Note that −sign(∇J(uk)) is a descent direction because

〈∇J(uk),−sign(∇J(uk))〉 = −|∇J(uk)|1 ≤ 0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 35

ADAptive Moment estimation (ADAM)
Idea: estimate the first and second moment of the gradient,

i.e. estimations m̃k and ṽk such that

m̃k ≈ E[∇̃J(uk)], ṽk ≈ E[∇̃J(uk)� ∇̃J(uk)],

where � denotes the component-wise product of vectors.

Then the update is computed as

uk+1 = uk − β
m̃k√
ṽk + ε

,

for some (small) ε > 0. Note that
I the square root in

√
ṽk is computed component-wise,

I the division in m̃k/(
√
ṽk + ε) is computed component-wise.

Observe that if m̃k = ∇J(uk), ṽk = ∇J(uk)�∇J(uk), and ε = 0,
the update reduces to uk+1 = uk − βsign(∇J(uk)).
Note that −sign(∇J(uk)) is a descent direction because

〈∇J(uk),−sign(∇J(uk))〉 = −|∇J(uk)|1 ≤ 0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 35

ADAptive Moment estimation (ADAM)
Idea: estimate the first and second moment of the gradient,

i.e. estimations m̃k and ṽk such that

m̃k ≈ E[∇̃J(uk)], ṽk ≈ E[∇̃J(uk)� ∇̃J(uk)],

where � denotes the component-wise product of vectors.

Then the update is computed as

uk+1 = uk − β
m̃k√
ṽk + ε

,

for some (small) ε > 0. Note that
I the square root in

√
ṽk is computed component-wise,

I the division in m̃k/(
√
ṽk + ε) is computed component-wise.

Observe that if m̃k = ∇J(uk), ṽk = ∇J(uk)�∇J(uk), and ε = 0,
the update reduces to uk+1 = uk − βsign(∇J(uk)).
Note that −sign(∇J(uk)) is a descent direction because

〈∇J(uk),−sign(∇J(uk))〉 = −|∇J(uk)|1 ≤ 0.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 35

Estimation of the first and second moments
Define mk as

mk = (1− β1)∇̃J(uk) + β1(1− β1)∇̃J(uk−1) + . . . + βk1 (1− β1)∇̃J(u0)
= (1− β1)∇̃J(uk) + β1mk−1.

Note that
E[|∇̃J(uk)− ∇̃J(uk−1)|] = O(β).

Therefore,

E[mk] = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uj)

 = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uk) +O(β)


= E[∇̃J(uk)](1− β1)

k∑
j=0

βk−j1 +O(β) = E[∇̃J(uk)](1− βk+1
1) +O(β).

Practical implementation:

mk = (1− β1)∇̃J(uk) + β1mk−1, m̃k = mk

1− βk+1
1

.

And similarly for the second order moments:

vk = (1− β1)∇̃J(uk)� ∇̃J(uk) + β2vk−1, ṽk = vk

1− βk+1
2

.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 36

Estimation of the first and second moments
Define mk as

mk = (1− β1)∇̃J(uk) + β1(1− β1)∇̃J(uk−1) + . . . + βk1 (1− β1)∇̃J(u0)
= (1− β1)∇̃J(uk) + β1mk−1.

Note that
E[|∇̃J(uk)− ∇̃J(uk−1)|] = O(β).

Therefore,

E[mk] = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uj)

 = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uk) +O(β)


= E[∇̃J(uk)](1− β1)

k∑
j=0

βk−j1 +O(β) = E[∇̃J(uk)](1− βk+1
1) +O(β).

Practical implementation:

mk = (1− β1)∇̃J(uk) + β1mk−1, m̃k = mk

1− βk+1
1

.

And similarly for the second order moments:

vk = (1− β1)∇̃J(uk)� ∇̃J(uk) + β2vk−1, ṽk = vk

1− βk+1
2

.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 36

Estimation of the first and second moments
Define mk as

mk = (1− β1)∇̃J(uk) + β1(1− β1)∇̃J(uk−1) + . . . + βk1 (1− β1)∇̃J(u0)
= (1− β1)∇̃J(uk) + β1mk−1.

Note that
E[|∇̃J(uk)− ∇̃J(uk−1)|] = O(β).

Therefore,

E[mk] = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uj)

 = E

(1− β1)
k∑
j=0

βk−j1 ∇̃J(uk) +O(β)


= E[∇̃J(uk)](1− β1)

k∑
j=0

βk−j1 +O(β) = E[∇̃J(uk)](1− βk+1
1) +O(β).

Practical implementation:

mk = (1− β1)∇̃J(uk) + β1mk−1, m̃k = mk

1− βk+1
1

.

And similarly for the second order moments:

vk = (1− β1)∇̃J(uk)� ∇̃J(uk) + β2vk−1, ṽk = vk

1− βk+1
2

.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 36

Pseudo code for gradient descent with momentum

I Choose an initial guess u0 and set m0 = 0 and v0 = 0.
I Choose a step size β > 0 and momentum parameter γ ∈ (0, 1).
I for k = 1: max iters
I for j = 1: I
I Select randomly an index i ∈ {1, 2, . . . , I}
I Compute g0 = I∇Ji(u0).
I Set m0 = (1− β1)g0 + β1m0.
I Set v0 = (1− β2)g0 � g0 + β2v0.
I Set m̃0 = m0/(1− βk1).
I Set ṽ0 = v0/(1− βk2).
I Set u0 = u0 − βm̃0/(

√
ṽ0 + ε).

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 37

Example: 100 epochs of stochastic gradient descent with momentum

Training of a ResNet with 100 hidden layers in R2 on 64 data points.

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 38

GD (adapt) 12.9 s
GD (fixed) 7.0 s
SGD 11.1 s
minibatch 10.1 s
momentum 11.0 s
ADAM 11.1 s

Example: 100 epochs of stochastic gradient descent with momentum

D.W.M. Veldman · DCN · A Practical Introduction to Control, Numerics and Machine Learning 39

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

	Convergence analysis for gradient descent
	Stochastic gradient descent (SGD)
	SGD with momentum and ADAM

	fd@rm@5:
	fd@rm@4:
	fd@rm@3:
	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

