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Background

The following is a simplified version of the problem setting in
D.W.M. Veldman, R.H.B. Fey, H.J. Zwart, M.M.J. van de Wal, J.D.B.J. van

den Boom, H. Nijmeijer (2021). Optimal thermal actuation for mitigation of heat-
induced wafer deformation. IEEE Transactions on Control System Technology.
29(2), 514-529.

The wafer is a thin silicon disk, typically with a radius of 300 mm and a thickness
of 0.7 mm. When the wafer is exposed to the projection light, it is placed on a
water-cooled supporting structure which is assumed to have a constant temperature
T0. Because the wafer is thin, the temperature variations along the thickness are
negligible and the temperature field in the wafer can be considered to be a function
of the in-plane Cartesian coordinates (x, y) and time t only. The temperature
increase in the wafer T w.r.t. the temperature of the supporting structure T0 is the
solution of the two-dimensional heat equation

(1) ρcH
∂T

∂t
= kH

(
∂2T

∂x2
+
∂2T

∂y2

)
− hcT +Q,

where ρ [kg/m3], c [J/kg/K], k [W/m/K], and H [m] are the mass density, spe-
cific heat capacity, thermal conductivity, and thickness of the wafer, respectively, hc
[W/m2/K] is the thermal conductance between the wafer and the supporting struc-
ture, and Q = Q(x, y, t) [W/m2] is the heat load that results from the projecting
light and from actuation, i.e.

(2) Q = Qexp +Qact,

where Qexp = Qexp(x, y, t) is the heat load resulting from the light that projects
the pattern of electronic connections on the wafer and Qact = Qact(x, y, t) is the
actuation heat load. Note that convective and radiative heat transfer are negligible
compared to the heat conduction to the supporting structure. It is assumed that the
wafer temperature is initially equal to the temperature of the supporting structure
T0, i.e. the initial condition is T (x, y, 0) = 0. The spatial domain (x, y) ∈ R2 is
considered to be infinite.

The heat load Qexp is induced by the light that projects the pattern of electronic
connections on the wafer and has a power Pexp [W] which is uniformly applied
over the slit Ωslit ⊂ R2 (the red area in Fig. 1 with length L and width W ).
During the exposure of the wafer, the light source consecutively scans about 100
rectangular areas on the wafer, which are called fields. The scanning of a single
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Figure 1. The heat load (red) that is applied to the wafer (gray)

field is considered. During the time interval t ∈ (0, te) in which a single field is
scanned, the slit moves with a constant velocity v in the positive y-direction,

(3) Qexp(x, y, t) = Bd(x, y − vt),

where Bd(x, ζ) is a multiple of the characteristic function of the set [−L/2, L/2]×
[−W/2,W/2].

The actuation heat load has two spatial shapes that move together withQexp(x, y, t),

(4) Qact(x, y, t) = B1(x, y − vt)u1(t) +B2(x, y − vt)u2(t),

where B1(x, ζ) is a multiple of the characteristic function of the set [−L/2, L/2]×
[W/2, 3W/2], B2(x, ζ) is a multiple of the characteristic function of the set [−L/4, L/4]×
[−3W/2,−W/2], and u1(t) and u2(t) are the controls.

Because the considered domain is infinite and the applied heat load is moving,
it is convenient to consider a moving coordinate system (x, ζ, t) = (x, y − vt, t)
in which the shape of Qexp is fixed. Let T (y)(x, y, t) and Q(y)(x, y, t) denote the
temperature field and applied heat load expressed in (x, y, t)-coordinates as in (1).
The temperature field T (ζ)(x, ζ, t) and applied heat load Q(ζ)(x, ζ, t) expressed in
(x, ζ, t)-coordinates are then equal to T (y)(x, ζ+vt, t) and Q(y)(x, ζ+vt, t), respec-
tively. It can be shown that T (x, ζ, t) = T (ζ)(x, ζ, t) satisfies

(5) ρcH

(
∂T

∂t
− v ∂T

∂ζ

)
= kH

(
∂2T

∂x2
+
∂2T

∂ζ2

)
− hcT +Bd +B1u1 +B2u2.

In the remainder, only the (x, ζ, t)-coordinate system will be used and the used
coordinate system will no longer be indicated, T = T (x, ζ, t) = T (ζ)(x, ζ, t) and
Q = Q(x, ζ, t) = Q(ζ)(x, ζ, t). Note that the origin of (x, ζ)-coordinate system is at
the center of the slit (see Fig. 1).

Our goal is to compute the controls u1(t) and u2(t) that minimize

(6) J = 108

∫ te

0

∫∫
Ωslit

(T (x, ζ, t))2 dx dζ dt+

∫ te

0

(
u2

1(t) + u2
2(t)

)
dt

Exercise

A finite element discretization (on a truncated spatial domain) yields an optimal
control problem of the form where

(7) J =
1

2

∫ T

0

(x(t))>Qx(t) + u(t)>Ru(t) dt,

should be minimized subject to the dynamics

Eẋ(t) = Ax(t) + Bd + Bu(t), x(0) = xinit.
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The matrices E, A, B, xinit, Q, and R are computed in the first 82 lines of
CPDESS Exercise1 and u(t) = [u1(t), u2(t)]>. You do not need to study these
lines in detail.

Note: if you are using Octave instead of Matlab you should use the files ending
on octave when these are available. Files for which there is no duplicate ending
on octave should work both in Matlab and Octave.

a. Compute the state x(t) resulting from an input u(t) using the Crank-
Nicolson scheme by filling in the missing lines in OCP compute temperature.
Use a time grid with NT = 151 points. You can precompute an LU factor-
ization to speed up computations. You can visualize the obtained solution
by uncommenting line 99 in CPDESS Exercise1.

b. Use the obtained solution to evaluate the cost functional J according to
the scheme explained in the lecture by completing the missing line in
OCP costfunction. Also compute to the gradient of J based on the adjoint
state ϕ(t) by completing the missing lines in OCP compute adjoint. Follow
the procedure discretize-then-optimize approach given in the lecture.

c. Compute the coefficients G and H in the quadratic approximation of the
cost functional β 7→ J(u0−β∇J) by completing the files OCP innerproduct,
OCP compute dtemperature, and OCP hessian. Compare the obtained qua-
dratic approximation to the true values of the cost functional. Do you
expect to see any difference?

d. Use the results from parts a, b, and c to develop and implement a gradient-
based algorithm to minimize the functional J by completing the missing
lines in CPDESS Exercise1.
Plot the resulting optimal controls u∗1(t) and u∗2(t).
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