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Abstract. We study the stability of one-dimensional linear hyperbolic systems with non-symmetric
relaxation. Introducing a new frequency-dependent Kalman stability condition, we prove an abstract
decay result underpinning a form of inhomogeneous hypocoercivity. In contrast with the homogeneous
setting, the decay rates depend on how the Kalman condition is fulfilled and, in most cases, a loss of
derivative occurs: one must assume an additional regularity assumption on the initial data to ensure the
decay.

Under structural assumptions, we refine our abstract result by providing an algorithm, of wide
applicability, for the construction of Lyapunov functionals. This allows us to systematically establish
decay estimates for a given system and uncover algebraic cancellations (beyond the reach of the
Kalman-based approach) reducing the loss of derivatives in high frequencies. To demonstrate the
applicability of our method, we derive new stability results for the Sugimoto model, which describes the
propagation of nonlinear acoustic waves, and for a beam model of Timoshenko type with memory.

1. Introduction

In this work, we consider one-dimensional linear hyperbolic systems of the form

∂tU +A∂xU +BU = 0, (1.1)

ruling the evolution of the variable U = U(t, x) : R+ × Rn → Rn . Here, A ∈ M(n, n) is a
symmetric matrix, whereas B ∈ M(n, n) is allowed to be non-symmetric. Denoting by

Ba =
B −B⊤

2
, Bs =

B +B⊤

2

its skew-symmetric and symmetric part respectively, the system (1.1) can be reshaped into

∂tU +A∂xU +BaU +BsU = 0. (1.2)

Systems of the form (1.2) are ubiquitous in physical modelling, where they can either serve as
self-standing mathematical models or, perhaps more importantly, as the linearization of nonlinear
systems describing some physical phenomenon. In this context, it is paramount to understand the
asymptotic properties of the solution to (1.2), as these properties often translate into global-in-time
well-posedness properties for the associated nonlinear system (see the forthcoming Remark 2.6 and
Example 2.7).

Our goal is to provide a unifying framework for the large-time analysis of hyperbolic PDEs with
non-symmetric relaxation when the system is endowed with a partially dissipative structure, namely
when the matrix Bs is of the form

Bs =

[
0 0
0 D

]
, (1.3)

where D ∈ M(n2, n2) , 1 ≤ n2 < n , is a positive definite symmetric matrix. Under these conditions,
there exists a κ > 0 (in this case the smallest eigenvalue of D ) such that, for all X ∈ Rn2 ,

⟨DX,X⟩ ≥ κ|X|2. (1.4)

Due to the lack of coercivity of the dissipative operator Bs and the conservative properties of the
operator A∂x + Ba , standard L2 energy estimates do not provide enough information to derive
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time-decay estimates for the solution. Indeed, using the symmetry of A and the skew-symmetry of
Ba , we obtain

1

2

d

dt
∥U∥2L2 + ∥BsU∥2L2 = 0. (1.5)

Nevertheless, in many scenarios, systems of the form (1.2) exhibit spectral properties suggesting
that the L2 norm of the whole solution decays to zero in time. To justify such results with a priori
estimates, one has to resort to hypocoercive approaches, which seek to uncover hidden damping
mechanisms arising in the interactions of the dissipative and conservative parts of the system.

1.1. The symmetric case. We recall some results regarding the stability of hyperbolic systems with
symmetric relaxation, i.e. Ba = 0 . When Bs is fully dissipative, i.e. Bs > 0 , the solutions decay
exponentially in time [19]. In the partially dissipative scenario (1.3)-(1.4), the dissipation induced by
BsU lacks coercivity, as it affects only the n2 components of the solution. To analyze this situation,
the celebrated papers [16, 27] introduce the Shizuta-Kawashima (SK) stability condition: (A,Bs)
satisfy the (SK) condition if

{eigenvectors of A} ∩ Ker(Bs) = {0}. (SK)

Under this condition, time-decay estimates in the partially dissipative setting were obtained in
[16, 27, 33]. Kawashima and Yong [17] then formulated a notion of entropy which plays a key role in
symmetrizing quasilinear systems. Under the (SK) and entropy conditions, multiple studies were
dedicated to show the global existence and stability of classical solutions for nonlinear hyperbolic
systems with symmetric relaxation. For instance, Hanouzet and Natalini [13] and Yong [37] proved
the global existence of classical solutions of the Cauchy problem for initial data close to equilibrium in
Sobolev spaces. Ruggeri and Serre [25] investigated the asymptotical L2 -stability of solutions around
constant equilibrium states. Bianchini et al. [3] carried out a detailed analysis of the Green function
and established the Lp -decay rates and asymptotic stability of solutions with small perturbations.

More recently, Beauchard and Zuazua in [2] showed the equivalence of the (SK) condition and
the Kalman rank condition employed in control theory, namely: (A,Bs) satisfy the Kalman rank
condition if

rank


Bs

BsA
. . .

BsAn−1

 = n. (1.6)

Under this condition, they proved the L2 -stability of system (1.2) (with Ba = 0) by constructing
Lyapunov functionals, in the spirit of Villani’s hypocoercivity theory developed in [34]. For existence
and decay results of nonlinear system building upon this approach, we refer to [7, 6, 9, 18, 35, 36] and
references therein.

A basic example fitting the symmetric relaxation theory is given by the classical one-dimensional
weakly damped wave equation

∂ttu− ∂xxu+ ∂tu = 0

which can be rewritten in the form (1.2) by introducing the variable v = ux , obtaining{
∂tu+ ∂xv + u = 0,

∂tv + ∂xu = 0,

so that
A =

[
0 1
1 0

]
, Bs =

[
1 0
0 0

]
and Ba = 0.

The system is partially dissipative, a property reflected by the energy equality
1

2

d

dt
(|û|2 + |v̂|2) + |û|2 = 0,

where f̂ := Ff denotes the Fourier transform of a tempered distribution f . A quick computation
shows that

rank

[
Bs

BsA

]
= 2,
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so that the Kalman rank condition holds and the theory in [2] can be applied. In this case, the
Lyapunov functional leading to the decay rate reads

L(t) = (|û|2 + |v̂|2) + min
{
|ξ|, 1

|ξ|

}
Im

〈
û,

ξ

|ξ|
v̂
〉

(1.7)

where ⟨·, ·⟩ denotes the Hermitian product on C . Differentiating in time L , one obtains

d

dt
L+ cmin{1, |ξ|2}(|û|2 + |v̂|2) ≤ 0, (1.8)

highlighting dissipative effects for v . Then, using that L ∼ |û|2 + |v̂|2 , one recovers the decay
estimates expected by the spectral analysis, i.e. a heat-like behaviour in low frequencies and exponential
damping in high frequencies: for (u0, v0) ∈ L2 ∩ L1 , there exist two constants C > 0 and γ∗ > 0
such that

∥(u, v)ℓ(t)∥L∞ ≤ Ct−
1
2 ∥(u0, v0)∥L1 , (1.9)

∥(u, v)h(t)∥L2 ≤ Ce−γ∗t∥(u0, v0)∥L2 , (1.10)

where (u, v)ℓ = (û, v̂)(t, ξ)1|ξ|≤1 and (u, v)h = (û, v̂)(t, ξ)1|ξ|≥1 .

For general systems with symmetric relaxation, the Lyapunov functional reads

L(ξ, t) = 1

2
|U(ξ, t)|2 +min

{
|ξ|, 1

|ξ|

} n−1∑
k=1

εkIm(⟨BsAk−1
ω Û(ξ, t), BsAk

ωÛ(ξ, t)⟩), (1.11)

where Aω = Aω for ω = ξ/|ξ| . For εk > 0 chosen small enough, one derives similar decay
estimates as (1.9)-(1.10) when the Kalman rank condition (1.6) holds. The structure of (1.11)
underlines an iterative procedure designed to reveal the dissipative effect for each variable of the
system. Indeed, each term added to the energy can be interpreted as the interaction between a variable
whose dissipation has already been recovered and another whose dissipation remains to be obtained.
Accordingly, for k = 1 , the interaction between BsÛ and BsAÛ yields the dissipation of the
latter, which is subsequently utilized in the next term to derive the dissipation of BsA2Û . This
process continues iteratively and naturally concludes at k = n− 1 , as the Cayley-Hamilton theorem
ensures that no additional gain can be achieved beyond this point. Since A∂x is a skew-symmetric
operator, we can also interpret its action as a rotation in the space of functions, capable at each step of
propagating the dissipation generated by Bs to one of the n− n2 non-damped (initially) directions.

1.2. The skew-symmetric case – State of the art. Although the theory of symmetric relaxation can
handle a wide range of physical models, many systems of interest fall outside the scope of the setting
described above. A significant example is the Sugimoto system

∂tu+ ∂x

(
au+ b

u2

2

)
+Ω2φ = 0,

∂tφ+ εφ+ ω2p− u = 0,

∂tp = φ,

(1.12)

proposed by Sugimoto in [28] to model the propagation of nonlinear acoustic waves in a tube,
with the ultimate goal of describing the high-amplitude waves generated by high-speed trains in a
tunnel. Linearizing the system around the null solution, and rescaling the variables as (u, φ, p) 7→
(u,Ωφ,Ωωp) , one obtains 

∂tu+ a∂xu+Ωφ = 0,

∂tφ− Ωu+ εφ+ ωp = 0,

∂tp− ωφ = 0,

(1.13)

which is a system of the form (1.2), where

A =

 a 0 0
0 0 0
0 0 0

 , Ba =

 0 Ω 0
−Ω 0 ω
0 −ω 0

 and Bs =

 0 0 0
0 ε 0
0 0 0

 .
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In [15], the finite-time formation of singularities and the existence of entropy solutions for system
(1.12) was investigated. However, the asymptotic behavior was not addressed, leaving the question of
whether a unique global-in-time strong solution exists for small initial data still open.

In fact, addressing systems with skew-symmetric dissipation remains a challenge. In the literature,
the analysis often requires ad hoc approaches to identify suitable energy-like functionals through the
use of appropriate multipliers. Moreover, decay rates vary significantly depending on the algebraic
structure of the systems, more precisely, on how the Kalman condition is satisfied. Typically, one
observes weaker diffusion in the low-frequency regime and loss of derivatives in high frequencies.

We refer to the decay properties of the dissipative Timoshenko system [14], the Euler-Maxwell
system [32, 8], the Timoshenko system with memory [20], the Timoshenko-Cattaneo system [22], the
thermoelastic system of MGT-type [23], the 1D porous-elasticity system [24] and the Bresse-Cattaneo
system [26]. In each of these cases, the matrix B is non-symmetric and, in high frequencies, the real
part of the eigenvalues of (iξA+B) are asymptotically equal to |ξ|−2α with α = 0, 1 or 2 , while in
low frequencies they are asymptotically equal to |ξ|2β with β = 1 or 2 . Note that when α = 0 and
β = 1 , we retrieve the decay rates of the symmetric case Ba = 0 .

The picture is not much different for hyperbolic systems with non-symmetric relaxation on bounded
domains, and similar techniques can be applied to recover decay for high frequencies. We mention,
without the claim of being exhaustive, the analysis of systems of Bresse and Timoshenko type [10, 11],
as well as the investigation of thermoviscoelastic models [4, 5]. We also refer to [1] where the authors
study hypocoercive properties (for short and large times) of linear evolution equations.

While many studies analyzed specific examples of hyperbolic systems with non-symmetric
relaxation, relatively few works have attempted to tackle the abstract problem in full generality. Two
references in this context are [31] and [21]. In [31], Ueda, Duan and Kawashima formulated a new
structural condition to analyze the particular type of regularity-loss mechanism when α = 1 . In
[21], Mori presented a (SK)-type mixed criterion that can be applied under restrictions on α and β ,
allowing to handle some cases where α = 0, 1 and β = 1, 2 .

Compared to the symmetric setting, where the two operators A and Bs can only interact in one
way, the main difficulty in analyzing hyperbolic systems with non-symmetric relaxation lies in the
presence of three operators, the two conservative ones A∂x and Ba and the dissipative one Bs .
As mentioned above, the skew-symmetric operators A∂x and Ba can be interpreted as rotations
acting on the initial dissipative operator Bs and may propagate its dissipative effect to new directions.
However, in contrast to the symmetric case, at each step of the iterative process, the two rotational
effects of the two conservative operators can either be combined or performed independently, each
scenario leading to different outcomes regarding the decay rates. This comes from the fact that the
order of the operators A∂x and Ba are different and requires us to develop a form of inhomogeneous
hypocoercivity theory.

1.3. Our contributions. In the present paper, we develop a method to derive asymptotic decay results
for n× n one-dimensional partially dissipative systems with non-symmetric relaxation, extending
the approach proposed in [2] dedicated to the symmetric case. Compared to the results of [21, 31],
our structural assumptions on the matrices A and B are more general and our method can be applied
to a wider variety of systems without restriction on the type of decay rates, including the linearized
Sugimoto model (1.13), for which we can show the asymptotic decay of the solution.

We begin by proving a general abstract result for systems with non-symmetric relaxation in Theorem
2.4. Specifically, under a Kalman-type condition, we establish the large-time stability of solutions
of the system (1.2). This algebraic Kalman condition can be seen as the natural extension of the
one employed in [2] and connects the three operators appearing in our system by considering the
interactions between the conservative operator A∂x +Ba and the dissipative operator Bs .

However, Theorem 2.4 does not provide a simple way to estimate the decay rates of a given
system. For this reason, our second main result, Theorems 7.1-7.3, improves upon it by refining the
construction of the Lyapunov functional so that, in the end, a precise estimate for the decay rate of the
solution can be easily computed. Moreover, this construction allows us to describe a phenomenon that
the Kalman-based method developed in 2.4 cannot capture: it provides explicit algebraic conditions
on the matrices A , Ba and Bs which, if satisfied, produce a cancellation reducing the loss of
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derivative in high frequencies. This phenomenon is well known for systems with non-symmetric
relaxation, a paradigmatic example being the equal wave speed condition for the Timoshenko system
[14]. Our new approach allows us to further apprehend this phenomenon for general hyperbolic
systems. Nevertheless, we need to assume relatively strong structural conditions on the matrices to be
able to justify this phenomenon. Relaxing these assumptions and improving our understanding of this
cancellation mechanism is the subject of ongoing research.

The refinement of the Lyapunov functional is achieved through an algorithm, which we consider
to be one of the main contributions of this work. Indeed, due to its simple and systematic nature,
it can be easily applied to systems of any dimension, significantly reducing the effort of finding
Lyapunov functionals for any given hyperbolic system with relaxation. We refer to Section 9 for
practical applications of our methodology and to Example 2.7 for a stability result concerning the
linear Sugimoto model (1.13).

1.4. Outline of the paper. In forthcoming Section 2, we introduce the Inhomogeneous Kalman rank
condition, and state our first main result, Theorem 2.4. The proof of the latter is presented in Section
3. In Section 4, we introduce the algorithm used to construct the new Lyapunov functional. The
construction is different depending on whether we work in high or low frequencies: Section 5 focuses
on the former and Section 6 on the latter. In Section 7, we state and prove our second result, divided
into Theorem 7.1 and 7.3. Section 8 is devoted to an in-depth analysis of the physically relevant
and common case rank(Bs) = 1 . We then present some examples in Section 9, showing that our
algorithm can be successfully applied to recover the optimal decay rates of some well-known physical
systems. We draw some conclusions and discuss extensions in the final Section 10. Technical results
related to rank-one matrices are collected in Appendix A, while the proof of Lemma 2.2 is carried out
in Appendix B.

2. The Inhomogeneous Kalman Method

In this section, we provide a Kalman-type analysis of the decay rates in the case of hyperbolic partially
dissipative systems with non-symmetric relaxation terms.

First, we introduce a Kalman condition adapted to studying (1.2). Applying the Fourier transform
to (1.2), for every ξ ∈ R , we obtain

∂tÛ + iξAÛ +BaÛ +BsÛ = 0. (2.1)

Definition 2.1 (Inhomogeneous Kalman rank condition). Let K ≥ 1 . We say that (Bs, A,Ba)
satisfies the inhomogeneous Kalman rank condition of order K if, for every ξ ∈ R∗ ,

rank


Bs

Bs(iξA+Ba)
. . .

Bs(iξA+Ba)K

 = n. (2.2)

Due to the inhomogeneous aspect (in terms of ξ ) of the above condition, we need the following
lemma which relates the Kalman components Bs(A∂x +Ba)kU to the solution U .

Lemma 2.2. Let the inhomogeneous Kalman condition (2.2) hold. There exist integers α ∈ N and
β ∈ N such that

(i) for |ξ| ≥ 1 ,
K∑

k=0

|ξ|−2k|Bs(iξA+Ba)kÛ |2 ≥ c|ξ|−2α|Û |2, (2.3)

(ii) for |ξ| ≤ 1 ,
K∑

k=0

|Bs(iξA+Ba)kÛ |2 ≥ c|ξ|2β |Û |2, (2.4)

where c > 0 is a universal constant.

The proof of this lemma is quite technical and provides little insight into the forthcoming discussion.
For this reason, we moved it to the Appendix B.
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Remark 2.3. The frequency weight |ξ|−2k appearing in (2.3) is connected to the construction of the
Lyapunov functional that we employ to justify the decay of the solutions in high frequencies. Notice
that in the symmetric case Ba = 0 , the weight absorbs the ξ parameter coming from the operator
A∂x and ensures that there is no loss of regularity, i.e., α = 0 , recovering (1.10).

We are now in a position to state our first main result.

Theorem 2.4. Let K ≥ 1 and assume that (Bs, A,Ba) satisfies the inhomogeneous Kalman rank
condition of order K . Let α and β be the smallest integers such that (2.3) and (2.4) hold, and
assume that the initial data satisfies U0 ∈ L1 ∩ Hγα with γ > 0 . Then, there exists a constant
C > 0 such that

(1) In high frequencies: if α ≥ 1 , the solution of (1.2) satisfies

∥Uh∥L2 ≤ C(1 + t)−
γ
2 ∥U0∥Hγα (2.5)

where Uh = F−1(1|ξ|≥1Û) . If α = 0 , then

∥Uh∥L2 ≤ Ce−t∥U0∥L2 . (2.6)
(2) In low frequencies: if β ≥ 1 , the solution of (1.2) satisfies

∥U ℓ∥L2 ≤ C(1 + t)−
1
4β ∥U0∥L2∩L1 (2.7)

where U ℓ = F−1(1|ξ|≤1Û) . If β = 0 , then

∥U ℓ∥L2 ≤ Ce−t∥U0∥L2 . (2.8)

The proof of Theorem 2.4 is carried out in Section 3. The main idea is the construction of a suitable
Lyapunov functional in the spirit of [2]. Compared to the formula (1.11), in high frequencies, the
functional reads

Lh(ξ, t) =
1

2
|Û(ξ, t)|2 +

K∑
k=1

εk|ξ|−2kRe⟨Bs(iξA+Ba)k−1Û(ξ, t), Bs(iξA+Ba)kÛ(ξ, t)⟩,

(2.9)
and, in low frequencies,

Lℓ(ξ, t) =
1

2
|Û(ξ, t)|2 +

K∑
k=1

εkRe⟨Bs(iξA+Ba)k−1Û(ξ, t), Bs(iξA+Ba)kÛ(ξ, t)⟩. (2.10)

Taking their time-derivative and choosing the εk small enough, one gets

d

dt
Lh + c1

K∑
k=0

|ξ|−2k|Bs(iξA+Ba)kÛ |2 ≤ 0,

and
d

dt
Lℓ + c2

K∑
k=0

|Bs(iξA+Ba)kÛ |2 ≤ 0,

for constants c1, c2 > 0 . At which point, thanks to Lemma 2.2 and to the equivalence of Lh and Lℓ

to the energy |Û(ξ, t)|2 , one concludes by Grönwall’s arguments.

Remark 2.5. Theorem 2.4 is a direct extension of the approach developed in [2] to the non-symmetric
relaxation case. When Ba = 0 , one has α = 0 and β = 1 leading to the decay rates obtained in the
symmetric case (1.9) and (1.10).

Remark 2.6. Our approach can be employed to derive a priori estimates for nonlinear systems,
such as the Timoshenko system with or without memory (see Section 9), and justify global-in-time
well-posedness and time-asymptotic results for initial data close to constant equilibrium. Indeed, for
nonlinear systems whose linearization around equilibrium satisfies the inhomogeneous Kalman rank
condition, such results can be established using classical energy methods and a bootstrap argument. A
particular instance of this can be found in [8] where techniques similar to the ones developed in the
present paper are applied to deal with the nonlinear Euler-Maxwell system, whose high-frequency
loss of regularity exponent is α = 1 .
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Example 2.7 (Decay estimates for the linear Sugimoto model (1.13)). Theorem 2.4 can be directly
applied to the Sugimoto model (1.13). First, we verify the inhomogeneous Kalman condition (2.2).
We have

Bs(iξA+Ba) =

 0 0 0
−Ω 0 ω
0 0 0

 and Bs(iξA+Ba)2 =

 0 0 0
−aεΩiξ −ε(Ω2 + ω2) 0

0 0 0

 .
It is then straightforward to observe that (2.2) fails for K = 1 but holds for K = 2 . Consequently,
Theorem 2.4 entails that the solution decays asymptotically, with a rate given by Lemma 2.2. In high
frequencies, there exists a C > 0 such that

2∑
k=0

|ξ|−2k|Bs(iξA+Ba)kÛ |2 = |φ̂|2 + 1

|ξ|2
| − Ωû+ ωp̂|2 + 1

|ξ|4
| − aεΩiξû− ε(Ω2 + ω2)φ̂|2

≥ C|φ̂|2 + C

|ξ|2
|û|2 + C

|ξ|2
|p̂|2

≥ C

|ξ|2
|Û |2,

whereas in low frequencies,
2∑

k=0

|Bs(iξA+Ba)kÛ |2 = |φ̂|2 + | − Ωû+ ωp̂|2 + | − aεΩiξû− ε(Ω2 + ω2)φ̂|2 ≥ C|ξ|2|Û |2.

With the notation of Theorem 2.4, we thus have α = 1 and β = 1 , implying

∥(u, φ, p)h∥L2 ≤ C(1 + t)−
γ
2 ∥(u0, φ0, p0)∥Hγ

and

∥(u, φ, p)ℓ∥L2 ≤ C(1 + t)−
1
4 ∥(u0, φ0, p0)∥L2∩L1 ,

which corresponds to the decay estimates expected from the spectral analysis of the model. Combined
with standard commutator estimates to deal with the nonlinearity, the computations in the proof of
Theorem 2.4 provide a way to justify a global well-posedness result for the Sugimoto model for initial
data (u0, φ0, p0) being sufficiently small in L1 ∩ Hs for s > d/2 + 3 . Indeed, such regularity
assumption on the initial data ensures the L1 -in-time integrability of the Lipschitz norm of the
solution.

Our computations actually lead to sharper decay estimates in Besov-type norms.

Theorem 2.8. Let K ≥ 1 and assume that (Bs, A,Ba) satisfies the inhomogeneous Kalman rank
condition of order K . Let α and β be the smallest integers such that (2.3) and (2.4) hold, and
assume that the initial data satisfies U0 ∈ Ḃ−σ

2,∞ ∩ Ḃγα
2,∞ for σ > 0 and γ > 0 . Then, there exists a

constant C > 0 such that
(1) In high frequencies: if α ≥ 1 , the solution of (1.2) satisfies

∥Uh∥L2 ≤ C(1 + t)−
γ
2 ∥U0∥L2∩Ḃγα

2,∞
. (2.11)

(2) In low frequencies: if β ≥ 1 , the solution of (1.2) satisfies

∥U ℓ∥L2 ≤ C(1 + t)−
σ
2β ∥U0∥Ḃ−σ

2,∞
. (2.12)

As in Theorem 2.4, for α = 0 and β = 0 , exponential decay is recovered in the corresponding
regimes.

2.1. Limitations of Kalman-based analysis. The main limitation of Theorem 2.4 resides in the fact
that it is not easy to estimate the coefficients α and β appearing in Lemma 2.2. Indeed, while for
simple systems it may be possible to deduce the optimal value for α and β , if the system becomes
too large, the computation quickly becomes prohibitive. Moreover, the issue can be even more subtle,
as the following example shows.
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2.1.1. A system with cancellation for specific coefficients. Consider the toy-model{
∂tu+ a∂xu− v + u = 0,

∂tv + b∂xv + u = 0.
(2.13)

This system certainly falls into the non-symmetric class, as

A =

[
a 0
0 b

]
, Ba =

[
0 1
−1 0

]
and Bs =

[
1 0
0 0

]
.

Furthermore, one can easily check the basic energy equality
1

2

d

dt
(|û|2 + |v̂|2) + |û|2 = 0,

showing partial dissipation. Let us work in high frequencies for the time being. In order to recover
dissipation for the v variable, one could simply multiply the first equation by −v̂ in Fourier space,
obtaining

− d

dt
Re ⟨û, v̂⟩+ |v̂|2 − |û|2 +Re⟨û, v̂⟩ = Re (a⟨iξû, v̂⟩+ b⟨û, iξv̂⟩).

At this point, an interesting situation arises. If a ̸= b , then the right-hand side is nonzero. Therefore,
in order to control it we need to multiply both sides by |ξ|−2 , recovering the control of |ξ|−2|v̂|2 and
thus effectively losing a derivative. However, if a = b , the right-hand side vanishes and no loss of a
derivative occurs. The final rate of decay using classical Lyapunov theory reads

∥(u, v, w)h(t)∥L2 ≤ Ce−ct∥(u0, v0, w0)∥L2 , if a = b

and
∥(u, v, w)h(t)∥L2 ≤ Ct−

γ
2 ∥(u0, v0, w0)∥Hγ , if a ̸= b.

Capturing such behaviour using our Kalman analysis does not appear to be possible even for such a
simple system. Indeed, Lemma 2.2 leads to the exponent α = 1 as

|BsÛ |2 + 1

|ξ|2
|Bs(iAξ +Ba)Û |2 = |û|2 + 1

|ξ|2
|iaξû− v|2 ≥ c

|ξ|2
(|û|2 + |v̂|2).

Since the parameter b does not appear in the above equation nor in the Kalman matrix, the norm
recovered by our Kalman analysis cannot capture the cancellation. Hence the inhomogeneous Kalman
condition cannot predict the sharp decay rate.

Remark 2.9. In this case, the improvement in the decay rates actually comes from the fact that if
a = b in (2.13) then by a Galilean change of frame (x, t) → (x− at, t) , the system reduces to an
ODE for which exponential decay holds. Nevertheless, the above computations still show the lack of
efficiency of the inhomogeneous Kalman condition to observe such cancellation. In Section 9, we
provide additional examples for which there does not exist a transformation of the space-time frame
(to the best of our knowledge) capable of simplifying the system.

2.2. Improving the Kalman approach. The issues encountered by our Kalman analysis in estimating
α and β can be seen as an unfortunate – yet natural – consequence of what makes the technique so
general. Indeed, it is due to the complexity of the Lyapunov functional (2.9)-(2.10), which collects,
for every k = 1, . . . , N − 1 , all the Kalman-type interaction between the inhomogeneous operators
Bs(iξA+Ba)k and Bs(iξA+Ba)k+1 . In practice, most of these interactions are useless, in the
sense that they do not provide additional decay information, and only render the computation of α
and β more tedious. In that regard, our aim is to simplify the Lyapunov functionals by only keeping
the useful terms.

The second part of the paper, starting from Section 4, is dedicated to tackling this issue by developing
a form of inhomogeneous hypocoercivity. Specifically, we design an algorithm to construct the
Lyapunov functionals so that, in the end, a sharp estimate for the decay rate of the solution can be easily
computed. With respect to (2.9)-(2.10), these new functionals are much simpler and contain only a
few terms. Furthermore, as a byproduct of our algorithm, we provide explicit, algebraic conditions on
A , Ba and Bs which, if satisfied, produce a cancellation which improves the final decay rate, in the
spirit of the system (2.13). Importantly, we observe that to capture such cancellations in the estimates,
interactions that are not of Kalman-type must be used.
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The main idea behind the algorithm is to select, at every step, a new term to add to the functional,
which recovers the dissipation for a new variable (or combination of variables). This is done by
charting a path on a binary tree, whose nodes are suitable products of Bs, A and Ba (see Figure 1).
For every node, a rank condition is checked to decide whether adding the term associated with the
current node will recover dissipation for a new variable in the final computations. Once sufficient
nodes have been selected, there is no more dissipation to be gained, and the algorithm stops. The final
functional built this way is guaranteed to decay with a quantifiable rate and, being equivalent to the
energy of the system, entails the result.

Bs

BsA

BsA2 BsABa

BsBa

BsBaA Bs(Ba)2

Figure 1. The first few nodes of the tree T .

3. Proof of Theorem 2.4

To analyze the decay of the solution, we employ the Littlewood-Paley decomposition which is
convenient for dividing the frequency space into low and high frequencies. Moreover, it allows us to
derive sharp decay estimates in Besov spaces. Note that the computations below can be performed
in a standard frequency-pointwise manner (with more cumbersome notations); the corresponding
computations are described in Remarks 3.4 and 3.6.

3.1. Littlewood-Paley decomposition. Throughout the paper, we fix a homogeneous Littlewood-
Paley localisation operator (∆̇j)j∈Z that is defined by

∆̇j ≜ F−1(φ(2−j ·)Fu), φ(ξ) ≜ χ(ξ/2)− χ(ξ)

where χ = χ(ξ) stands for a smooth radial non-increasing function with range in [0, 1], supported in
] − 4/3, 4/3[ and such that χ ≡ 1 on [−3/4, 3/4] . This definition ensures that, for any tempered
distribution f ∈ S ′(R) , the support of the Fourier transform of ∆̇jf is localized in an annulus, i.e.
there exist two constants c > 0 and C > 0 such that

supp
( ̂̇∆jf

)
⊂ {3

4
2j ≤ |ξ| ≤ 8

3
2j}. (3.1)

The Littlewood–Paley decomposition of a general tempered distribution

f =
∑
j∈Z

∆̇jf.

The above equality holds only in the subset S′
h(R) of S′(R) modulo polynomials. To simplify the

notation, for any f ∈ S ′(R) and j ∈ Z , we note

∆̇jf := fj . (3.2)

In the paper, we will use repeatedly the Bernstein property stating that for such localized distribution,
the differentiation operator acts as a homothety.

Lemma 3.1 (Bernstein properties). For f ∈ S ′
h(R) and j ∈ Z , we have

∥∂xfj∥L2 ∼ 2j∥fj∥L2 . (3.3)

Moreover, for f = fh + f ℓ with fh = F−1(1|ξ|≥1Ff) and f ℓ = F−1(1|ξ|≥1Ff) , it holds that

∥fhj ∥L2 ≤ C2j∥fhj ∥L2 and ∥f ℓj ∥L2 ≤ C2−j∥f ℓj ∥L2 (3.4)

for some uniform constant C > 0 .
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As a straightforward consequence of the Bernstein property and Lemma 2.2, we obtain the following.

Lemma 3.2. There exists a uniform constant c > 0 such that, for j ≥ 0 ,
K∑

k=0

2−2jk∥Bs(A∂x +Ba)kUj∥2L2 ≥ c2−2jα∥Uj∥2L2 , (3.5)

and, for j ≤ 0 ,
K∑

k=0

∥Bs(A∂x +Ba)kUj∥2L2 ≥ c22jβ∥Uj∥2L2 , (3.6)

where α and β are given by Lemma 2.2.

We are now ready to analyze the decay properties of (1.2). We focus on the high-frequency regime
first.

3.2. High-frequency decay estimates. We have the following proposition.

Proposition 3.3 (High-frequency decay). Let Uh = F−1(1|ξ|≥1FU) and j ∈ Z . There exists a
high-frequency Lyapunov functional Lh

j ∼ ∥Uh
j ∥2L2 such that for all t > 0 ,

d

dt
Lh
j + c2−2jαLh

j ≤ 0. (3.7)

Consequently, for any γ > 0 and t > 0 , we have

∥Uh∥L2 ≤ C(1 + t)−
γ
2 ∥U0∥Hγα . (3.8)

Here, α is given by Lemma 2.2, and c, C > 0 are universal constants.

Proof. Let (εk)1≤k≤K be a sequence of positive real numbers to be chosen later. We define the
high-frequency perturbed energy functional

Lh
j =

1

2
∥Uh

j ∥2L2 +

K∑
k=1

εk2
−2jk

(
Bs(A∂x +Ba)k−1Uh

j , B
s(A∂x +Ba)kUh

j

)
. (3.9)

Here and in what follows,
(
·, ·
)

denotes the inner product in L2 . Differentiating in time Lh
j and

employing (1.4), we obtain

d

dt
Lh
j + κ∥Uh

j ∥2L2 +
K∑

k=1

εk2
−2jk∥Bs(A∂x +Ba)kUh

j ∥2L2 ≤ Ij1 + Ij2 + Ij3 , (3.10)

where 

I1j =

K∑
k=1

εk2
−2jk

(
Bs(A∂x +Ba)k−1BsUh

j , B
s(A∂x +Ba)kUh

j

)
,

I2j =

K∑
k=1

εk2
−2jk

(
Bs(A∂x +Ba)k−1Uh

j , B
s(A∂x +Ba)kBsUh

j

)
,

I3j =

K∑
k=1

εk2
−2jk

(
Bs(A∂x +Ba)k−1Uh

j , B
s(A∂x +Ba)k+1Uh

j

)
.

Controlling I1j , I2j and I3j follows closely from [2] and [6]. We adapt it to the inhomogeneous
hypocoercivity framework as follows.

• The terms I1k,j := 2−2jkεk
(
Bs(A∂x + Ba)k−1BsUh

j , B(A∂x + Ba)kUh
j

)
with k ∈

{1, · · · ,K} : Due to Bernstein properties in Lemma 3.1 and the fact that the matrices A , Bs

are bounded, we obtain

|I1k,j | ≤ Cεk2
−2jk∥Bs∂k−1

x Uh
j ∥L2∥B(A∂x +Ba)kUh

j ∥L2

≤ κ

4K
∥BsUh

j ∥2L2 +
Cε2k
κ

2−2jk∥B(A∂x +Ba)kUh
j ∥2L2 .
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• The term I21,j := 2−2jε1
(
BsUh

j , B
s(A∂x +Ba)BsUh

j

)
L2 : One has

|I21,j | ≤ C2−2jε1∥BsUh
j ∥L2∥Bs(A∂x +Ba)BsUh

j ∥L2 ≤ κ

4K
∥BsUh

j ∥2L2 +
Cε21
ε0

∥Bs∂xU
h
j ∥2L2 .

• The terms I2k,j := εk2
−2jk

(
Bs(A∂x + Ba)k−1Uh

j , B
s(A∂x + Ba)kBs∂xU

h
j

)
with k ∈

{2, · · · ,K} (if n ≥ 3 ): After integrating by parts, we have

|I2k,j | = 2−2jkεk|
(
Bs(A∂x +Ba)k−1∂xU

h
j , B

s(A∂x +Ba)kBsUh
j

)
L2 |

≤ C2−2jkεk∥Bs(A∂x +Ba)k−1∂xU
h
j ∥L2∥Bs∂kxU

h
j ∥L2

≤ κ

4K
∥BsUh

j ∥2L2 +
Cε2k−1

κ
2−2jk∥Bs(A∂x +Ba)k−1Uh

j ∥2L2 .

• The terms I3j,k := εk2
−2jk

(
Bs(A∂x + Ba)k−1Uh

j , B
s(A∂x + Ba)k+1Uh

j

)
L2 with k ∈

{1, · · · ,K − 1} (if n ≥ 3 ): A similar argument yields

|I3k,j | = εk2
−2jk|

(
Bs(A∂x +Ba)k−1Uh

j , B
s(A∂x +Ba)k+1Uh

j

)
L2 |

≤ εk−1

8
2−2j(k−1)∥Bs(A∂x +Ba)k−1Uh

j ∥2L2 +
Cε2k
εk−1

2−2j(k+1)∥Bs(A∂x +Ba)k+1Uh
j ∥2L2 .

• The term I3K := 2−2jKεK
(
Bs(A∂x + Ba)K−1Uh

j , B
s(A∂x + Ba)K+1Uh

j

)
L2 : Owing to the

inhomogeneous Kalman rank condition and the Cayley–Hamilton theorem, there exist coefficients cq∗
(q = 0, 1, ...,K ) such that

Bs(A∂x +Ba)K+1 =

K∑
q=0

2jcj∗B
s(A∂x +Ba)q. (3.11)

Consequently, one gets

|I3K | ≤ εK2−2jK∥Bs(A∂x +Ba)K−1Uh
j ∥L2

K∑
q=0

2jcj∗∥Bs(A∂x +Ba)qUh
j ∥L2

≤ εK−1

8
2−2j(K−1)∥Bs(A∂x +Ba)K−1Uh

j ∥2L2 +
Cε2K
εK−1

2−2jK
K∑
q=0

∥Bs(A∂x +Ba)qUh
j ∥2L2

According to [2], we set εk = εmk with ε small enough and m1, · · · ,mK satisfying for some δ > 0
(that can be taken arbitrarily small):

mk ≥ mk−1 +mk+1

2
+ δ and mK ≥ mk +mK−1

2
+ δ, k = 1, · · · ,K − 1.

Gathering the above estimates, we deduce that there exists a constant η > 0 such that

d

dt
Lh
j + η

K∑
k=0

2−2jk∥Bs(A∂x +Ba)kUh
j ∥2L2 ≤ 0. (3.12)

Moreover, for a suitably small sequence ε , we have

Lh
j ∼ ∥Uh

j ∥2L2 ,

and due to the property (2.3) related to the inhomogeneous Kalman rank condition,
K∑

k=0

2−2jk∥Bs(A∂x +Ba)kUh
j ∥2L2 ≥ c2−2jα∥Uh

j ∥2L2 .

Therefore,
d

dt
Lh
j + c2−2jαLh

j ≤ 0. (3.13)

From this and Grönwall’s lemma, we deduce that

Lh
j (t) ≲ e−c2−2jαtLh

j (0).
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This leads to

∥Uh∥2L2 ∼
∑
j∈Z

∥∆̇jU
h∥2L2 ≲

∑
j∈Z

e−c2−2jαt∥∆̇jU
h
0 ∥2L2 ≲ t−γ∥U0∥2Ḣγα , (3.14)

where we used the fact that thanks to the transformation j → j′ ∈ Z such that 2−2j′α ≤ 2−2jαt ≤
2−2j′α+1 , we have ∑

j∈Z
2−2γαje−c2−2jαt ≤ 2t−γ

∑
j′∈Z

2−2γαj′e−c2−2j′α
≲ t−γ .

On the other hand, integrating (3.13) in time gives directly

sup
t≥0

∥Uh∥2L2 ≲ ∥U0∥2L2 . (3.15)

Combining (3.14)-(3.15), we get (3.8).
□

Remark 3.4. Above we employed the Littlewood-Paley decomposition to simplify the proof. It is also
possible to justify a similar result with frequency-pointwise functionals. For |ξ| ≥ 1 , consider

Lh(ξ, t) =
1

2
|U(ξ, t)|2 +

K∑
k=1

εk|ξ|−2kRe⟨Bs(iξA+Ba)k−1Û(ξ, t), Bs(iξA+Ba)kÛ(ξ, t)⟩.

Following the computations done above, one obtains
d

dt
Lh + c|ξ|−2αLh ≤ 0. (3.16)

Then, since Lh(ξ, t) ∼ |Û(ξ, t)|2 for |ξ| ≥ 1 , solving (3.16) we deduce the desired decay estimates.

3.3. Low-frequency decay estimates. We have the following proposition.

Proposition 3.5 (Low-frequency decay). Let U ℓ = F(I|ξ|≤1FU) and j ∈ Z . There exists a
low-frequency Lyapunov functional Lℓ

j ∼ ∥U ℓ
j ∥2L2 such that for all time t > 0 ,

d

dt
Lℓ
j + c22βjLℓ

j ≤ 0. (3.17)

Consequently, for any t > 0 , we have

∥U ℓ∥L2 ≤ C(1 + t)−
1
4β ∥U0∥L1∩L2 . (3.18)

Here, β is given by Lemma 2.2, and C, c > 0 are universal constants.

Proof. We define the low-frequency perturbed energy functional

Lℓ
j =

1

2
∥U ℓ

j ∥2L2 +

K∑
k=1

εk
(
Bs(A∂x +Ba)k−1U ℓ

j , B
s(A∂x +Ba)kU ℓ

j

)
. (3.19)

Differentiating in time Lℓ
j , we obtain

d

dt
Lℓ
j + κ∥U ℓ

j ∥2L2 +

K∑
k=1

εk∥Bs(A∂x +Ba)kU ℓ
j ∥2L2 ≤ J1

j + J2
j + J3

j , (3.20)

where 

J1
j =

K∑
k=1

εk
(
Bs(A∂x +Ba)k−1BsU ℓ

j , B
s(A∂x +Ba)kU ℓ

j

)
,

J2
j =

K∑
k=1

εk
(
Bs(A∂x +Ba)k−1U ℓ

j , B
s(A∂x +Ba)kBsU ℓ

j

)
,

J3
j =

K∑
k=1

εk
(
Bs(A∂x +Ba)k−1U ℓ

j , B
s(A∂x +Ba)k+1U ℓ

j

)
.

(3.21)
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Controlling J1
j , J2

j and J3
j follows closely from the computations done in the high-frequency section.

In particular, there exists a constant µ > 0 such that, choosing the sequence {εk}1≤k≤K as in the
high-frequency section, we have

d

dt
Lℓ + µ

K∑
k=0

∥Bs(A∂x +Ba)kU ℓ
j ∥2L2 ≤ 0. (3.22)

Moreover, for a suitably small ε , using the inhomogeneous Kalman rank condition, we have

Lℓ
j ∼ ∥U ℓ

j ∥2L2 .

Therefore,
d

dt
Lℓ
j + 22βjLℓ

j ≤ 0. (3.23)

The use of Grönwall’s lemma to (3.23) yields

Lℓ
j(t) ≲ e−22βjtLℓ

j(0),

from which we infer
∥U ℓ∥2L2 ∼

∑
j∈Z

∥∆̇jU
ℓ∥2L2 ≲

∑
j∈Z

e−22βjt∥∆̇jU
ℓ
0∥L2 ≲ t−

1
4β ∥U0∥L1 , (3.24)

due to the facts that ∥∆̇jU
ℓ
0∥L2 ≲ 2

j
2 ∥U0∥

Ḃ
− 1

2
2,∞

, the embedding L1 ↪→ Ḃ
− 1

2
2,∞ and∑

j∈Z
t

1
4β 2−

j
2 e−22βjt ≲ 1.

On the other hand, taking advantage of (3.23) and the low-frequency cut-off property, we also have

∥U ℓ∥L2 ≲ ∥U ℓ
0∥L2 ≲ ∥U ℓ

0∥
Ḃ

− 1
2

2,∞

≲ ∥U0∥L1 . (3.25)

By (3.24)-(3.25), the decay estimate (3.18) follows.
□

Remark 3.6. As mentioned in Remark 3.4, it is possible to justify a similar result with a frequency-
pointwise functional. Consider, for |ξ| ≤ 1 ,

Lℓ(ξ, t) =
1

2
|U(ξ, t)|2 +

K∑
k=1

εkRe
(
Bs(iξA+Ba)k−1Û(ξ, t), Bs(iξA+Ba)kÛ(ξ, t)⟩.

By similar computations done above, one obtains
d

dt
Lℓ + c|ξ|2βLℓ ≤ 0. (3.26)

Then, since for |ξ| ≤ 1 we have Lℓ(ξ, t) ∼ |Û(ξ, t)|2 , solving (3.26) leads to the desired decay
estimates.

4. An Algorithm to Improve the Lyapunov Functional

While the previous section describes an effective method to prove the decay of the solution for
systems with non-symmetric relaxation, it does not offer a straightforward approach for computing
the decay rate. Besides, in many physical situations, improvements of the rate of decay are observed
for particular choices of coefficients. In this section, we introduce a technique to build new Lyapunov
functionals which can capture these improvements and provide an explicit rate of decay.

Assumption 4.1. Along this section, we assume that the inhomogeneous Kalman condition of
Definition 2.1 holds.

The new functional builds upon the ones described in (3.9) and (3.19). The idea is to remove the
redundant terms in the expansion of Bs(A∂x +Ba)k , specifically the terms which do not contribute
to recovering dissipation in new directions. To this end, we proceed in an algorithmic fashion. We
define a binary tree T as follows (see also Figure 1):

• The base of the tree is the node Bs . We say that the level is k = 0 .
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• We associate to every node at the level k a matrix Xi
k , where i is the position of the node

on that level (i = 1 for the leftmost node). At every node Xi
k , the tree splits into two

nodes, Xi
kA (left) and Xi

kB
a (right). For instance, the first two nodes are X1

1 = BsA and
X2

1 = BsBa , see Figure 1.
We are also going to need the following definition.

Definition 4.2. Let p1 = 1 and q1 = 1/2 . A sequence {pk, qk}k∈N∗ is called admissible if
(1) pk, qk > 0 for every k ∈ N∗ .
(2) For every k ∈ N∗ it holds

qk < pk − pk−1 < qk−1,

It follows that if {pk, qk}k∈N∗ is admissible, then pk is increasing and qk is decreasing. Moreover,
it is apparent that

pk−1 < pk − qk, and pk + qk > pk+1.

For the rest of this section, we fix an admissible {pk, qk}k∈N∗ . We are now in a position to describe
the algorithm constructing the Lyapunov functional.

4.0.1. Initialization. Mimicking the previous section, the first piece of our functional is simply the
energy of the system,

E :=
1

2
∥Uj∥2L2 .

We have
d

dt
E+

(
BsUj , Uj

)
= 0,

and by the hypotheses on Bs ,
d

dt
E+ κ∥Uj∥2L2 ≤ 0.

4.0.2. Iteration. The functional is constructed by charting a suitable path along T . For k ≥ 1 ,
starting from a node Xi

k−1 at the level k − 1 , we want to define a procedure to decide whether to
add the nodes connected to it on the next level or to stop. A priori, there might be different paths for
achieving our goal. In order to select a unique path, we make the following choice to scour the tree:

We always begin by considering the leftmost node available at the level k − 1. (L)

Once we have selected a node Xi
k−1 , we consider the matrix

M =
[
Bs, . . . , Xi

k−1

]⊤
,

collecting all of the previously chosen nodes. We call

r := rank(M).

Furthermore, we define
MA :=

[
Bs, . . . , Xi

k−1, Xi
k−1A

]⊤
,

and
MBa :=

[
Bs, . . . , Xi

k−1, Xi
k−1B

a
]⊤
.

Five possibilities can occur (see Figure 2):
(1) Left: If

rank(MA) > r but rank(MBa) = r, (4.1)
then we add Xi

k−1A to the path.
(2) Right: If

rank(MBa) > r but rank(MA) = r, (4.2)
then we add Xi

k−1B
a to the path.

(3) Left AND Right: If rank(MA) > r and

rank
([
Bs, . . . , Xi

k−1, Xi
k−1A, Xi

k−1B
a
]⊤)

> rank(MA), (4.3)

we add both node Xi
k−1A and Xi

k−1B
a to the path.
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(4) Left OR Right: If rank(MA) > r , rank(MBa) > r and

rank
([
Bs, . . . , Xi

k−1, Xi
k−1A, Xi

k−1B
a
]⊤)

= rank(MA) = rank(MBa), (4.4)

we add node Xi
k−1A to the path. In low frequencies, we will instead add Xi

k−1B
a .

(5) Stop: If rank(MA) = rank(MBa
) = r , then we stop and move to the next node, namely

the first one on the right of Xi
k−1 .

Whenever a node is added to the path, a certain term will be summed to the final Lyapunov functional.
To define the exact term it will be crucial to associate to each chosen node a special number, which we
call discrepancy dik . This discrepancy term will be directly related to the decay rates we can recover
in the end.

Since the terms are slightly different in high and low frequencies, we split the analysis into two
sections.

. . .

Xi
k−1

Xi
k−1A Xi

k−1B
a

. . .

Left path

. . .

Xi
k−1

Xi
k−1A Xi

k−1B
a

. . .

Right path

. . .

Xi
k−1

Xi
k−1A Xi

k−1B
a

. . .

Mixed path

. . .

Xi
k−1

Xi
k−1A Xi

k−1B
a

. . .

Stop

Figure 2. The four possible routes to follow, starting from a node Xi
k

5. High-frequency Analysis

5.1. Building blocks. We now proceed to describe in detail the building blocks of the final functional
in high frequencies. In what follows, we will omit the position i of the node within the level k for
clarity of exposition. In addition, we always use the high-frequency variable Uh = F−1(1|ξ|≥1Û)

and simplify the notation by omitting the superscript h .

Case (1): Left. In this case, we associate the term

Φk
A := 2−2jεpk

(
Xk−1Uj , Xk−1A∂xUj

)
,

and the discrepancy
dk = 0.

We have the following lemma.

Lemma 5.1. Let 0 < ε < 1 . It holds

∂tΦ
k
A +

εpk

2
∥Xk−1AUj∥2L2 ≤ Cεpk−qk∥Xk−1Uj∥2L2 + Cεpk

k−2∑
i=0

∥XiUj∥2L2

+ εpk+qk∥Xk−1A
2Uj∥2L2 + εpk+qk2−2j∥Xk−1AB

aUj∥2L2 .

(5.1)

Proof. A direct computation yields

2−2j∂t
(
Xk−1Uj , Xk−1A∂xUj

)
+ 2−2j∥Xk−1A∂xUj∥2L2

=− 2−2j
(
Xk−1B

sUj , Xk−1A∂xUj

)
− 2−2j

(
Xk−1Uj , Xk−1AB

s∂xUj

)
− 2−2j

(
Xk−1B

aUj , Xk−1A∂xUj

)
− 2−2j

(
Xk−1Uj , Xk−1A

2∂xxUj

)
− 2−2j

(
Xk−1Uj , Xk−1AB

a∂xUj

)
.

(5.2)
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The support of Ûj ensures that

2−2j∥Xk−1A∂xUj∥2L2 ≥ 9

16
∥Xk−1AUj∥2L2 .

For the first term, we deduce from Lemma 3.1 that

2−2j |
(
Xk−1B

sUj , Xk−1A∂xUj

)
| ≤ 2−2j∥Xk−1B

sUj∥L2∥Xk−1A∂xUj∥L2

≤ C2−j∥Xk−1B
sUj∥2L2∥Xk−1AUj∥2L2

≤ C2−2j∥Xk−1∥2O∥BsUj∥2L2 +
1

32
∥Xk−1AUj∥2L2 ,

where ∥Xk−1∥2O is the operator norm of Xk−1 . For the second term, using the Bernstein properties
in Lemma 3.1 again, we obtain

2−2j |
(
Xk−1Uj , Xk−1AB

s∂xUj

)
| ≤ C∥Xk−1A∥2O∥BsUj∥2L2 + ∥Xk−1Uj∥2L2 .

Regarding the third term, we recall that rank(MBa) = r . Hence, the Cayley–Hamilton theorem
ensures that

∥Xk−1B
aUj∥2L2 ≤ C

k−1∑
i=0

∥XiUj∥2L2 ,

from which we infer

−2−2j
(
Xk−1B

aUj , Xk−1A∂xUj

)
≤ C2−2j

k−1∑
i=0

∥XiUj∥2L2 +
1

32
∥Xk−1AUj∥2L2 . (5.3)

Moving on to the fourth term, an integration by parts, along with the Young inequality, yields

2−2j |
(
Xk−1Uj , Xk−1A

2∂xxUj

)
| ≤ C

εqk
∥Xk−1Uj∥2L2 + Cεqk∥Xk−1A

2Uj∥2L2 .

Finally, in a similar fashion, we control the last term in the following way

2−2j |
(
Xk−1Uj , Xk−1AB

a∂xUj

)
| ≤ C

εqk
∥Xk−1Uj∥2L2 + Cεqk2−2j∥Xk−1AB

aUj∥2L2 .

Since we are working in high frequencies, the term 2−2j∥Xk−1Uj∥2L2 , appearing in the sum of
inequality (5.3), can be absorbed into one of the terms ∥Xk−1Uj∥2L2 of the above inequalities.
Collecting all the obtained inequalities and multiplying by εpk , we have the thesis. □

Case (2): Right. We associate to the node the functional

Φk
Ba := 2−2jεpk

(
Xk−1Uj , Xk−1B

aUj

)
and the discrepancy

dk = 1.

We have the following lemma.

Lemma 5.2. It holds

∂tΦ
k
Ba +

εpk

2
2−2j∥Xk−1B

aUj∥2L2 ≤ Cεpk−qk∥Xk−1Uj∥2L2 + Cεpk

k−2∑
i=0

∥XjUj∥2L2

+ εpk+qk2−2j∥Xk−1B
aAUj∥2L2 + εpk+qk2−4j∥Xk−1(B

a)2Uj∥2L2 .

(5.4)

Proof. The proof works exactly in the same way as the one of Lemma 5.1. We start with the differential
equality

2−2j∂t
(
Xk−1Uj , Xk−1B

aUj

)
+2−2j∥Xk−1B

aUj∥2L2

= −2−2j
(
Xk−1B

sUj , Xk−1B
aUj

)
− 2−2j

(
Xk−1Uj , Xk−1B

aBsUj

)
− 2−2j

(
Xk−1A∂xUj , Xk−1B

aUj

)
− 2−2j

(
Xk−1Uj , Xk−1B

aA∂xUj

)
− 2−2j

(
Xk−1Uj , Xk−1(B

a)2Uj

)
.

(5.5)
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The first two terms on the right-hand side of (5.5) can be controlled similarly as in the previous lemma.
Using rank(MA) = r and the Cayley–Hamilton theorem, we arrive at

2−2j
(
Xk−1A∂xUj , Xk−1B

aUj

)
≤ C2−j∥Xk−1Uj∥L2∥Xk−1B

aUj∥L2

≤ C2−j
k−1∑
i=0

∥XiUj∥L2∥Xk−1B
aUj∥L2

≤ 1

8
2−2j∥Xk−1B

aUj∥2L2 + C

k−1∑
i=0

∥XiUj∥2L2 .

We bound the fourth term in the following way:

2−2j |
(
Xk−1Uj , Xk−1B

aA∂xUj

)
| ≤ C

εqk
∥Xk−1Uj∥2L2 + 2−2jεqk∥Xk−1B

aAUj∥2L2 .

Similarly, the last term satisfies

2−2j |
(
Xk−1Uj , Xk−1(B

a)2Uj

)
| ≤ C

εqk
∥Xk−1Uj∥2L2 + 2−4jεqk∥Xk−1(B

a)2Uj∥2L2 . □

Substituting the above estimates into (5.5) and multiplying this by εpk , we prove (5.4).

Case (3): Left AND Right. This case is the most delicate. A naive approach to recover the norms of
both Xk−1AUj and Xk−1B

aUj could be summing up the two equalities (5.2) and (5.5) obtained in
the previous lemmas. However, forgetting the multiplicative factor 2−2j for the moment, we have

∂t

((
Xk−1Uj , Xk−1A∂xUj +Xk−1B

aUj

))
= −∥Xk−1B

aUj∥2L2 − ∥Xk−1A∂xUj∥2L2 − 2
(
Xk−1B

aUj , Xk−1A∂xUj

)
+ additional terms.

We have obtained a perfect square. In particular, we are only able to recover the norm of the sum
∥Xk−1(A∂x + Ba)Uj∥2L2 . It is not difficult to see that, using Φk

A and Φk
Ba , there is no way to

recover the sum of the norms. A new functional is needed, with the purpose of canceling out the
scalar product appearing on the right-hand side. We will consider two cases, depending on whether
the path extends in the right direction or in the left direction.

Case 1: In this case, we assume that the tree extends following the Xk−1B
a node. More precisely,

we make the following assumption.

Assumption 5.3. There exist αi, βi , i = 0, . . . , k − 1 , such that

Xk−1A
2Uj =

k−1∑
i=0

αiXiUj and Xk−1AB
aUj =

k−1∑
i=0

βjXjUj .

This guarantees that the node Xk−1A is a “dead end", in that there is no additional dissipation to be
gained by following the path further. Actually, we need to ask a little more, namely, that Xk−1A

2 and
Xk−1AB

a can be controlled in terms of the nodes preceding Xk−1A . At this point, we introduce
the crucial hypothesis that allows us to work in the mixed case.

Assumption 5.4. There exists m ∈ R such that(
Xk−1A∂xUj , −Xk−1B

aUj +mXk−1B
aA2Uj

)
= 0, (5.6)

If (5.6) holds, we can proceed, and we associate to the left node the functional

Φ̃k
A := Φk

A +mεpk2−2j
(
Xk−1AUj , Xk−1B

aAUj

)
,

and to the right node the functional

Φ̃k
Ba := Φk

Ba +mεpk2−2j
(
Xk−1AUj , Xk−1B

aAUj

)
.

To both nodes, we associate a discrepancy number

dk = 1.

We need one final assumption before stating the central result for the mixed case.
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Assumption 5.5. There exists γi , i = 0, . . . , k + 1 , such that

Xk−1B
aABaUj = γk+1Xk−1B

aAUj + γkXk−1B
aUj +

k−1∑
i=0

γiXiUj .

This request is technical. In order to absorb the norms on the right-hand side, we need a control
on the norm ∥Xk−1B

aABa∥2L2 (a node at the level k + 2 ) in terms of the norms up to level k + 1 .
Defining

Φk
m := Φ̃k

A + Φ̃k
Ba ,

we have the following result.

Lemma 5.6. Let Xk−1 be a node at the level k − 1 and let (4.3) and rank(MA) > r hold. Let also
Assumptions 5.3, 5.4 and 5.5 be satisfied. There exists a suitably large integer j0 such that for all
j ≥ j0 ,

∂tΦ
k
m +

εpk

4
2−2j∥Xk−1B

aUj∥2L2 +
εpk

4
∥Xk−1AUj∥2L2

≤ εpk+qk2−2j∥Xk−1B
aAUj∥2L2 + εpk+qk2−4j∥Xk−1(B

a)2Uj∥2L2 + Cεpk−qk

k−1∑
i=0

∥XiUj∥2L2 .

Proof of Lemma 5.6. A direct computation yields

2−2j∂t
(
Xk−1AUj , Xk−1B

aAUj

)
=− 2−2j

(
Xk−1AUj , Xk−1B

aA2∂xUj

)
− 2−2j

(
Xk−1AB

aUj , Xk−1B
aAUj

)
− 2−2j

(
Xk−1AB

sUj , Xk−1B
aAUj

)
− 2−2j

(
Xk−1AUj , Xk−1B

aABsUj

)
− 2−2j

(
Xk−1A

2∂xUj , Xk−1B
aAUj

)
− 2−2j

(
Xk−1AUj , Xk−1B

aABaUj

)
.

(5.7)

In light of Assumption 5.3, the first term on the right hand side will cancel out with the scalar products
appearing when summing up (5.2) with (5.5). The second and fifth terms can be controlled thanks to
Assumption 5.4. Indeed,

2−2j
(
Xk−1AB

aUj , Xk−1B
aAUj

)
= 2−2j

k−1∑
j=0

βj
(
XjUj , Xk−1B

aAUj

)
≤ C2−2j

εqk

k−1∑
i=0

∥XiUj∥2L2 + εqk2−2j∥Xk−1B
aAUj∥2L2 ,

and

2−2j
(
Xk−1A

2∂xUj , Xk−1B
aAUj

)
= 2−2j

k−1∑
i=0

αi

(
Xi∂xUj , Xk−1B

aAUj

)
≤ C

εqk

k−1∑
i=0

∥XiUj∥2L2 + εqk2−2j∥Xk−1B
aAUj∥2L2 .

The third and fourth term can be controlled thanks to the presence of BsUj :

−
(
Xk−1AB

sUj , Xk−1B
aAUj

)
−
(
Xk−1AUj , Xk−1B

aABsUj

)
≤ εqk∥Xk−1AUj∥2L2 + εqk∥Xk−1B

aAUj∥2L2 +
C

εqk
∥BsUj∥2L2 .
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Finally, we use Assumption 5.5 to deal with the last term. We have
2−2j

(
Xk−1AUj , Xk−1B

aABaUj

)
= 2−2j

k−1∑
i=0

γi
(
Xk−1AUj , XiUj

)
+γk2

−2j
(
Xk−1AUj , Xk−1B

aUj

)
+ γk+12

−2j
(
Xk−1AUj , Xk−1B

aAUj

)
≤ C

εqk
2−2j

k−1∑
i=0

∥XiUj∥2L2 +

(
εqk2−2j + C2−2j +

C2−j

2

)
∥Xk−1AUj∥2L2

+
C

2
2−3j∥Xk−1B

aUj∥2L2 +
1

2
· 2−3j∥Xk−1B

aAUj∥2L2 .

The control for the derivatives of the other terms appearing in Φk
m are precisely the same as Lemma

5.1 and Lemma 5.2. Collecting the latter inequalities, as well as the inequalities obtained along this
proof, and recalling assumptions 5.4 and 5.5, we arrive at

2−2j∂tΦ
k
m +

(
1

2
− C

2
2−j

)
2−2j∥Xk−1B

aUj∥2L2 +

(
1

2
− C

2
2−j

)
∥Xk−1AUj∥2L2

≤ εqk2−2j∥Xk−1B
aAUj∥2L2 +

1

2
· 2−3j∥Xk−1B

aAUj∥2L2

+ εqk2−4j∥Xk−1(B
a)2Uj∥2L2 + Cεpk−qk∥Xk−1Uj∥2L2 + C

k−2∑
i=0

∥XiUj∥2L2 .

Choosing j0 large enough such that
1

2
− C

2
2−j0 ≥ 1

4
,

we attain the desired inequality. □

Remark 5.7. Here, we needed the frequency threshold j0 to be large enough in order to close the
estimates. Note that Uh

j = 0 for j ≤ −1 . To deal with 0 ≤ j ≤ j0 − 1 , which is composed of a
finite number of frequencies, one can use the computations from Section 3 (for instance (3.7)) and
deduce exponential decay as 2j is bounded from below and above in this frequency region.

Case 2: The second case is similar to the first one. Now it is Xk−1B
a that is the end node. Hence,

we have the following set of assumptions.

Assumption 5.8. There exist αi, βi , i = 0, . . . , k − 1 , such that

Xk−1(B
a)2Uj =

k−1∑
i=0

αiXiUj and Xk−1B
aAUj =

k−1∑
i=0

βiXiUj .

Assumption 5.9. There exists m ∈ R such that(
mXk−1AB

aA∂xUj −Xk−1A∂xUj , Xk−1B
aUj

)
= 0. (5.8)

Assumption 5.10. There exist γi , i = 0, . . . , k , such that

Xk−1A(B
a)2Uj = γkXk−1AUj +

k−1∑
i=0

γiXiUj .

Note that, with respect to the previous case, we ask that γk+1 = 0 . We then associate to the left
node the functional

Φ̃k
A := Φk

A +mεpk2−2j
(
Xk−1AB

aUj , Xk−1B
aUj

)
,

and to the right node the functional

Φ̃k
Ba := Φk

Ba +mεpk2−2j
(
Xk−1AB

aUj , Xk−1B
aUj

)
.

In this case, we associate to both nodes the discrepancy
dk = 0.
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Hence, the final functional reads
Φk

m := Φ̃k
A + Φ̃k

Ba .

We are now in a position to state the lemma.

Lemma 5.11. Let Xk−1 be a node at the level k − 1 and let (4.3) and rank(MA) > r hold. Let
also Assumptions 5.8, 5.9 and 5.10 be satisfied. Then,

∂tΦ
k
m +

εpk

4
2−2j∥Xk−1B

aUj∥2L2 +
εpk

4
∥Xk−1AUj∥2L2

≤ εpk+qk∥Xk−1A
2Uj∥2L2 + εpk+qk2−2j∥Xk−1AB

aUj∥2L2 + Cεpk−qk

k−1∑
i=0

∥XiUj∥2L2 .

Proof of Lemma 5.11. The counterpart of Equality (5.7) reads

2−2j∂t
(
Xk−1A

2Uj , Xk−1B
aUj

)
=− 2−2j

(
Xk−1AB

aUj , Xk−1B
aA∂xUj

)
− 2−2j

(
Xk−1A(B

a)2Uj , Xk−1B
aUj

)
− 2−2j

(
Xk−1AB

aBsUj , Xk−1B
aUj

)
− 2−2j

(
Xk−1AB

aUj , Xk−1B
aBsUj

)
− 2−2j

(
Xk−1AB

aA∂xUj , Xk−1B
aUj

)
− 2−2j

(
Xk−1AB

aUj , Xk−1(B
a)2Uj

)
.

(5.9)

In this case, by Assumption 5.8, the fifth term cancels out. The rest of the proof is the same as that of
Lemma 5.6, the only modification being how we treat the second term. Indeed, now we have

−2−2j
(
Xk−1A(B

a)2Uj , Xk−1B
aUj

)
= −2−2jγk

(
Xk−1AUj , Xk−1B

aUj

)
+2−2j

k−1∑
i=0

γi
(
XiUj , Xk−1B

aUj

)
≤ 2−jC∥Xk−1AUj∥2L2 + 2−3jC∥Xk−1B

aUj∥2L2 + C

k−1∑
i=0

∥XiUj∥2L2 .

The proof is concluded in the same exact way as in the previous case. □

Case (4): Left OR Right. As described earlier, we simply choose Xk−1A . Accordingly, the
functional is Φk

A and the discrepancy is dk = 0 .

Case (5): End of the path. If the rank of the matrices MA and MBa is equal to r , it indicates that
no additional dissipation can be achieved by progressing further down the tree. At this point, we check
the value of r . If r = n , we have successfully recovered the dissipation for all the variables appearing
in the system. Otherwise, we move to the next node (i.e., the node on the right) at the same level
k− 1 . Moreover, if r < n , there always exists a node such that one of the previous three cases applies.
Indeed, if this were not the case, then every term of Bs(A∂x +Ba)kUj would be a combination of
previous terms. Consequently, it is immediate to check that the inhomogeneous Kalman condition
(2.2) would fail to hold, contradicting the assumption at the beginning of this section.

5.2. Cancellations. The main advantage of the algorithm we have described is that it allows us to
automatically discover conditions under which cancellations occur. In Lemma 5.6, we have already
seen how canceling a term in a differential equality can help to recover additional dissipation. Now
we focus on two additional situations in which we can improve our decay estimates. We will work
within the hypothesis

Xk−1(B
a)2Uj =

k∑
i=0

δiXiUj (5.10)

where the δi are constants. We remark that this assumption is not necessary to improve the decay rate.
Although it would be possible to remove it, it greatly simplifies the analysis and the exposition.
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5.2.1. Cancellation in the right path. When we take the right path moving from one level of the
tree to the next one, we have the differential equality (5.5). The terms containing the derivative on
the right-hand side require us to weight the estimate by 2−2j , effectively losing a derivative, as we
can only recover the norm 2−2j∥Xk−1B

aUj∥2L2 . However, there are situations in which these terms
simply cancel out. If this is the case, (5.5) simplifies into

∂t
(
Xk−1Uj , Xk−1B

aUj

)
+∥Xk−1B

aUj∥2L2 =−
(
Xk−1B

sUj , Xk−1B
aUj

)
−
(
Xk−1Uj , Xk−1B

aBsUj

)
−
(
Xk−1Uj , Xk−1(B

a)2Uj

)
.

At that point, by hypothesis (5.10), we have the following

∂t
(
Xk−1Uj , Xk−1B

aUj

)
+
3

4
∥Xk−1B

aUj∥2L2 ≤ C∥BsUj∥2L2 +
C

εpk

k−1∑
i=0

∥XiUj∥2L2 .

In this specific case, we associate a discrepancy dk = 0 .

5.2.2. Cancellation in the mixed path. Another cancellation effect may occur in the mixed path. This
is by far the most interesting situation, as it appears in several physical models which exhibit different
behaviors depending on the parameters of the system. A classical example is the Timoshenko system,
which is known to have better decay properties when the so-called equal wave speed condition holds.
As we will see, the latter appears naturally as a cancellation in the mixed path functional.

Assume we are in Case 1 and consider the functional

Φ =
(
Xk−1Uj , Xk−1B

aUj

)
+m

(
Xk−1AUj , Xk−1B

aAUj

)
.

If Assumption 5.4 holds, taking the time derivative, we obtain (see equation (5.7))

∂tΦ+ ∥Xk−1B
aUj∥2L2 =−

(
Xk−1Uj −mXk−1A

2Uj , Xk−1B
aA∂xUj

)
+ lower order terms .

Note that m here is fixed by Assumption 5.4. If the additional cancellation condition(
Xk−1Uj −mXk−1A

2Uj , Xk−1B
aA∂xUj

)
= 0 (5.11)

holds, then we can redefine Φ̃k
Ba in Lemma 5.6 to be simply

Φ̃k
Ba = εpk+1Φ.

In this case, the discrepancy associated with both nodes is

dk = 0.

By the same token, in Case 2 we have the similar condition(
Xk−1Uj −mXk−1AB

aUj , Xk−1B
aA∂xUj

)
= 0. (5.12)

In general, since m is fixed by assumptions 5.4 or 5.9, Equations (5.11)-(5.12) can be read as
restrictions on the coefficients of the system which, if satisfied, provide better decay rates. However,
note that both conditions are also satisfied when Xk−1B

aAUj = 0 . This is very relevant in concrete
physical settings when A and Ba are often sparse. We have the following result.

Lemma 5.12. Let the assumptions of Lemma 5.6 hold. Furthermore, assume that (5.10) and (5.11)
hold. Then,

∂tΦ
k
m +

εpk

4
∥Xk−1AUj∥2L2 +

εpk+1

2
∥Xk−1B

aUj∥2L2

≤ Cεpk−qk

k−1∑
j=0

∥XjUj∥2L2 + εpk+1+qk+1∥Xk−1B
aAUj∥2L2 .
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Proof. Keeping in mind our assumptions, a simple application of the Young inequality to every term
of (5.7), in conjunction with (5.1), yields

∂tΦ̃
k
A +

εpk

2
∥Xk−1AUj∥2L2 ≤ εpk2−2j∥Xk−1B

aUj∥2L2

+ Cεpk−qk

k−1∑
j=0

∥XjUj∥2L2 + εpk2−2j∥Xk−1B
aAUj∥2L2 .

(5.13)

Besides, in light of Assumption 5.4 and (5.11), we have

∂tΦ+ ∥Xk−1B
aUj∥2L2 = −

(
Xk−1B

sUj , Xk−1B
aUj

)
−
(
Xk−1Uj , Xk−1B

aBsUj

)
−m

(
Xk−1AB

sUj , Xk−1B
aAUj

)
−m

(
Xk−1AUj , Xk−1B

aABsUj

)
−
(
Xk−1Uj , Xk−1(B

a)2Uj

)
−m

(
Xk−1AB

aUj , Xk−1B
aAUj

)
−m

(
Xk−1AUj , Xk−1B

aABaUj

)
.

The first two terms on the right-hand side contain BsU , so they can be easily bounded as in Lemma
5.2, that is

−
(
Xk−1B

sUj , Xk−1B
aUj

)
−
(
Xk−1Uj , Xk−1B

aBsUj

)
≤ C

εqk+1
∥BsUj∥2L2 + εqk+1∥Xk−1B

aUj∥2L2 + C∥Xk−1Uj∥2L2 .

Similarly, the second line is controlled as

−m
(
Xk−1AB

sUj , Xk−1B
aAUj

)
−m

(
Xk−1AUj , Xk−1B

aABsUj

)
≤ C

εqk+1
∥BsUj∥2L2 + εqk+1∥Xk−1B

aAUj∥2L2 + εqk+1∥Xk−1AUj∥2L2 .

Next, exploiting (5.10), we have

(
Xk−1Uj , Xk−1(B

a)2Uj

)
= δk

(
Xk−1Uj , Xk−1B

aUj

)
+

k−1∑
i=0

δi
(
Xk−1Uj , XiUj

)
≤ εqk+1∥Xk−1B

aUj∥2L2 +
C

εqk+1

k−1∑
i=0

∥XiUj∥2L2 .

The final two terms are treated as in the proof of Lemma 5.6, except this time we do not have the
weight 2−2j . We have

m
(
Xk−1AB

aUj , Xk−1B
aAUj

)
≤ C

εqk+1

k−1∑
i=0

∥XiUj∥2L2 + εqk+1∥Xk−1B
aAUj∥2L2

and

m
(
Xk−1AUj , Xk−1B

aABaUj

)
≤ C

εqk+1

k−1∑
i=0

∥XjUj∥2L2 + ∥Xk−1AUj∥2L2 +
1

4
∥Xk−1B

aUj∥2L2 + εqk+1∥Xk−1B
aAUj∥2L2 .

Collecting together the obtained inequalities we find

∂tΦ̃
k
Ba +

εpk+1

2
∥Xk−1B

aUj∥2L2 ≤ Cεpk+1−qk+1

k−1∑
i=0

∥XiUj∥2L2

+ εpk+1∥Xk+1AUj∥2L2 + εpk+1+qk+1∥Xk−1B
aAUj∥2L2 .

Summing up to (5.13) we have the thesis. □

We limit ourselves to stating the version of the above lemma for the second set of assumptions, as
the proof works the same way. The definition of Φk

m does not change.
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Lemma 5.13. Let the assumptions of Lemma 5.11 hold. Furthermore, assume that (5.12) holds. Note
that (5.10) holds automatically thanks to Assumption 5.8. Then,

∂tΦ
k
m +

εpk

4
∥Xk−1AUj∥2L2 +

εpk+1

2
∥Xk−1B

aUj∥2L2

≤ Cεpk−qk

k−1∑
j=0

∥XjUj∥2L2 + εpk+1+qk+1∥Xk−1A
2Uj∥2L2 + εpk+qk∥Xk−1AB

aUj∥2L2 .

In this case, we do not have an improvement of the discrepancy, but we still obtain better regularity
since we now recover the control of the norm ∥Xk−1B

aUj∥2L2 .

Remark 5.14. Note that the coefficients are now unbalanced, being εpk and εpk+1 . This was necessary
in the proof to be able to absorb the term εpk+1∥Xk−1AUj∥2L2 of the last inequality with the norm
recovered at (5.13). Clearly, if there is a cancellation and Xk−1B

a has a child node, we will now
need to multiply the associated functional by εpk+2 instead of εpk+1 . This, however, has no effect on
the previous results and discussion.

6. Low-frequency Analysis

We now investigate the behavior of the functionals introduced in the previous section in the low-
frequency regime. In this regime, the roles of A and Ba are somewhat inverted. In particular, when
we add a left node to the tree, we generally lose regularity. However, there is no true symmetry with
the high-frequency setting: while in high frequencies the "good" functional Φk

A needs to be multiplied
by 2−2j , in low frequencies the good functional Φk

Ba need not be. This creates an imbalance in the
differential inequalities, particularly when dealing with the mixed term, leading to technical barriers
that we were unable to overcome (at least, not in a meaningful way, see Remark 6.4). Accordingly, we
will work under the following assumption.

Assumption 6.1. The "Left AND Right" case never happens at low frequencies.

In this section, we always use the low-frequency variable U ℓ = F−1(1|ξ|≤1Û) and simplify the
notation by omitting the superscript ℓ . It is important to note that we are still able to treat the case in
which mixed terms appear using the functional derived from the Kalman condition in Section 2 (see,
e.g., Example 9.1). We now proceed with the analysis of the four remaining cases.

Case (1): Left. We will associate the term

Φk
A := εpk

(
Xk−1Uj , Xk−1A∂xUj

)
,

and add to the node a discrepancy
dk = 1.

The following lemma holds.

Lemma 6.2. It holds

∂tΦ
k
A +

εpk

2
22j∥Xk−1AUj∥2L2

≤ Cεpk−qk∥Xk−1Uj∥2L2 + Cεpk

k−2∑
i=0

∥XiUj∥2L2

+ εpk+qk24j∥Xk−1A
2Uj∥2L2 + εpk+qk22j∥Xk−1AB

aUj∥2L2 .

(6.1)

Proof. The counterpart to (5.2) reads

∂t
(
Xk−1Uj , Xk−1A∂xUj

)
+∥Xk−1A∂xUj∥2L2 =−

(
Xk−1B

sUj , Xk−1A∂xUj

)
−

(
Xk−1Uj , Xk−1AB

s∂xUj

)
−

(
Xk−1B

aUj , Xk−1A∂xUj

)
−

(
Xk−1Uj , Xk−1A

2∂xxUj

)
−

(
Xk−1Uj , Xk−1AB

a∂xUj

)
.

(6.2)
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Here, the support of Ûj leads to

∥Xk−1A∂xUj∥2L2 ≥ 9

16
22j∥Xk−1AUj∥2L2 .

The first three terms are controlled exactly as in Lemma 5.1. Moving on to the fourth term, we have

|
(
Xk−1Uj , Xk−1A

2∂xxUj

)
| ≤ C

εqk
∥Xk−1Uj∥2L2 + εqk24j∥Xk−1A

2Uj∥2L2 .

In a similar fashion, we control the last term in the following way

|
(
Xk−1Uj , Xk−1AB

a∂xUj

)
| ≤ C

εqk
∥Xk−1Uj∥2L2 + εqk22j∥Xk−1AB

aUj∥2L2 .

The conclusion follows. □

Case (2): Right. We consider the functional

Φk
Ba := εpk

(
Xk−1Uj , Xk−1B

aUj

)
.

Moreover, we add a discrepancy dk = 0 to the node.

Lemma 6.3. It holds

∂tΦ
k
Ba+

3εpk

4
∥Xk−1B

aUj∥2L2

≤ Cεpk−qk∥Xk−1Uj∥2L2 + Cεpk

k−2∑
j=0

∥XjUj∥2L2

+ εpk+qk22j∥Xk−1B
aAUj∥2L2 + εpk+qk∥Xk−1(B

a)2Uj∥2L2 .

(6.3)

Proof. The counterpart of (5.5) reads

∂t
(
Xk−1Uj , Xk−1B

aUj

)
+∥Xk−1B

aUj∥2L2 =−
(
Xk−1B

sUj , Xk−1B
aUj

)
−

(
Xk−1Uj , Xk−1B

aBsUj

)
−

(
Xk−1A∂xUj , Xk−1B

aUj

)
−

(
Xk−1Uj , Xk−1B

aA∂xUj

)
−

(
Xk−1Uj , Xk−1(B

a)2Uj

)
.

(6.4)

The proof is a direct application of Young’s inequality in the same vein as Lemma 5.2. □

Case (4): Left OR Right. In this case, we simply do the opposite as in the high-frequency regime.
Specifically, if both A and Ba recover the same dissipation, we add Xk−1B

a to the path.

Case (5): End of the Path. The procedure is the same as described in Section 5.

Remark 6.4 (Mixed case and low frequencies). For the sake of completeness, we mention that in the
mixed case "Left AND Right" it is still possible to prove a result similar to Lemma 5.6. Specifically,
if Assumption 5.3 holds, and the following two assumptions

(2’) There exists αi , i = 0, . . . , k − 1 , such that

Xk−1A
2Uj =

k−1∑
i=0

αiXiUj

and
Xk−1AB

a = 0.

(3’) Similarly, we assume
Xk−1B

aABa = 0.

hold in place of 5.4-5.5, then one can define the functional

Φk
m := Φ̃k

A + Φ̃k
Ba ,

where
Φ̃k

A := 22jΦk
A +m22j

(
Xk−1AU, Xk−1B

aAU
)
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and
Φ̃k

Ba := 22jΦk
Ba +m22j

(
Xk−1AU, Xk−1B

aAU
)
.

Then, it is possible to show that Φk
m satisfies

∂tΦ
m
k +

εpk

2
24j∥Xk−1AU∥2L2 +

3εpk

4
22j∥Xk−1B

aU∥2L2

≤ Cεpk−qk∥BsU∥2L2 + Cεpk−qk22j
k−1∑
i=0

∥XiU∥2L2 + εpk+qk24j∥Xk−1B
aAU∥2L2 .

This inequality, however, matches poorly with those obtained in Lemma 6.2 and 6.3, due to the weights
24j and 22j in front of the recovered norms. Hence, while for some ad hoc systems we might still be
able to cover the mixed case, we have preferred to work within Assumption 6.1 to make the exposition
clearer.

7. The Improved Functional

We can now collect all the information obtained in the previous two sections to define the Lyapunov
functional. Let

N =
{
Xi

k, k = 1, . . . ,K, i = 1, . . . ,Mk

}
be the set of nodes chosen with the algorithm.

7.1. High frequencies. With a slight abuse of notation, let us indicate by dik−1 the discrepancy of
the father node of Xi

k . We define recursively the numbers

αi
k =


α0 = 0,

αi
k = αi

k−1 if dik−1 = 0,

αi
k = αi

k−1 + 1 if dik−1 = 1.

Conventionally, we set d0 = 0 . At this point, for every fixed j ≥ 0 , to every node Xi
k ∈ N we

associate the functional

Ψi
k = 2−2αi

kj ×



Φk
A if left path at k − 1,

Φk
Ba if right path at k − 1,

Φ̃k
A if mixed path at k − 1 and Xi

k = Xk−1A,

Φ̃k
Ba if mixed path at k − 1 and Xi

k = Xk−1B
a.

Then, the final Lyapunov functional reads

Lh
j =

1

2
∥Uh

j ∥2L2 +

K∑
k=1

Mk∑
i=1

Ψi
k.

To state our main result, we need one last definition. Let

(I, L) = argmax
i,k

αi
k.

We define

α̃ :=

{
αI
L if we recover ∥XI

LU
h
j ∥2L2 ,

αI
L + 1 if we recover 2−2j∥XI

LU
h
j ∥2L2 .

We then have the following result.

Theorem 7.1 (High-frequency decay). Let (pk, qk) be an admissible sequence according to Definition
4.2. For any γ > 0 , if α̃ ≥ 1 , then

∥Uh∥L2 ≤ C(1 + t)−γ∥Uh
0 ∥Hγα̃ . (7.1)

If α̃ = 0 , the high-frequency part of the solution decays exponentially.
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Proof. The proof simply consists in applying Lemmas 5.1, 5.2 or 5.6 depending on the path defined by
the Lyapunov functional. Recall that the integer j0 is given by Lemma 5.6. Due to the inhomogeneous
Kalman rank condition, we have the inequality (3.7), which leads to the exponential decay of
∥Uh

j ∥2L2 ≲ e−ct∥Uh
0,j∥2L2 for all j ≤ j0 − 1 . Collecting all the inequalities in Lemmas 5.1, 5.2 or

5.6, and using that (pk, qk) is an admissible sequence, for j ≥ j0 , we arrive at

d

dt
Lh
j + εpK

K∑
k=1

Mk∑
i=1

2−2γi
kj∥Xi

kU
h
j ∥2L2 ≤ 0,

where γik depends on the choice of Ψi
k and encodes the regularity of the norm recovered by adding

Xi
k to the path. In particular,{

γki = αi
k if we recover ∥Xi

kU
h
j ∥2L2 ,

γki = αi
k + 1 if we recover 2−2j∥Xi

kU
h
j ∥2L2 .

By the definition of α̃ , we have

d

dt
Lh
j + c2−2α̃jεpK

K∑
k=1

Mk∑
i=1

∥Xi
kU

h
j ∥2L2 ≤ 0,

and (7.1) follows by the same arguments as Proposition 3.3. □

Remark 7.2 (The role of cancellations). In Section 5,we have seen how, under certain conditions on
the coefficients, cancellations may provide a better decay rate for the solution. This is reflected, in
Theorem 7.1, by the fact that a cancellation on node Xi

k decreases the value of γik . Consequently, the
final value of α̃ with cancellations is less than or equal to the value without cancellations.

7.2. Low frequencies. The construction is the same. We define recursively the numbers

βi
k =


β0 = 0,

βi
k = βi

k−1 if dik−1 = 0,

βi
k = βi

k−1 + 1 if dik−1 = 1,

with d0 = 0 as before. At this point, for every fixed j ≥ 0 , to every node Xi
k ∈ N we associate the

functional

Ψi
k = 22β

i
kj ·

{
Φk

A if left path at k − 1,

Φk
Ba if right path at k − 1.

Then, the final Lyapunov functional in low frequencies is

Lℓ
j =

1

2
∥U ℓ

j ∥2L2 +

K∑
k=1

Mk∑
i=1

Ψi
k.

For
(I, L) = argmax

i,k
βi
k,

we define, as before,

β̃ :=

{
βI
L if we recover ∥XI

LU
ℓ
j ∥2L2 ,

βI
L + 1 if we recover 22j∥XI

LU
ℓ
j ∥2L2 .

Theorem 7.3 (Low-frequency decay). Let (pk, qk) be an admissible sequence according to Definition
4.2. For any γ > 0 , if β̃ ≥ 1

∥U ℓ∥L2 ≤ C(1 + t)
− 1

4β̃ ∥U ℓ
0∥L2 . (7.2)

If β̃ = 0 , the low-frequency part of the solution decays exponentially.

The proof is the same as in high frequencies, and is therefore omitted.
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8. Cancellations and Rank-One Matrices

In the previous sections, we have witnessed the important role played by cancellations in the high-
frequency decay rate of the solution. Specifically, the two sets of conditions we are interested in are
(5.6), (5.8) and (5.11), (5.12). The former two allow us to recover the sum between A-norm and
Ba -norm in the mixed case, and the latter allows us to obtain better regularity from the functional
Φk

m . It is then of paramount importance to find conditions on the matrices A,Ba and Bs so that
these cancellations appear. As a case study, in this section, we consider the case in which the matrix
Bs is rank one, which is a property shared by several physical systems. By Lemma A.1, there exist
a ∈ R and p ∈ Rn such that

Bs = app⊤.

In the sequel, we will work within the non-restrictive hypothesis a = 1 . Furthermore, we will
highlight the role played by the matrix Bs in the product Xk , by simply splitting the latter (with a
little abuse of notation) as

Xk = BsXk.

Moreover, we conventionally set
X−1 = I,

where I is the identity matrix. Then, in terms of the Euclidean inner product ⟨·, ·⟩ , (5.6) and (5.8)
turn into 〈

BsXk−1A∂xU, −BsXk−1B
aU +mBsXk−1B

aA2U
〉
= 0 (8.1)

and 〈
BsXk−1A∂xU −mBsXk−1AB

aA∂xU, B
sXk−1B

aU
〉
= 0, (8.2)

while (5.11) and (5.12) become〈
BsXk−1U −mBsXk−1A

2U, BsXk−1B
aA∂xU

〉
= 0, (8.3)

and 〈
BsXk−1U −mBsXk−1AB

aU, BsXk−1B
aA∂xU

〉
= 0. (8.4)

We can now present the central result of this section.

Lemma 8.1. Let Bs be a rank-one, symmetric matrix. Then (8.1) is equivalent to〈
Xk−1p,A∂xU

〉〈
BaXk−1p, (I −mA2)U

〉
= 0,

(8.2) is equivalent to 〈
Xk−1p,B

aU
〉〈
AXk−1p, (I −mA2)∂xU

〉
= 0.

Similarly, (8.3) is equivalent to〈
BaXk−1p,A∂xU

〉〈
Xk−1p, (I −mA2)U

〉
= 0,

and (8.4) is equivalent to〈
BaXk−1p,A∂xU

〉〈
Xk−1p, (I −mABa)U

〉
= 0.

Proof. We look at the equivalence for (8.1). The others are obtained in exactly the same way. Note
that

BsXk−1A∂xU = pp⊤Xk−1A∂xU = p(X⊤
k−1p)

⊤A∂xU = p
〈
X⊤

k−1p,A∂xU
〉
.

By the same token,

−BsXk−1B
aU+mBsXk−1B

aA2U = −pp⊤Xk−1B
a(I−mA2)U = p

〈
BaX⊤

k−1p, (I−mA2)U
〉
.

However, Xk−1 is simply a product of A and Ba . Hence, it holds

X⊤
k−1 = ±Xk−1,

depending on how many times Ba appears in the product. Since Xk−1 appears both in the left and
in the right terms of the scalar product in (8.1), the sign is actually irrelevant in this case. Recalling
that p is of unit norm, the proof is finished. □

We immediately infer the following corollary.
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Corollary 8.2. If
p ∈ ker(AXk−1) ∪ ker((I −mA2)BaXk−1) (8.5)

and
p ∈ ker(BaXk−1) ∪ ker((I −mA2)AXk−1), (8.6)

respectively, then the conditions (8.1) and (8.2) hold, respectively. Similarly, if

p ∈ ker(AXk−1B
a) ∪ ker((I −mA2)Xk−1), (8.7)

then the condition (8.3) holds, while if

p ∈ ker(AXk−1B
a) ∪ ker((I −mABa)Xk−1), (8.8)

condition (8.4) holds.

Proof. The proof is a straightforward consequence of the fact that A and I−mA2 are symmetric. □

The conditions expressed above are purely algebraic. In general, we expect to be able to find m
such that the first holds. For that choice of m , the second condition translates into a requirement on
the structural parameters of the equation.

Note that, in theory, the kernels appearing in the second condition might be the trivial set {0} . In
this case, there is no hope for an advantageous cancellation. It is then of interest to understand if,
given a hyperbolic system, we can expect a condition of this kind. While a deeper investigation of this
question is not the goal of this work, here we outline a connection between (8.1)-(8.2), (8.3)-(8.4) and
the spectrum of A . Let us look at the case of (8.1), the other being symmetrical. Recall that, since A
is symmetric, we can orthogonally diagonalize it. To wit, we can find Q such that Q−1 = Q⊤ and

Q⊤AQ = D := diag(λ1, . . . , λn),

λj being the eigenvalues of A . We can further characterize the matrix Q by noticing that

Q =

[
v1 v2 · · · vn

]
,

where vi are the normalized eigenvectors of A relative to λi . Looking now at Bs , we have

B̃s := Q⊤BsQ = Q⊤(pp⊤)Q = (Q⊤p)(Q⊤p)⊤.

In particular, B̃s is still rank one and symmetric. Calling q = Q⊤p , the matrix takes the form
B̃s = qq⊤ . Similarly, we have that

B̃a = Q⊤BaQ,

is still a skew-symmetric matrix. Calling

X̃k := Q⊤XkQ,

simple computations show that〈
Xk−1p,A∂xU

〉〈
BaXk−1p, (I −mA2)U

〉
=

〈
X̃k−1q,D∂xV

〉〈
B̃aX̃k−1q, (I −mD2)V

〉
and〈

BaXk−1p,A∂xU
〉〈
Xk−1p, (I −mA2)U

〉
=

〈
B̃aX̃k−1q,D∂xV

〉〈
X̃k−1q, (I −mD2)V

〉
,

where V = Q⊤U . Let us consider, for simplicity, the case X̃k−1 = I . Since (8.1) has to hold for
every U and Q is invertible, the latter is satisfied if

q ∈ ker(I −mD2).

Since D is diagonal, the dimension of this kernel is larger if we can choose m so that many of the
entries of mD2 are equal to 1 . In other words, the more eigenvalues A has with the same absolute
value, and the more "probable" it will be for q to belong to this set.
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9. Applications

We now provide some motivating examples to show how the algorithm defined in the previous sections
works in concrete situations. In what follows, we fix an admissible sequence (pk, qk) in the sense of
Definition 4.2. Furthermore, in line with Remark 3.4, we will work in the frequency variable. The
reason for this is twofold: first of all, it makes the notation lighter. Secondly, it makes it easier to
compare our results with the results already existing in the literature.

9.1. A 3-by-3 System with cancellation. We begin with a simple 3-by-3 system, which can be seen
as the coupling between a wave equation and a transport equation. Consider

∂tu+ a∂xv + w + u = 0,

∂tv + a∂xu = 0,

∂tw − u+ b∂xw = 0.

(9.1)

We have

A =

 0 a 0
a 0 0
0 0 b

 , Ba =

 0 0 1
0 0 0
−1 0 0

 and Bs =

 1 0 0
0 0 0
0 0 0

 .
It is straightforward to check that the inhomogeneous Kalman condition (2.2) is satisfied. The basic
energy equality, obtained by rephrasing the system in Fourier space and computing the derivative of
E = 1

2 |Û |2 , reads
∂tE+ |û|2 = 0.

At this point, we split the analysis into high and low frequencies.

High Frequencies. We use the algorithm of Section 4. Observe that

rank
[
Bs, BsA

]⊤
= 2 and rank

[
Bs, BsA, BsBa

]⊤
= 3.

Consequently, we fall into the mixed case. To apply Lemma 5.6, we need to verify the assumptions.
Since ℓ = 1 we have Xℓ−1 = X0 = Bs . Assumption 5.3 is verified since

BsA2U = a2u = a2BsU, and BsABaU = 0.

Besides,
−BsBaU +mBsBaA2U = −u+mb2u = 0 ⇐⇒ m =

1

b2

so Assumption 5.4 is satisfied. Finally,

BsBaABaU = −bu = −bBsU,

and Assumption 5.5 holds. At this point, we can check the conditions for cancellation. Since we are
using Lemma 5.6, this amounts to verifying (5.11). Fixing m = 1/b2 , we have〈

BsU − 1

b2
BsA2U,BsBaA∂xU⟩ =

〈
u− a2

b2
u, ∂xw⟩ = 0 ⇐⇒ a2 = b2.

If the coefficients of our system satisfy this equality, we can leverage cancellations to obtain a better
rate of decay. According to the discussion in Section 7:

• If a2 ̸= b2 , we consider the Lyapunov functional

Lh =
1

2
|Û |2 + ε

|ξ|2
Im⟨BsÛ , ξBsAÛ⟩+ ε

|ξ|2
Re⟨BsÛ , BsBaÛ⟩+ 2ε

|ξ|2
Re⟨BsAÛ,BsBaAÛ⟩

=
1

2
|Û |2 + ε

|ξ|2
Im⟨û, ξv̂⟩+ aε

|ξ|2
Re⟨û, ŵ⟩+ 2abε

|ξ|2
Re⟨v̂, ŵ⟩.

• If a2 = b2 , we consider the Lyapunov functional

Lh =
1

2
|Û |2 + ε

|ξ|2
Im⟨BsÛ , ξBsAÛ⟩+ ε

|ξ|2
Re⟨BsAÛ,BsBaAÛ⟩

+ ε
√
εRe⟨BsÛ , BsBaÛ⟩+ ε

√
εRe⟨BsAÛ,BsBaAÛ⟩

=
1

2
|Û |2 + ε

|ξ|2
Im⟨û, ξv̂⟩+ abε

|ξ|2
Re⟨v̂, ŵ⟩+ aε

√
εRe⟨û, ŵ⟩+ abε

√
εRe⟨v̂, ŵ⟩.
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In the spirit of Theorem 7.1, for |ξ| ≥ 1 , the above construction with a suitably small ε > 0 implies
|Û |2 ≲ e−c|ξ|−2t|Û(0)|2 when a2 ̸= b2 and |Û |2 ≲ e−ct|Û(0)|2 when a2 = b2 . Consequently, we
arrive at

∥Uh∥L2 ≤ C(1 + t)−γ/2∥U0∥Hγ , if a2 ̸= b2

and
∥Uh∥L2 ≤ Ce−ct∥U0∥L2 , if a2 = b2.

Low Frequencies. In low frequencies, due to the presence of the mixed term, we cannot apply the
theory of Section 6. Nevertheless, we can still use the general Kalman approach of Section 2. By
direct computations, the Lyapunov functional to consider in the low frequency regime is

Lℓ =
1

2
|Û |2 + εRe⟨BsU,Bs(iξA+Ba)Û⟩+ ε

√
εRe⟨Bs(iξA+Ba)Û , Bs(iξA+Ba)2Û⟩

=
1

2
|Û |2 + εRe⟨û, iξav̂ + ŵ⟩+ ε

√
εRe⟨iξav̂ + ŵ, û+ |ξ|2a2û− iξbŵ⟩.

Theorem 2.4 then ensures that the solution decays. Although a general formula is not provided, in this
simple case we can at least obtain an estimate for the decay rate. By Lemma 2.2 and Lemma A.7, this
amounts to estimating the norm of the matrix M̃−1 , which for the system at hand reads

M̃−1 =

 1 0 0
0 iaξ 1

−1− a2|ξ|2 0 ibξ

 .
Since by construction this matrix is non-singular, it is a well-known fact that the norm of the inverse
is simply the inverse of the highest order singular value σ3(M̃) (see also Remark A.8). But the latter
can also be characterized as the square root of the smallest eigenvalue of M̃⊤M̃ . Hence, we compute
the characteristic polynomial of this matrix, finding

p(x) = −x3+x2
(
3 + a2ξ2 − b2|ξ|2 + a4ξ4

)
+x

(
−2 + b2ξ2 + a4ξ4 − a2b2ξ4 + a6ξ6

)
+a2b2ξ4.

Finally, we observe that for every ξ small enough, p(a2b2ξ4/4) > 0 and p(a2b2ξ4) < 0 , meaning
that σ3(M̃) ∈ (a2b2ξ4/4, a2b2ξ4) . We conclude that β , appearing in (2.4) and thus in Theorem 2.4,
is equal to 2. This can also be verified numerically, computing the eigenvalues of iξA for small
values of ξ .

9.2. The Timoshenko System. Next, we turn to the Timoshenko system{
∂2ttφ− ∂x

(
∂xφ− ψ

)
= 0,

∂2ttψ − ∂x
(
σ(∂xφ)

)
− (∂xφ− ψ) + b∂tφ = 0

(9.2)

where the smooth function σ satisfies g′∗(s) > 0 for any s ∈ R . System (9.2) describes the transverse
vibrations of a beam; see [29, 30] and see [14] and references therein its mathematical analysis.

Defining the sound speed a2 = σ(0) and the variables

u1 = ∂xφ− ψ, u2 = ∂tφ, u3 = a∂xψ, u4 = ∂tψ, (9.3)

the system (9.2) rewrites
∂tu1 − ∂xu2 + u4 = 0,

∂tu2 − ∂xu1 = 0,

∂tu3 − a∂xu4 = 0,

∂tu4 − a∂xu3 − u1 + bu4 = σ(
u3
a
)− σ(0)− σ′(0)

u3
a
.

(9.4)

The linear system for (9.4) can be written in the form (1.1) with

A =


0 −1 0 0
−1 0 0 0
0 0 0 −a
0 0 −a 0

 , Ba =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 , Bs =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 b

 .
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We indicate with U the solution vector (u1, u2, u3, u4) and work in the Fourier space. To initialize
the algorithm, we compute the derivative of the Fourier energy E = 1

2 |Û(t, ξ)|2 , obtaining the basic
energy equality

∂tE+ b|û4|2 = 0.

At this point, setting the first node X0 = Bs , we check if one of the conditions (4.1)-(4.4) holds. For
the system at hand, we have

rank
[
Bs, BsA

]⊤
= 2 and rank

[
Bs, BsA, BsBa

]⊤
= 3,

so that (4.3) holds and we fall into the mixed case. In order to apply Lemma 5.6, we need to verify the
three assumptions. Since

BsA2 = a2Bs, and BsABa = BsBaABa = 0.

Assumptions 5.3 and 5.5 are satisfied. As for Assumption 5.4, we need to find m so that

⟨BsA∂xU,−BsBaU +mBsBaA2U⟩ = ab2⟨∂xu1, u3⟩ −mab2⟨∂xu1, u3⟩ = 0.

Clearly, this is satisfied for m = 1 . Before writing down the functional, we look for cancellation
conditions with m = 1 now fixed. Condition (5.11) reads

−b2⟨u2, ∂xu4⟩+ a2b2⟨u2, ∂xu4⟩ = 0,

and it is satisfied if a2 = 1 . This is precisely the equal wave speed condition that can be found in
[14]. In conclusion, we add the nodes X1

1 = BsA and X2
1 = BsBa . Since the discrepancy of the

first node Bs is set conventionally to zero, we obtain the functionals

Ψ1
1 =

ε

|ξ|2
(
Im⟨BsÛ , ξBsAÛ⟩+Re⟨BsAÛ,BsBaAÛ⟩

)
=
εab2

|ξ|2
Im⟨û4, ξû3⟩−

εab2

|ξ|2
Re⟨û3, û2⟩,

and

Ψ2
1 =



ε

|ξ|2
Re⟨BsÛ , BsBaÛ⟩+ ε

|ξ|2
Re⟨BsAÛ,BsBaAÛ⟩

= − εb2

|ξ|2
Re

(
⟨û4, û1⟩+ a⟨û3, û2⟩

)
if a2 ̸= 1,

εp2Re⟨BsÛ , BsBaÛ⟩+ εp2Re⟨BsAÛ,BsBaAÛ⟩
= −εp2b2Re

(
⟨û4, û1⟩+ a⟨û3, û2⟩

)
if a2 = 1.

We now move to the next step. It is not difficult to see that the only way to improve the rank is to add
the node X1

2 = BsBaA . Indeed,

rank
[
Bs, BsA, BsBa, BsBaA

]⊤
= 4.

The functional here depends on whether a2 = 1 or not. In the cancellation case, the discrepancy of
the node BsBa is still equal to zero, otherwise it is 1. Accordingly, we get

Ψ1
2 =


εp2

|ξ|4
Im⟨BsBaÛ , ξBsBaAÛ⟩ = εp2b2

|ξ|4
Im⟨û1, ξû2⟩ if a2 ̸= 1,

εp3

|ξ|2
Im⟨BsBaÛ , ξBsBaAÛ⟩ = εp3b2

|ξ|2
Im⟨û1, ξû2⟩ if a2 = 1.

Since the rank is now equal to the number of variables, we can stop. For a2 ̸= 1 , the complete
Lyapunov functional reads

Lh =
1

2
|Û |2 + εab2

|ξ|2
(
ξIm⟨û4, û3⟩ − Re⟨û3, û2⟩

)
− εb2

|ξ|2
Re

(
⟨û4, û1⟩+ a⟨û3, û2⟩

)
+
εp2b2

|ξ|4
Im⟨û1, ξû2⟩,
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On the other hand, when a2 = 1 ,

Lh =
1

2
|Û |2 + εab2

|ξ|2
(
ξIm⟨û4, û3⟩ − Re⟨û3, û2⟩

)
− εp2b2

(
⟨û4, û1⟩+ a⟨û3, û2⟩

)
+
εp3b2

|ξ|2
Im⟨û1, ξû2⟩.

Thus, using Theorem 7.1, we get the properties

Lh ∼ |Û |2, d

dt
Lh +

c

ξ2α
Lh ≤ 0,

where α = 1 if a2 ̸= 1 and α = 0 if a2 = 1 . In turn, for any γ > 0 , this yields the usual decay rate
of the Timoshenko system in high frequencies [14]:

∥Uh∥L2 ≤ C(1 + t)−γ/2∥U0∥Hγα , if a2 ̸= 1,

and
∥Uh∥L2 ≤ Ce−ct∥U0∥L2 , if a2 = 1.

Remark 9.1. Calling
p = [0, 0, 0, 1],

we have
Bs = γpp⊤.

In particular, Bs is rank one, so we fall into the framework of Section 8. Note that

(I −mA2)Ba =


0 0 0 1−m
0 0 0 0
0 0 0 0

−1 +ma2 0 0 0

 .
Hence, unless m is equal to 1 , p does not belong to its kernel and (8.5) is not satisfied (as p certainly
does not belong to ker(A) ). Once we set m = 1 we see that (8.7) is satisfied only if a2 = 1 .

9.3. The Timoshenko System with Memory. In [20], the following Timoshenko System with
Memory is considered:{

∂2ttφ− ∂x
(
∂xφ− ψ

)
= 0,

∂2ttψ − ∂x
(
g(∂xφ)

)
− (∂xφ− ψ) + b∂tφ+ bg ∗ ∂2xxψ = 0,

(9.5)

where the term g ∗ ∂2xxψ =
´ t
0
g(t− τ)∂2xxψ(τ)dτ is referred to as a memory-type damping. Taking

g(t) = µe−µt with µ > 0 and rewriting (9.5) as a first-order system, its linearization around a steady
solution reads 

∂tu1 − ∂xu3 + u2 = 0,

∂tu2 − c1∂xu4 + c2∂xu5 − u1 = 0,

∂tu3 − ∂xu1 = 0,

∂tu4 − c1∂xu2 = 0,

∂tu5 + c2∂xu2 + µu5 = 0.

(9.6)

This equations are derived from the Timoshenko system (9.4), when memory effect on the rotation
angle are present. The matrices are

A =


0 0 −1 0 0
0 0 0 −c1 c2
−1 0 0 0 0
0 −c1 0 0 0
0 c2 0 0 0

 , Ba =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Bs =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 µ

 .
We denote U = (u1, u2, u3, u4, u5) . Since it will not play a role in the subsequent computations, we
set µ = 1 . After the basic energy equality

∂tE+ |û5|2 = 0,
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with E = 1
2 |Û |2 , we begin by moving left, adding the node X1

1 = BsA . Indeed,

rank
[
Bs, BsA

]⊤
= 2, and rank

[
Bs, BsBa

]⊤
= 1.

Hence, we obtain

Ψ1
1 =

ε

|ξ|2
Im⟨BsÛ , ξBsAÛ⟩ = εc2

|ξ|2
Im⟨û5, ξû2⟩.

Moving to the second level, we notice that we are in the mixed path situation. It is not difficult to
check that Assumptions 5.3-5.5 hold and that Assumption 5.4 is satisfied if m = 1 . Substituting this
into (5.11) we find that there is a cancellation if

c21 + c22 = 1,

which is exactly the cancellation condition in [20]. Note that even in this case we could have worked
as in Remark 9.1, since Bs is a rank one matrix. We add the nodes X1

2 = BsA2 and X2
2 = BsABa

and obtain the functionals

Ψ1
2 =

εp2c22
|ξ|2

Im⟨ξû2,−c1û4 + c2û5⟩+
εp2c22
|ξ|2

Re⟨û3,−c1û4 + c2û5⟩,

and

Ψ2
2 =

−ε
p2c22
|ξ|2

Re⟨û2, û1⟩+
εp2c22
|ξ|2

Re⟨û3,−c1û4 + c2û5⟩ if c21 + c22 ̸= 1,

−εp3c22Re⟨û2, û1⟩+ εp3c22Re⟨û3,−c1û4 + c2û5⟩ if c21 + c22 = 1.

Finally, we observe that the last node needed is X1
3 = BsABaA , yielding

Ψ1
3 =


−ε

p3c22
|ξ|4

Im⟨û1, ξû3⟩ if c21 + c22 ̸= 1,

−ε
p4c22
|ξ|2

Im⟨û1, ξû3⟩ if c21 + c22 = 1.

The complete Lyapunov functional is then, if c21 + c22 ̸= 1 ,

Lh =
1

2
|Û |2 + εc2

|ξ|2
Im⟨û5, ξû2⟩+

εp2c22
|ξ|2

Im⟨û2,−c1ξû4 + c2ξû5⟩

+
2εp2c22
|ξ|2

Re⟨û3,−c1û4 + c2û5⟩ −
εp2c22
|ξ|2

Re⟨û2, û1⟩ −
εp3c22
|ξ|4

Im⟨û1, ξû3⟩

and in the cancellation case c21 + c22 = 1 ,

Lh =
1

2
|Û |2 + εc2

|ξ|2
Im⟨û5, ξû2⟩+

εp2c22
|ξ|2

Im⟨û2,−ξc1û4 + c2ξû5⟩+
εp2c22
|ξ|2

Re⟨û3,−c1û4 + c2û5⟩

− εp3c22Re⟨û2, û1⟩+
εp3c22
|ξ|2

Re⟨û3,−c1û4 + c2û5⟩ −
εp4c22
|ξ|2

Im⟨û1, ξû3⟩.

Then, following using Theorem 7.1, we obtain

Lh ∼ |Ûh|, d

dt
Lh +

c

ξ2α
Lh ≤ 0,

where α = 1 if there is no cancellation and α = 0 in the case of cancellation. This leads to the decay
rates

∥Uh∥L2 ≤ C(1 + t)−γ/2∥U0∥Hγα , if c21 + c22 ̸= 1,

and
∥Uh∥L2 ≤ Ce−ct∥U0∥L2 , if c21 + c22 = 1.

Such decay rates are predicted by the spectral analysis.
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Bs

BsA BsBa

System (9.1)

Bs

BsA

BsA2 BsABa

Timoshenko (9.4)

Bs

BsA

BsA2 BsABa

BsABaA

Timoshenko with memory (9.6)

Figure 3. The paths followed in the three examples.

10. Conclusions and Future Work

In this work, we have introduced a new Kalman-type stability condition for hyperbolic systems
with non-symmetric relaxation. Using this condition, we have shown that the solutions decay at a
certain rate as t→ ∞ . To identify this rate, we have proposed an algorithm to construct a Lyapunov
functional. This strategy can be applied to any linear hyperbolic system, to systematically estimate the
rate of decay of the solution, and to uncover advantageous algebraic cancellations in the high-frequency
regime.

We highlight two potential research directions which remain to be explored.
(1) The first crucial question concerns the optimal decay rate. The primary reason why our

algorithm may not provide the optimal decay rate is the choice L, which makes the chosen
path on the tree unique. One could theoretically list all the possible paths on the tree leading
to the recovery of the dissipation of every involved variable, and select the one with the best
decay rate. On the other hand, finding conditions on A,Ba and Bs to ensure that the chosen
path yields the optimal decay rate is an interesting open problem.

(2) It would be equally interesting to extend our framework to partially diffusive systems, namely
to equations of the form

∂tU +A∂xU +BU − C∂xxU = 0,

where C is a symmetric matrix whose rank is not full. In this setting, four operators, two
dissipative and two conservative, would interact together, rendering the analysis more intricate.
Nonetheless, it is possible to extend the inhomogeneous Kalman condition to this setting and
design a procedure to retrieve the decay rates of such systems following the methodology
developed in the present paper.
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Appendix A. Linear Algebra results on Rank-one Matrices

We begin by recalling basic facts.

Lemma A.1. The matrix A ∈ M(n, n) is a rank-one symmetric matrix if and only if there exists
a ∈ R and p ∈ Rn of unitary norm such that

A = app⊤,

where pp⊤ is the outer product of p with itself.

Lemma A.2. Let A ∈ M(n, n) be a symmetric, rank-one matrix. Then for any B ∈ M(n, n) , AB
is also rank-one.

Proof. Since A is rank-one, there exist a ∈ R , p ∈ Rn such that A = app⊤ . Without loss of
generality, let us assume a = 1 . Then,

A =


p1p

⊤

p2p
⊤

. . .
pnp

⊤

 .
Consequently, it follows that

AB =


p1p

⊤B
p2p

⊤B
. . .

pnp
⊤B

 .
Calling w := p⊤B , we see that AB is also rank-one. □

Lemma A.3. Let X ∈ M(p, n) , p ≥ n be such that rankX = k and let A ∈ M(n, n) be a
symmetric, rank-one matrix. Then, for any B ∈ M(n, n) , we have

k ≤ rank
(
[X,AB]⊤

)
≤ k + 1.

Proof. By the previous lemma, AB is a rank-one matrix. Therefore, the dimension of the row space
of AB is equal to 1. At this point, two possibilities can occur: row(AB) ⊂ row(X) , and in this
case rank([X,AB]⊤) = k , or row(AB) ∩ row(X) = {0} , and the rank is equal to k + 1 . □

For the next lemma, we need a definition.

Definition A.4. Let P0, . . . , Pd be matrices in M(n, n) , with Pd ̸= 0 . We call

P (x) = P0 + P1x+ . . .+ Pdx
d

a polynomial matrix of degree d .

Lemma A.5. Let P (x) be a polynomial matrix of degree d , and suppose there exists a constant
η > 0 such that P (x) is invertible for every x > η . Then there exists α and a C > 0 such that

∥P−1(x)∥ ≤ C(1 + x)α.

Proof. Let p(λ, x) = det(P (x)−λI) be the characteristic polynomial of P (x) . We can consider P
as a matrix over the commutative ring R[x] , so that the Cayley-Hamilton theorem holds. Accordingly,

p(P (x), x) = 0.

Since P (x) is invertible for every x > η , we have that p(0, x) = det(P (x)) is a polynomial with no
zeros for x > η . Hence,

1

p(0, x)
≲ 1.

Finally, writing
p(λ, x) = λr(λ, x) + p(0, x),

for some other polynomial r , we obtain

P−1(x) = −r(P (x), x)
p(0, x)

.

Since r(P (x), x) has polynomial growth, the sought inequality follows. □



36 T. CRIN-BARAT, L. LIVERANI, L-Y. SHOU, AND E. ZUAZUA

Remark A.6. Lemma A.5 effortlessly extends to polynomial matrices with coefficients in Cn×n .

Lemma A.7. Let P (x) be a polynomial matrix such that P (x) is invertible for every x large enough.
Let α = α(P ) be the exponent in the previous lemma. There exists a c > 0 such that

∥P (x)U∥ ≥ c

xα
∥U∥.

Proof. The proof follows by simply noting that, for every invertible matrix A ,

∥U∥ = ∥A−1AU∥ ≤ ∥A−1∥∥AU∥.

An application of the Lemma A.5 yields the statement. □

Remark A.8. Unfortunately, obtaining a non-vanishing lower bound is generally not possible. A
simple example is the polynomial matrix

P (x) =

[
1 x
0 1

]
.

Indeed, while P (x) is invertible for every x , it is possible to show that its smallest singular value

σ2(P (x)) := min
U∈R2,∥U∥=1

∥P (x)U∥ ∼ 1

x2
, as x→ +∞.

Recalling that the norm of the inverse can be equivalently characterized as (σ2(P (x)))
−1 [12,

Theorem 3.3], we see that in this case the estimate in Lemma A.5 cannot be improved.

Appendix B. Proof of Lemma 2.2

Let us work in high frequencies. The low-frequency case works in the same fashion. For every
nonzero x ∈ R , we define the matrix

M(ξ) =

[
Bs,

1

|ξ|
Bs(iξA+Ba), . . . ,

1

|ξ|K
Bs(iξA+Ba)K

]⊤
∈ CKn×n.

We recall that the rank of a matrix can be equivalently defined as

rankM(ξ) = dim rowM(ξ).

In particular, the inhomogeneous Kalman condition holds for M(ξ) and it asserts that the dimension
of the row space of M(ξ) is equal to n . Equivalently, there exist n rows v1(ξ), . . . , vn(ξ) of M(ξ)
which are linearly independent. Hence, we have

|M(ξ)Û |2 =

K∑
k=0

|ξ|−2k|Bs(iξA+Ba)kÛ |2 ≥
n∑

j=0

|⟨vj(ξ), Û⟩|2 = |M̃(ξ)Û |2,

where M̃(ξ) is the matrix

M̃(ξ) = [v1(ξ), . . . , vn(ξ)]
⊤ ∈ Cn×n.

Clearly M̃(ξ) is invertible. Besides, it is apparent that it is a polynomial matrix in 1/ξ . We can thus
rewrite it as

M̃(ξ) =
1

|ξ|α′ M̃
′(ξ),

where α′ ∈ N is the degree of M̃ , and M̃′ is an invertible polynomial matrix in ξ . By Lemma A.7,
we have

|M̃′Û(ξ)| ≥ 1

|ξ|α′′ |Û(ξ)|.

The thesis follows with α = α′ + α′′ . □
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