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ABSTRACT. This monograph is devoted to analyze the vibrations of a simpli-
fied 1 — d model of a multi-body structure consisting of a finite number of
flexible strings distributed along a planar graph.

We first discuss issues on existence and uniqueness of solutions that can
be solved by standard methods. Then we analyze how solutions propagate
along the graph as the time evolves. The problem of the observation of
waves is a natural framework to analyze this issue. Roughly, the question
can be formulated as follows: Can we obtain complete information on the
vibrations by making measurements in one single extreme of the network? This
formulation is relevant both in the context of control and inverse problems.

Using the Fourier development of solutions and techniques of Nonhar-
monic Fourier Analysis, we give spectral conditions that guarantee the observ-
ability property to hold in any time larger than twice the total lengths of the
network in a suitable Hilbert that can be characterized in terms of Fourier
series by means of properly chosen weights. When the network graph is a tree,
we characterize these weights in terms of the eigenvalues of the correspond-
ing elliptic problem. The resulting weighted observability inequality allows to
identify the observable energy in Sobolev terms in some particular cases. That
is the case, for instance, when the network is star-shaped and the ratios of the
lengths of its strings are algebraic irrational numbers.

The techniques developed to handle this problem and the results we have
obtained, allow us to solve also other similar problems. In particular, the si-
multaneous observability problem for strings or membranes from an interior
region and the Schrédinger, heat or beam-type equations on networks con-
trolled from one exterior node are also studied.

We also describe systematically the control theoretical consequences of the
observability properties we have obtained here, in terms of the approximate,
spectral and exact controllability of networks.



Contents

Introduction v
Chapter I. Preliminaries 1
1. An elastic string 1
2. Networks of strings 5
3. The control problem 10
4. A controllability theorem and its limitations 12
Chapter II. Some useful tools 15
1. D’Alembert formula and observability from the boundary of the 1-d
wave equation 15
2. The Hilbert Uniqueness Method (HUM): reduction to an observability
problem. 17
3. The moments method 24
4. Riesz bases and Ingham-type inequalities 31
Chapter III. The three string network 39
1. The three string network with two controlled nodes 39
2. A simpler problem: simultaneous control of two strings 42
3. The three string network with one controlled node 49
4. An observability inequality 51
5. Properties of the sequence of eigenvalues 56
6. Observability of the Fourier coefficients of the initial data 59
7. Study of the weights ¢, 60
8. Relation between the simultaneous control of two strings and the control
of the three string network from one exterior node 65
9. Lack of observability in small time 68
10. Application of the method of moments to the control of the three
string network 71
Chapter IV. General trees 77
1. Notations and statement of the problem 77
2. The operators P and Q 81
3. The main theorem 91
4. Relation between P and Q and the eigenvalues 94
5.  Observability results 100
6. Consequences concerning the controllability 105
7. Simultaneous observability and controllability of networks 106
8. Examples 109

Chapter V. Some observability and controllability results for general networks115

iii



iv CONTENTS

1. Spectral controllability of general networks
2. Colored networks
3. Sharpness of the Schmidt’s theorem

Chapter VI. Simultaneous observation and control from an interior region
1. Simultaneous interior control of two strings
2. Simultaneous control on the whole domain

Chapter VII. Other equations on networks
1. The heat equation
2. Schrodinger equation
3. A model of network of beams

Chapter VIII. Final remarks and open problems
1. Brief description of the main results presented in this book
2. Future lines of research and open problems

Appendix A. Some consequences of diophantine approximation theorems

Appendix. Bibliography

115
122
125

131
131
139

143
143
146
150

153
153
155

157
163



Introduction

In last years a considerable effort has been devoted to the study of mechanical
systems constituted by multiple coupled elements as beams, plates, strings or mem-
branes. Those systems are known as multi-structures. Their practical relevance is
enormous. However, the complexity of the mathematical models describing their
evolution is generally is considerable. In [48] and [51] wide information on this
topic may be found.

The difficulty mentioned above makes it necessary to study the most simple
versions of those models to know which results can be expected in more complex
situations or when the model is better adapted to practical needs.

This monograph is devoted to analyze the vibrations of a simplified 1 —d model
of a multi-body structure consisting of a finite number of flexible strings distributed
along a planar graph.

The model under consideration is, to some extend, the simplest one in the
context of multi-body or multi-link continuous structures. However, as we shall
see along the monograph, a fine analysis of the nature of the possible vibrations
of these planar networks of flexible strings is far from trivial. The main goal of
this book is to present is a self-contained way the state of the art of the problem
of propagation, observation and control of wave on planar networks. As we shall
see, this requires important developments related with non-harmonic Fourier series,
Diophantine approximation, graph theory and propagation techniques.

The main tool for analyzing the propagation of waves along the graph will be
the d’Alembert formula which allows solving the wave equation both in the space
and the time directions. In the model under consideration the wave equation holds
along each of the strings of the network. The d’Alembert formula allows then
representing the solutions on each string explicitly. However, the overall dynamics
turns out to be rather complex. This is due to the interaction of the various strings
at the junction points. How the energy of waves is transferred from one string to
another turns out to be a global problem in which several ingredients arise:

— the lengths of the various strings constituting the graph;

— the topology of the graph;

— the boundary conditions imposed at the extremes of the graph.

The problem of observation or observability concerns, roughly speaking, the
issue of determining whether one can determine the total energy vibrations by
partial measurements made for instance, in one or several interior or external nodes
of the network. In other words, the property of observability is related with the
distribution or propagation of vibrations along the various components of the multi-
structure. This problem is relevant, not only because it is a way of analyzing
deeply the nature of vibrations, but because it is also of immediate application in
the context of inverse and control problems. Part of the book will also devoted to



vi INTRODUCTION

present systematically the consequences of our analysis in what concerns control
problems. In particular, we shall analyze the properties of approximate, spectral
and exact controllability of the networks.

As we mentioned above graph theory and Diophantine approximations issues
enter in a crucial way on the analysis of the property of observability. The topology
of the graph does play indeed a fundamental role. For instance, when the graph
contains closed circuits there may exist vibrations of the network that do remain
concentrated in that circuit, without being propagated to the rest of the network.
In those cases, obviously, it is impossible to achieve the observation and/or control
property if the observer or controlled is not located on the circuit where the solution
is trapped. But whether a circuit may support a localized vibration depends also
strongly on the mutual lengths of the strings composing the circuit. When all
the ratios of the lengths of these strings are rational numbers, such a localized
vibration does exist. However, if some of these ratios is irrational, then necessarily,
part of the energy of the vibration will be transferred to some other components
of the network. But, in order to determine the amount of energy that is actually
transferred one needs to know further properties of that irrational ratio (being
algebraic or not, a Liouville number....) and then apply the existing results on
Diophantine approximation.

As we shall see, the overall picture is quite complex, but we hope that mono-
graph will succeed on describing the main phenomena one may encounter. We shall
mainly focus on three cases with different degrees of complexity and such that the
corresponding results are also of quite different nature:

The star. it concerns the case where a finite number of strings are connected on
a single point by one of their extremes. In this case, using d’Alembert formula,
one can give sharp results characterizing the space of observation and/or control
in Fourier series. We mainly discuss the most difficult case in which observation
and/or control are localized in a single extreme of the network. The weights in the
corresponding norms depend on the ratios of the lengths of the strings. The time
needed for observation turns out to be twice the sum of all lengths of the networks.

The tree. It is well known that when all but one external node of the network are
observed in a tree-like configuration, the whole energy of solutions may be observed
(see [51]). This can be easily seen by an energy argument. Indeed, using sidewise
energy estimate one can show that the observation inequality holds in the sharp
energy space in a time which is twice the length of the longest path joining the
points of the network with some of the observed ends.

Here we analyze the opposite case in which the observation is made at one single
extreme of the tree-like network. The observation time turns out to be again, as in
the case of one star, twice the sum of the lengths of the strings forming the network.
At this point, it is important to note that the case of a tree is a generalization of
the previous case of a star. Thus, one has to also generalize the condition on the
irrationality of the ratios of the lengths of the strings arising in the case of the stars.
To do that it is important to observe that the fact of two string having mutually
irrational lengths can also be interpreted in spectral terms. Indeed, it means that
the spectra of the two strings have empty intersection. The latter notion turns out
to be the appropriate one to be extended to the general case of trees. The tree turns
out to be observable from one end if and only if the spectra of all pairs of subtrees
of the tree that match on a nodal point are disjoint. Obviously, this property is
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also related to the values of the lengths of the strings composing the tree, but does
not have an easy interpretation as in the case of the star. Nevertheless, generically,
trees also satisfy this property.

General networks. The propagation techniques we have employed in the anal-
ysis of star and trees are hard to apply in the case of a network supported by a
general graph. Indeed, in the general case we lack of a natural ordering on the
graph to analyze the propagation of waves. Actually, as we mentioned above, the
presence of close circuits may trap the waves. Thus, we proceed in a different way
by applying a consequence of the celebrated Beurling-Malliavin’s Theorem on the
completeness of families of real exponentials obtained by Haraux and Jaffard in [34]
when analyzing the control of plates. Using the min-max principle, one can show
that the spectral density of a general graph is the same as that of a single string
whose length is the sum of the lengths of all the strings entering in the network.
Then, when the time is greater than twice the total length, as a consequence of
Beurling-Malliavin’s Theorem, we deduce that there exist some Fourier weights so
that the observation property holds in the corresponding weighted norm if and only
if all the eigenfunctions of the network are observable. So far we do not know of
any necessary and sufficient condition guaranteeing that all the eigenfunctions are
observable in the general case. We know however, what that property is in the
particular case of stars and trees discussed above: the lengths of the strings are
mutually irrational in the case of stars or the spectra of all pair of subtrees with a
common end-point are mutually disjoint in the more general case of the trees.

In view of this last result on general networks, we could have presented the
material in this monograph in a completely different order. Indeed, we could have
started from the most general results on the case of general networks using Beurling-
Malliavin’s Theorem to later discuss the particular cases of stars and trees using
d’Alembert formula and Diophantine approximation. However, we have preferred
to do all the way around. This corresponds actually to the order and chronology in
which the progress was done in the field, starting from the work [57] on the case of a
star composed of three strings and continuing to the series of notes [26, 27, 28, 29|.

We became interested on this subject along several discussions with Glinter
Leugering on this subject and his book in collaboration with John Lagnese and
George Schmidt [51] was a great help to start. As we said before, the model
we consider in this monograph is the simplest one in the context of vibrations of
networks. The interested reader is referred to [51] where many other models can be
found with a description of the state of the art in what concerns the well-posedness
of the initial boundary problems and the observation and/or control problems for
networks of strings, beams, membranes and plates.

Before getting into the analysis of the star we discuss a simpler issue that,
nevertheless, allows presenting some of the main difficulties of the theory. It con-
cerns the simultaneous control of two strings connected at one end-point (which is
in fact completely equivalent to the problem of controlling one single string from
one interior point). In this case we already we see the necessity that both stings
have mutually irrational lengths. Moreover, we also see that the time needed to
control the strings is twice the sum of the lengths of both strings. This seems to
contradict a first intuition that would suggest that the time needed to control both
strings simultaneously should be twice the maximum of the lengths of the strings,
i.e.,, 2max ({1, ¢s), instead of 2(¢; 4 ¢2). But intuition fails and, in fact, the time
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2(¢1 + £3) turns out to be sharp under the assumption that the ratio ¢1 /s is ir-
rational. In other words, even when ¢ /{5 is irrational, the time needed to control
simultaneously the two strings together by means of the same control, is 2(¢1 4 ¢5),
which is strictly greater than the time needed to control each string respectively
with two different controls that would be 2 max(¢1, £2).

It is interesting to analyze the relation of this result with the so-called Geo-
metric Control Conditions (GCC) introduced by Bardos, Lebeau and Rauch [11]
in the context of the boundary observation and/or control of the wave equation in
bounded domains of R™. The GCC requires that all the rays of Geometric Optics
enter the observation region in a finite, uniform time which turns out to be the
minimal one for observation/control. In the case of two strings observed from one
common end or the equivalent problem of the string controlled at an interior point,
in view of GCC, one could expect the sharp time needed for observation/control to
be equal to 2max(¢;,¢3). But this is not the case, the fact that the rays pass once
by the point of observation does not guarantee that the energy concentrated on
that ray will be conveniently observed!. In fact, we need the ray to pass once more
through the point of observation to be able to make a full measurement of the en-
ergy along the ray. This yields the control observation time 2(¢; + ¢3). But, in fact,
passing twice by the observation point is not sufficient either. The irrationality of
the ratio £1/¢5 is needed to guarantee that, when passing through the observation
point the second time, the solution is not exactly at the configuration as in the first
one, which, of course, would make the second observation to be insufficient too.
Finally, even when ¢; /{5 is irrational, we cannot get a uniform bound of the energy
of the solution but rather a weaker measurement in a weaker norm. The nature of
this norm, which is represented in Fourier series by means of some weights depend-
ing on {1 /¢, depends very strongly on the irrationality class to which the number
01/45 belongs. In fact, in the most favorable case, i.e., when £; /5 is an algebraic
number of degree two, one looses one derivative of the solution which, in Sobolev
terms means that, for instance, an H' observation in time yields only control of
the L?-norm of the solution. In other more pathological cases, like when £ /45 is,
for instance, a Liouville number, one may loose an infinite number of derivatives
in the sense that the weights entering in the Fourier representation of the observed
norm may have an exponential decay.

We have so far described the content of the main body of the monograph:
the propagation, observation and control of waves on stars, trees and general net-
works. But these are only a few of the problems arising in this context. We have
complemented this material with the discussion of two important closely related
problems:

— The simultaneous observation/control of two strings from a common subin-
terval. In this case one obtains better results than in the case when the ob-
server/controller was located at a single point. Indeed, this time the results do
hold in the sharp energy space without any loss of derivatives.

— The observation/control of general networks through all the nodal points.
This is a problem of relevance in applications. From a technological point of view,
putting observer/controllers at all the nodal points is feasible. However, one would

1The wave equation is a second order problem and therefore, even in 1 — d, for a pointwise
observation mechanism to be efficient we need to measure not only the position, but also the space
derivative.
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like to know, for instance, if one can reduce the number of applied control forces
by identifying a priori the nodes on which the same force will be applied. This is
needed necessarily in order to diminish the complexity of the control mechanism.
Thus, we would to know how many different control forces are needed to control
the whole structure and to identify the nodes on which each control should be
applied. We shall see that the total number of controls needed is four and this is a
consequence of our previous analysis and the celebrated Four Colors Theorem.

So far, we have only discussed the wave equation on planar networks of strings.
But of course, the same issues arise for all other models like beams, Schrodinger
or heat equations. The theory of observation and control of Partial Differential
Equations in open domains of the euclidean space is by now quite well-developed
(We refer to the survey article [82] for an updated account of the developments
in this field). However, very little is known in the context of PDE’s on networks.
In particular, as far as we know, nothing is known on the three models mentioned
above.

The last part of this monograph is devoted to discuss those three models.
Roughly speaking, we show that the result proved in the previous sections on the
wave equation do yield similar results for those three models. To do that we employ
two different results. In the case of the heat equation on the network, we use a
classical result by Russel [73] guaranteeing that, whenever the wave equation is
controllable in some time, then the heat equation is controllable in an arbitrarily
small time. The results of this monograph on the observation and/or control of
the wave equation on the network then immediately imply similar results on the
corresponding heat model. In what concerns the Schédinger and beams models
we use the fact that the time frequencies of the complex exponentials involved
in the Fourier representation of solutions of these two models are the squares of
those entering in the solutions of the wave equations. Thus, the gap between con-
secutive eigenfrequencies increases, This allows obtaining observability inequalities
for Schodinger and beam equation. But, this time, as expected, the observability
inequalities hold in an arbitrarily small time.

As we have already mentioned this monograph collects the existing results on
simple 1 — d models on networks. Much remains to be done in this field. At
the end of this book we include a list of open problems and possible subjects of
future research. We hope this book to attract the attention to this amazing field
of research.

Finally, some comments on the notations used along this book. The numbering
of objects is made locally in each chapter. The theorems, lemmas, etc., have a first
number to indicate the chapter in which they appear. Thus, Proposition II1.4, is
the fourth proposition of Chapter III. For sections, subsections and formulas, the
explicit reference to the chapter is omitted. That is why, when they are cited in
a chapter different from that where they appear, we use an additional number to
indicate the chapter where they were defined. For instance, formula (5) of Chapter
IV is cited in that chapter as (5), but in others chapters as (IV.5). Concerning
the constants, they all have been denoted by the letter C'. Thus, C' may stand for
numbers that are different from line to line of the text. Only when we intend to
explicitly indicate the dependence of C' on some parameter, or to avoid confusions,
we have used some other notations for the constants.






CHAPTER I

Preliminaries

1. An elastic string

Let start with a simple example. Consider an elastic string of length one
which is fixed at its ends. The deformation of the string is given by the function
o(t,x) : Rx (0,1) — R. The function ¢ is the unique solution of the wave equation

d)tt*(ﬁxm:o in R x (071>5
(1) B(t,0) = $(1,0) = 0 in R,
Qﬁ(O,l‘) = ¢O($)a ¢z(0’ T) = ¢1(x) in (Oa 1)a

where ¢, and ¢, are the initial deformation and velocity of the string, respectively.
The solution of system (1) is expressed by the Fourier formula

e b,
2 t = n t+ — si t) si ,
(2) o(t, ) Z(a cosnmt + i sinnwt) sinnwx

n=1
where (ay,) and (b,,) are the sequences of Fourier coefficients in the orthogonal basis
of L%(0,1):
On(x) =sinnrx, n=1,2,...

The energy of the solution ¢ is defined as

By(n.01.0) = 5 [ (0at2)? +160(t.0))

It is easy to prove that the energy of a solution is constant, that is Ey4(t) =
E4(0). The energy is a norm in the space Hg(0,1) x L?(0,1) of initial states of (1)
and may be expressed in terms of the Fourier coefficients (a,) and (b,,) as

1 o0
(3) Ey(¢o, ¢1) = 1 Z(nQW%?@ + 5721)
n=1

Assume now that we observe the motion of the string at one of its points. To
fix ideas, suppose we know the values of the velocity ¢, and the tension ¢, at some
point z = £ in a time interval (0,T"). Let us define the observation function

1T ) 1T )
B b6 T) =7 [ It OPd+ g [ o oPa
Let us note that for T' = 2M with M € N it holds
(4) (I)(¢Oa¢1a£aT) :ME¢(¢Oa¢1)

1
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Indeed, from the formula (2) we have

8

E —nmay, sinnnt + b, cosnrt) sinnwf,

o0
¢, (t,8) = Z(mran cosnwt + by, sinnwt) cos nwé
n=1

and then, in view of the 2-periodicity of the functions sin nzt and cos nwt

oM
(5) / |, (t,&)|dt = M/ o, (t, €)|?dt = MZ (n®*m?a? 4 b2) sin® nr¢,
0

n=1

oM
(6) / |, (¢, )|2dt = M/ |, (¢, €)|2dt = MZ (n*m%a2 4 b2) cos? nw€.
0 n=1
Therefore, in view of (3), (5) and (6) we obtain (4).
Clearly, the function ®(@g, ¢1,§,T) is increasing in T, so, if 2 <T < 2M with
M € N we obtain

¢(¢07¢17§a2) S @(¢05¢1557T) S @(¢05¢17552M)7

or equivalently,

E¢>(¢0a¢1) < ‘I)(¢0a ¢1a€aT) < ME¢(¢0a¢1)-

That means, that for all £ € [0, 1] and T' > 2 the norms defined by Ey and ®(-,£,T)
are equivalent. That is, it is possible to estimate the energy of the solution ¢ from
the measurements of ¢,, ¢, made at point £ during a time equal of length at least
two. In particular, when T" = 2 those two norms coincide:

E¢(¢Oa ¢1) = q)(¢05 ¢17§5 2)

In other words, the energy of the solution can be measured at a point of the
string. However, to do this, we should observe the velocity and the tension of the
string at that point during a time at least equal to two.

When £ =0 or £ = 1, the observation function ® becomes simpler:

T
(¢, $1,0,T) = i/o b, (t,0)[dt.

This suggest to consider a weaker observation function for the interior points of the
strings:

W (60, 61,6,T) = 1/ 16, (t,€)Pdt.

We already know that, when £ = 0 or £ = 1 this function defines a norm in the
space of initial data, which is equivalent to that defined by the energy. The following
question naturally arises: does the function ¥ define a norm in H}(0,1) x L?(0,1)?
If so, is that norm equivalent to the energy?

Assume T = 2, then in view of (6) it holds
1
4

(7) U(dg, 61,6,2) = Z w2a; + by,) cos® nré.
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Formula (7) is very similar to (3) and clearly

Z(nQWQai + b2) cos® nré < Z(n27r2ai +b2),
n=1 n=1

and then
\Ij(¢07 ¢17§5 2) S E¢(¢Oa ¢1)

However, the converse inequality

E¢(¢07 ¢1) S C\P(¢07 ¢1a§7 2)5

or equivalently,
o0 o0
(8) C Z(n27r2afl +b2) < Z(nQWQai + b2) cos® nmé,
n=1 n=1

is not true for any £ € (0,1) and any constant C' > 0. Obviously, inequality (8) is
equivalent to the existence of a constant C' > 0 such that, for every n € N,

9) | cosnm§| > C.

But this inequality is false in general. Indeed, if ¢ is a rational number that
can be expressed as

2p+1
(10) {=—%— P4cl
q
then, when n = gk with k£ odd
2p+ 1)k
cosnmé = cos (p%)ﬂ' = 0.

Thus, in this case, cosnw{ = 0 for an infinite number of values of n and conse-
quently, inequality (9) cannot be true. Let us note that in the right hand term of
inequality (8) may vanish for sequences (ay) and (b,) with are not identically zero.
That means that the function ¥(-,&,2) is not a norm in H}(0,1) x L?(0,1).

On the other hand, when the number £ cannot be expressed in the form (10)
all the numbers cosnmé are different from zero. This implies that the function
W(-,&,2) does define a norm in H}(0,1) x L?(0,1). But in general this norm is
weaker than the energy.

In fact, inequality (9) is equivalent to the existence of a positive number « such
that, for all k,n € Z,
kE+1

nmwé — T >«

that is
2

[(26)n — (2k+1)| > ag := —
This is a rational approximation property of the number 2¢ and is false in general.
We will discuss this issue in detail in Chapter III. For certain values of £ we obtain
weaker inequalities. For instance, if 26 may be expanded in continuous fraction
[0, ¢1, ¢2, ....] with bounded sequence (c;,) then there exists a constant C¢ such that

C
(260 — (2k+1)] = =,
This implies that

C
| cosnmg| > =
n
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and therefore

o0

(¢07¢17§ 2 Z

CE||¢0||L2(0 nt ||¢1||H

Summarizing, for the values of £ indicated above it holds

Ce (||¢o||%2(o,1) + ||¢1||§1*1(0,1)) < U(¢g, 91,6,2) < ||¢o||12r15(o,1) + 11117201y

This is the best result we may obtain. The information contained in ¥(¢g, ¢1,&,2)
is actually a partial information on the energy of the solution whenever £ is not one
of the extremes of the string. This is also the case when we consider other kind of
observation functions, e.g.,

T
/0 6(t, ).

As we shall see in the following chapters, this is always the situation when
we observe the vibrations of a network of strings. We can recover only a weaker
information of the energy from measurements made at some points of the strings,
even if at those points we measure both the velocity and the tension.

It should be pointed out that when the observation of a string is made on a
larger set, say on some interval w C (0,1), then we can recover the energy of the
solution from the observation function

[ ira

Indeed, assume T = 2 then

oo

// |, (t, ) 2dt > Z 7ra,21+bi)/sin2nﬂ'xd$.

But, for any w C (0,1) there exists a constant C,, > 0 such that
/ sin® nrx dz > C,,
w

for every n € N. Therefore,

c., Zn2ﬂ_2a2 +b2 // |¢ tac |2dt<|w|2n27r2a2 +b2)

n=1

that is

2
CLE, < / / 16, (1, 2) Pt < || Es.
wJO

Moreover, using the d’Alembert formula for the representation of the solutions of
the wave equation, it is possible to prove that the property

ClEd) // t x | dt < CQEd),

for some positive constants Cy and Cs is still true for any T' > 2 dist {w, {0,1}}.

Once again, for networks of strings, observing on an interval of one of the strings
will not help. We can recover information only on the string where the observation
is made.



2. NETWORKS OF STRINGS 5

2. Networks of strings

2.1. Elements on graphs. A graph G is a pair (V, £), where V is a set, whose
elements are called vertices of G, and € is a family of non-ordered pairs v, w of
vertices, which we will denote by Vvw. The elements of € are called edges of G with
vertices v,w. When the graph G does not contain edges of the form vv it is said
that the graph is simple?.

A path between the vertices v and w of a graph G is a set of edges of the form

YV, VIVa, oo Vi 1 Vi, Vi W

If all the edges forming a path are different, it is said that the path is simple; if all
the vertices vq, ..., v, are different, the path is called elementary.

A closed path is a path between a vertex and itself. An elementary closed path
is called a cycle. When the graph GG does not contain cycles it is said that G is a
tree.

Graphs with a finite number of vertices are called finite. In this book we shall
be concerned only with finite graphs.

Let us suppose that G is a finite graph with N vertices and M edges:

V={vy,...,vn}, &={e,...,en}.
The multiplicity m(v) of the vertex v is the number of edges that meet at v:
m(v):=card{e€ & veEe}.
We also define the sets
Vs:={veV: mkv)=1}, Vu:=V\Vs.

Let us observe that Vg is the set of those vertices that belong to a single edge.
These vertices are called ezterior. The set Vy contains the remaining vertices, i.e.,
those that belong to more than one edge; those vertices are called interior.

For a vertex v we denote

I, :={i:v €e},

which is the set of the indices of all those edges of GG, which are incident to v. If
the vertex v; is exterior, I, contains a single index; it will be denoted by i(j) and,
if this does not lead to misunderstanding, simply by 1.

In this book we consider only simple finite graphs whose vertices are points of
a plane. The edges of the graph are viewed as the rectilinear segments joining some
of those points. The length of the segment corresponding to the edge e; is called
length of e; and is denoted by ¢;.

We will also assume that the edges of the graphs may meet only at the vertices
of G. Such graphs are known as planar graphs.

On every edge of G we choose an orientation (that is, one of the vertices has
been chosen as the initial one). Then e; may be parametrized as a function of its
arc length by means of the functions z; : [0,4;] — e;.

We define the incidence matrix of G

E"_{ 1 if $i(0):Vj,
N -1 if $Z(€Z) = Vj.

1Sometimes the term graph is used only for simple graphs, that is, for those that do not have
edges with equal vertices. Non-simple graphs are then called pseudo-graphs.
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Let us denote by L the sum of the length of all the edges of the graphs, the
length of the graph. To indicate to which graph it corresponds, we shall write, if
necessary, Lg.

Given functions v’ : [0,4;] — R, i = 1,..., M, we will denote by @ : G — R the
function defined for x € e; by

a(x) = u' (27" (x)).

In this case, we will say that @ is a function defined on the graph G with components
u®. Frequently, we will indicate this fact just by writing 4 = (u?!,...,u™). In
particular, the vector with equal to zero components will be denoted by 0.

2.2. Equations of the motion of the network. Now we consider a network
of elastic strings that undergo small vibrations, transversal to some plane. At rest,
the network coincides with a planar graph G contained in that plane.

Let us suppose that the function u® = u’(t,z) : R x [0,4;] — R, describes the
transversal displacement in time ¢ of the string that coincides at rest with the edge
e;. Then, for every t € R, the functions u?, i = 1, ..., M, define a function @(¢) on G
with components u : R x [0, ¢;] — R given by u'(¢,z) = u’(t,x;(x)). This function
allows to identify the network with its rest graph; in this sense, the vertices of G
will be called nodes and the vertices, strings.

As a model of the motion of the network we assume that the displacements u’
satisfy the following non-homogeneous system

(11) ul, —ul, =0 inRx[0,6], i=1,..,M,
(12) uw'O(t,v;) = hj(t) teR, j=1,..,m

(13) w0 (t,v;) =0 teR, j=r+1,..,N,
(14) u'(t,v) = ul (t,v) teR, veVy, i,j¢€l,
(15) > ienOnu'(t,v) =0 teR, v eV,

(16) u'(0,2) = ub(z), ui(0,7)=wul(z) x€[0,4], i=1,..,M,

where € is a non-empty subset of Vs (the set of controlled nodes) and 8, u(t,v) :=
ijul(t,z; 1 (v)) is the exterior normal derivative of u; at the node v. Here we have
assumed that the numbering of nodes has been chosen such that

C= {Vl, ...,VT}.

Thus, (11)-(16) corresponds to a network with r controlled exterior nodes.

Equation (11) is the classical 1-d wave equation, which is verified by the defor-
mations of the strings of the network. The equalities (12), (13) reflect the condition
that over some of the exterior nodes, precisely over those corresponding to the ver-
tices contained in C, some controls act to regulate their displacements, while the
remaining nodes are fixed. The relations (14) and (15) express the continuity of
the network and the balance of forces at the interior nodes. Finally, (16) indicates
that the initial deformation and velocity of the strings (i.e., at time ¢ = 0) given.
The pair (@, @) is called initial state of the network.

In general, we will suppose that the graph G does not contain vertices of mul-
tiplicity two, since those would be irrelevant in our model. Indeed, they may be
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considered as interior points of an edge whose length coincides with the sum of the
lengths of the edges coupled at that vertex.

In order to study of the system (11)-(16), we need a proper functional setting
. We define the Hilbert spaces

M
V={ue HHl(O,fi) cut(v) = u (v) if v €V and u(v) = 0 if v €Vs},
i=1
M
H =[] L*0,0),
i=1

provided with the Hilbert structures
M My,
< U, W >y = Z <u',w" >pioe)= Z/ u,weda,
i=1 i=170

M M 4;
< U, W >p:= Z <u',w' >r200.0,)= Z/ u'w'dz,
i=1 i=170
respectively. Besides, we will denote
U= (L*0,T))".

The study of the solvability of system (11)-(16) may be done in the standard
way for non-homogeneous systems followings the classic transposition method (see
[61]): first we study the homogeneous problem (h; =0 for all j =1,...,r)

(17) e — G4 =0 inRx[0,6], i=1,..,M,
18)  ¢"I(t,v;)=0 teR, j=1,..,N,

(19) P (t,v) = ¢ (t,v) teR, vV, i,j€ Iy,
(20) Zielvan¢i(tav) =0 teR, v eV,

21)  ¢(0,2) = gp(w), ¢y(0,2) =¢1(x) @€ [0,4], i=1,..,M;

Further, the solution of (11)-(16) in the general non-homogeneous case is defined
by transposition. Let us describe the main steps, since some of its elements are
widely used in through this book. The details of this procedure may be found in
[61] or [43]. The application of this technique to the concrete problem of string
networks may be found in [51].

Since the injection V' C H is dense and compact, when H is identified with its
dual H’ by means of the Riesz-Fréchet isomorphism, we can define the operator
—Ag:V =V by

(—Agu, D)y xv = (U, 0)H.
The operator —Ag is an isometry from V' to V’. The notation La —Ag is justified
by the fact that, for smooth functions 4 € V, the operator —A¢ coincides with the
Laplace operator.

It may be shown that the spectrum of the operator —Ag is formed by an
increasing positive sequence (p,,)nen of eigenvalues. The corresponding eigenfunc-

tions (#,,)nen may be chosen to form an orthonormal basis of H.
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The spaces V and H may be characterized as

V.= {ﬂzunén: |||ﬂ|||€:ZMnUi<OO},

neN neN
H = {u:Zunen: |13 ::Zufl<oo},
neN neN
and the norms of V and H are equivalent to |||.]||;, and |||.||| 4, respectively. The

spaces V' and H are Hilbert spaces with respect to the scalar products that generate
the corresponding norms.
The solution of the homogeneous system (17)-(21) with initial data

(22) (}O = Z ¢O7n9na (}1 = Z qﬁl,néna
neN neN
is then defined by the formula

(23) b(t,x) := Z(‘%,n cos A\t + (b;_" sin A\, t)0, ().

neN n

Once again, this definition is justified by the fact that, for sufficiently smooth initial
data ¢, ¢;, the function determined by (23) is the unique solution of (17)-(21).

For a solution @ of (11)-(16) in the classic sense, the energy is defined as the
sum of the energies of its components, that is,

M 1[4 . 2 ; 2
Eo(t) =) Bu() with By() ::5/0 (|ug(t,z>| + [ul (£, )| )dx.

From the equations (11)-(15), it is easily proved that
d ~ i
(24) EEQ (t) = Z Ut(t, vj)(’)nu (ﬁ, Vj).
i=1

In particular, in the homogeneous case the energy is conserved: Ej(t) = E(0),
for every t € R. Besides, if the initial data are expressed by (22) then

1 1,.,- _
(25) E;=3 D (1n G+ 01,) = 5 180l + lll@alll7)-

neN

Since the sum in (25) is convergent for every (¢, #;) € V x H, this formula may
be taken as the definition of the energy of the solution with initial state in V' x H.

From the definition (23) it holds that, for all T € R and (¢, ¢;) € V x H, the
solution ¢ satisfies

(26) ¢ eC(0,7]:V)[C'([0,T]: H).

In addition, ¢ is the unique solution of the system (17)-(21) in the sense of distri-
butions, which has the property (26).
For every r € R we consider the Hilbert spaces

(27) V= {ﬂ = Zunén : ||ﬁ||$ = Zu;ui < oo} ,

neN neN
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h" = {(un) o lwa)lF =)l < 00} ;
neN
provided with the norms ||-||,, where (u,) denotes a sequence of real numbers w,,.
The canonical isomorphism Y .y unn, — (uy) is an isometry between V" and A"
Let us observe that V" is the domain of (—Ag)? considered as an operator
from H to H. Besides, V = V! and H = V.
Further, we introduce the Hilbert spaces

W= V"x Vo
endowed with the natural product structures. We then have
W =V x H, WY =H xV'.

Therefore, it is possible to define for the initial state (¢,,¢;) € W" the solution of
the homogeneous problem (17)-(21) by (26). In this case,

¢ € C(0,T): V") CH([0,T]: V'),

The following step in the study of the solvability of the system (11)-(16) consists
in proving that, for every T' > 0, there exists a constant C' > 0 such that, at every
exterior node v € Vg, the smooth solutions of (17)-(21) satisfy the inequality

T .
(28) /O |0,0" (t,v)|?dt < Eg.

This property is know as hidden regularity, since it is not a consequence of (26); it
is an specific property of the solutions of (17)-(21) and in general, for the solutions
of the Dirichlet problems for wave equations. The inequality (28) may be proved
using D’Alembert formula for the representation of the solutions of (17). In [51],
this inequality is proved by means of the multipliers technique, which is also useful
in the more wide context of equations in several dimensions and having variable
coefficients.

In what follows, in order to simplify the notations, we will suppose in the rest
of this subsection that » = 1, that is, only one node of the network is controlled.
We also assume that the index 7 = 1 corresponds to the strings that contains the
controlled node.

Fix T > 0 and define for every ¢ € (0,7 the operator A; : H x V. — L?(0,T),
which associates to every pair (¢;, —¢,) € H x V the normal derivative o' (., v1)
in the controlled node of the solution (23) of the system (17)-(21).

In view of (28) and (25), A is continuous. Then, the operator A} : L2(0,T) —
V' x H, adjoint of A;, will be also continuous (we have identified L?(0,T) and H
with their duals).

Further, for every h € L?[0,T] we define the solution of the system (11)-(16)
with initial state (@g,u1) € H x V' as

(29) ﬂ:A:h+St(ﬂo,ﬂ1),

where S;(@o, @) is the solution of (17)-(21) given by (23) in time ¢.
To clarify the meaning of this formula, let us calculate the operatorAj;. We
consider the operator B defined for h € C1([0,t]) by

Bh = (u(t), us(t)) a,
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where @ is the solution in the classical sense of the problem (11)-(16) with initial
data ug = u; = 0.

If we multiply the equation (11) by u; and integrate over [0, t] x [0, ¢;] it holds,
after integration by parts,

Lt i\ i b i i i b i iy (¢
/0 /0 (upy — uby)d dtdm:/o (uzqﬁt—u@qbﬂgdx—i—/o (u;qﬁ —uquz) o T

If we add these equalities we get, in view of the boundary conditions (12)-(15),

/ hon¢' (1,v1)dr = Z/ Ht,2)gi(t, @) — ui(t, z)'(t,x)) d,

and this equality means that

<5n¢1(t,V1),h>L2(0t = < ( ) ¢t( )>H><H - @t(t)aé(t»vwv-

Consequently we have

(A, h)r200,0) = (Bh, @) (rrxviyx (HxV)-

That is, for h € C*([0,t]) it holds Bh = Ajh. Taking into account that the
operator A} is continuous and that C*([0,¢]) is dense in L?(0,t), we can ensure
that A} coincides with the extension of B to L?(0,t).

This fact gives sense to the equality (29). In the classical case h € C*([0,1]),
(g, u1) € (H x V'), ud,ut € CL([0,4;]), formula (29) simply expresses the fact
that the solution of the non-homogeneous problem with initial state (&g, 1) can
be represented as the sum of the solution of the homogeneous problem with initial
state (4g, 1) and the solution of the non-homogeneous problem with initial state
(0,0). This fact is an immediate consequence of the lineal character of the system
(11)-(16).

Finally, for every h € L?[0,T] the solution @ of (11)-(16) defined by (29) has
the property

we C([0,T]: H)(C'([0,T]: V).

3. The control problem

The control problem in time 7" consists in determining for which initial states
of the networks it is possible to choose the controls h; € L*(0,T), j = 1,...,r, such
that the systems reaches the equilibrium position after a time 7. More precisely,

DEFINITION LI.1. Let T > 0. We say that the initial state (g, 1) € H X V', is
controllable in time T, if there exist functions h; € L*(0,T), j = 1,...,r, such
that the solution of (11)-(16) with initial state (g, 1) satisfies

Uly—1 = Ut|s=r = 0.

REMARK 1.1. Sometimes, under the conditions of the Definition 1.1 it is also
said that (o, u1) is exactly controllable. When for every € > 0 there exist controls
hs such that the corresponding solutions u® verify ||(a®|r, @|7)|| gy < €, it is said
that (o, 1) is approximately controllable in time T.

Then, the control problem in time 7" consists in characterizing the set of control-
lable initial states in time 7. The following definition classifies the system (11)-(16)
according to the answer to the control problem.
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DEFINITION 1.2. Let T' > 0. We say that the set K C H x V' is controllable in
time T, if all the initial states (Gg,u1) € K are controllable in time T. Then, we
shall say that the system (11)-(16) is

1) approximately controllable in time T if there exists a set K, which is
controllable in time T and is dense® en H x V',

2) spectrally controllable in time T if the subspace Z x Z is controllable
in time T, where Z is the set of all the finite linear combinations of the
eigenfunctions of the operator —Ag;

3) exactly controllable in time T if the whole space H x V' is controllable
in time T.

Let us note that, due to the linear character of the system (11)-(16), if the set
K is controllable, so is the subspace span K of all the finite linear combinations of
elements of K. That is why it is natural to talk of controllable subspaces instead
of controllable sets.

3.1. An equivalent formulation of the control problem. Let us observe
first, that the control problem admits an equivalent formulation in terms of opera-
tors. Let Pr : U — H x V' be the operator defined by

Prh = (@(T),u.,(T)),
where @ is the solution of the system (11)-(16) with initial state (0,0).

Let us denote by W the rang of Pr; that is, W is the set of those states that
can be reached after a time T starting from the rest state.

Let us note that the initial state (@, u1) € H x V' is controllable in time T
if, and only if, (@g, @) € Wp. This fact is due to the invariance of the system
(11)-(16) under the change of variable t — T — ¢: if @ is a solution of (11)-(16)
then, @w(t) = @(T —t) is also a solution. Thus, given (4o, 41) € Wr, if @ is a solution
satisfying

(@(0), @:(0)) = (0,0),  (@(T), u(T)) = (do, @)
with control i then, w(t) = a(T — t) satisfies
(@(0),@(0)) = (@, W), (w(T),w(T)) = (0,0).

Consequently, to drive (i, @1) to (0,0) it is sufficient to choose the control h(T —t).

As a consequence, if the initial states (ug, %) and (9, ?1) are controllable in
time 7 then it is possible to find a control h € U driving (i, 1) to (v, o1). Indeed,
it suffices to take h = hy + fzg, where le, ho are, the controls that drive (@, @1) to
(0,0) and (0,0) to (9o, 1), respectively.

Thus, the control problem in time T is reduced to study the rang Wt of the
operator Pr. On the other hand, on the basis of general results of Functional Anal-
ysis (see Theorem II.1), the space Wr may be described in terms of the operator
adjoint to Pp. This is essentially the HUM.

Let us observe now that, according to the definition (29) of the solution of (11)-
(16), the adjoint of the operator Pr coincides with A, that is, the adjoint of Pr
is the operator that associates to (¢;, —¢,) € H x V the vector 0,%|e € U, whose
components are the normal derivatives 9,u’(.,v;), j = 1, ..., , of the solution of the
homogeneous system (17)-(21) with initial state (¢, #;). That is why the control

2In other words, the system (11)-(16) is approximately controllable if all the initial states
(@o,@1) € H x V' are approximately controllable.
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problem is reduced to the study of properties of the solutions of the homogeneous
system (17)-(21).

On the other hand, (&, @) € Wr, that is, (@, %1) = Prh for some h € U, if,
and only if, for all (¢, 7550) € Z x Z the following equality is satisfied

(o, U1), (1, *&()»(Hx\/')x(Hxv) = (Prh, (¢4, *&o»(flxw)x(flxv)-
Then, (4, 41) € Wr if, and only if,

((ao,ﬂl), (Zbla _(}O»(HXV’)X(HXV) = (BaP}(;bla _QEO)>U = (Baané|@>U

Let us write this result in usual terms:

PROPOSITION L.1. The initial state (o, 1) € Hx V' is controllable in time
T with control h = (hy,...,h,) € U if, and only if, for every (¢q,d1) € Z x Z the
following equality holds

(30) (0, 1) — (U1, Po)vrixy = Z/ )On @' (t,v;)dt,

where ¢ is the solution of the system (17)-(21) with initial state (¢y, dy).

REMARK 1.2. The relation (30) suggests an algorithm for the construction of
the control h. If we look for the control in the form h = —0,1|c, where 1 is a
solution of the homogeneous system (17)-(21), then the equality (30) is the Euler
equation I'(1g,1;) = 0 corresponding to the quadratic functional I : V x H — R
defined by

(B0, ) = /Da & (8, v;) Pt + {0, 1) — {1, Bo)-

Therefore, if (g,1,) is a minimizer of I, the relation (30) will be verified. The
functional is continuous and convexr. So, in order to guarantee the controllability
of an initial state (g, 1) € H x V' it is sufficient that I be coercive. This is the
central idea of the Hilbert Uniqueness Method (HUM) due to [59]. In Chapter IT
we will describe in detail this technique.

4. A controllability theorem and its limitations

A natural starting point for the study of the control problem for a network of
strings is the following theorem due to J. Schmidt.

THEOREM L.1 (Schmidt, [76]). If G is a tree (does not contain closed paths)
and the set C contains all the exterior nodes, except at most one, then the system
(11)-(16) is exactly controllable in any time T > T™*, where T* is equal to twice the
length of the largest simple path connecting the uncontrolled node with the controlled
ones.

The proof of this theorem is rather simple. The main ingredient is the pos-
sibility of representing the solutions of the 1-d wave equation at every string by
means of the D’Alembert formula. In the Section 3.1 of the Chapter 3 we describe
the proof for the case of a network formed by three strings with two controlled
nodes. There it is explained also, how to proceed in the case of arbitrary trees.
Both facts, the tree structure and that all the exterior nodes, except at most one,
are controlled, play an essential role in the proof.
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However, the conditions of Theorem I.1 seems to be very strong: a high number
of controls and a simple topological configuration of the graph. The question on
whether these conditions may be weakened naturally arises. Could be the system
(11)-(16) exactly controllable when there are more than two uncontrolled exterior
nodes or when G contains circuits, at least for some values of the values of the
lengths of the strings? It turns out that in both cases the answer is negative. In
Chapter 5 (Section 3) we will prove the following result:

THEOREM 1.2. If G is a tree and in the system (11)-(16) there are at least two
uncontrolled nodes then, there exist initial states controllable in any finite time T .

This fact adds a particular interest to Theorem 1.1, as it serves as a criterion
on the exact controllability of the system (11)-(16).

In these notes we will mainly study networks of strings, which are controlled
from their exterior nodes and which do not verify the conditions of Theorem I.1.
That is why, we will be able to expect the controllability of the system in subspaces
of H x V', which are strictly smaller.






CHAPTER 1II

Some useful tools

1. D’Alembert formula and observability from the boundary of the 1-d
wave equation

In this section we shall write the D’Alembert formula for the solutions of the
1 — d wave equation in a way that allows to use certain formal calculations for
the study of the propagation of the solutions along the network. This allows, in
particular, to prove observability properties of the solutions from one end of the
string.

1.1. D’Alembert formula. Let us assume that the function u(t, x) satisfies
the 1 — d wave equation in R x R. Then, for every t, € R the function v may be
expressed by means of the D’Alembert formula

Tt—t,

(1) u(t,xz) :%(U(t*,l’—l-t—t*)+u(t*,x—t+t*))+5/ u(ts, §)dE.

T—t4t.,

In account of the symmetry of the wave equation with respect to the variables
x,t, the formula (1) is also valid if we change the role of these variables. Thus, if
u(t, x) satisfies the 1 — d wave equation in R x [0, ¢] then, for every a € [0, 4], u(t, x)
may be expressed by the formula

t+r—a
(2)  wu(tx)= % (ut+z—a,a)+ult—z+aa))+ §/t ug (7, a)dr.

—2+a
From (2), after derivation, we obtain the equalities
(3) ug(t,x) = %(ut(t—l—x—a,a)—ut(t—x—i—a,a))—i—
(4) +%(uz(t-i-:v—a,a)+u$(t—x+a,a)),
us(t,x) = % (ue(t +x —a,a) + w(t —z +a,a)) +
+% (uz(t+ 2 —a,a) —u(t —x+a,a)).

If we denote

G(t) == w(t,0), F(t):=uu(t,0),  G(t):=wu(t,0), F:=uyl(t0),
then the formulas (3)-(4) for z = ¢, a = 0 may be written as

(5) F=0tF+0~G, G={0F+("G,
and, forx =0,a="/¢
(6) F=0tF—¢G, G=—-0"F+1G,

15
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FI1GURE 1. Region of application of the D’Alembert formula

where £, £~ are the linear operator that act over a function f depending on time

t according to
fE+O) £ ft—¢
(7) g:l:f(t) — ( ) 5 ( )

Let us remark that the formulas (5) and (6) express the relation between the
traces of u; and u, in the extremes of the interval [0, £]. Obviously, (6) is the inverse
relation to (5).

1.2. Observability from the boundary of the 1 —d wave equation. The
following proposition contains a very useful result on the observability of 1 —d waves
from the boundary. It will be frequently used in what follows.

PROPOSITION ILI.1. If u(t, z) satisfies the wave equation uy = Uz, n R X [0, 4]
then

E,(t) <

=

t+e
/t—l (|um(7', 0)% + Jus(r, O)|2) dr.

PROOF. In view of (3)-(4), it holds
Eu(f) — %/Oeﬂut(t—l—x,O)—ut(t—x,O)+u$(t+x,0)+u$(t—x,0)|2—|—
+ |ut(t+:c,0)+ut(tfz,0)+um(t+z,0)fuz(tfx,0)|2}dx
< i/oe{|ut(t+x,0)|2+|ut(t—x,0)|2+|um(t—|—x,0)|2—|—|u$(t—x,0)|2}dx

1 t 1 t+20
= 3 [ A OP (0P e+ 5 [ {lur 0P + Jus(r,0)) do
t—2¢ t

1 t+4
_ Z/ (e O (. O .
t—
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O

PROPOSITION 11.2. For all ¢ > 0, a, b € R the operators £, {~ are continuous
from L*[a — £,b+ {] to L*[a,b).

PrOOF. We will prove that in addition the norm of the operators ¢+, considered
as elements of L(L?[a — £,b+ {], L?[a,b]), is not greater than one. In fact,

b . , 1 b )
[eEswpa = 5 [iser o ne—opa

b b
< 5 [ leroPas; [ire-oPa
l b+2 ) 1 b—¢ ) b+¢ )
< 5 weras [ isopas [ rora:

O

2. The Hilbert Uniqueness Method (HUM): reduction to an
observability problem.

2.1. Description of the method. In this section we describe the main tool
used along these notes for the study of control problems: The Hilbert Uniqueness
Method (HUM)?!, which allows to reduce the control problem to the study of ob-
servability properties of the solutions of a homogeneous system.

We illustrate the application of HUM for the system (11)-(16), but we use,
in general, an abstract setting that allows to avoid the difficulties related to the
notations. Besides, it allows to use the results in other situations in which the
method is also applied for the study of control problems: when the equation (11)
is replaced by the Schrodinger or heat equations, or when the boundary conditions
or the choice of the controls are different.

The starting point of HUM consists in reducing the control problem to the
identification of the image of a continuous linear operator as it has been described
in Section 3. Having this, the description of controllable initial states is based on
the following general result of Functional Analysis: if £ and F' are Hilbert spaces
and A : F — F is a continuous linear operator with adjoint A* : E' — F (we have
identified F and F’ through the Riesz-Fréchet isometry) then

THEOREM II.1. If A* is injective then the image of A coincides with the set
M={ueE: 3C, >0 such that |(¢p,u)pxp| < Cu||A*d||r V ¢ € E'}.

PRrROOF. We will show first that Im A C M. If w € Im A, that is, u = Ap for
p € F then, for all ¢ € E’

(¢, u)mrxpl = (&, Ap) x| = [(A"¢, p)r| < [A"¢| PP,

and thus v € M with Cy, = ||p||F.

The inclusion M C Im A is more delicate. Since A* is injective, A*¢ = 0 if,
and only if, ¢ = 0. Consequently, the function ||¢|la = ||A*¢||F is a norm in E’.
Let Ha be the completion of E’ with respect to that norm. This means that there
exists an isometry s : (E’,|.||a) — Ha such that x(E’) is dense in Ha. If we

IThe name of this method is due to its author J.-L. Lions (see [59], [60]).
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identify E’ and x(E’) through &, it holds E' C Ha. This imbedding is dense and
continuous. Indeed, since A* is bounded,

[olla = A" |lF < Cllo] &

For uw € M and ¢ € E’ we will denote by (¢, u) the imagine by ¢ of the linear
and continuous functional obtained by extending ¢ to M by continuity: if the
sequence (¢,,) C E’ converges to ¢ en Ha then

(s W) B x =Py, W) B x B] = (0= Py W) B x E| < Cul|A™ (0, =00 | F = Culldy,— @1 ll A

and then (¢,,u) is a Cauchy sequence in, R ((¢,,) is convergent), and thus is
convergent. Now define (¢, u) = lim,—oo(®,,u). The mapping (., u) : Ha — R
is then linear and continuous, since when passing to the limit in the relations
[(¢n: )| < Culldp|la it holds

(8) (¢, u)] < Cull @l a-

Let us consider now the functional I : Hy — R defined by

1(8) = 3181 — (9, ),

which is clearly continuous and convex. Once again, in view of (8),

1 1
11(0)] = 5llola = 16w}l = SlI¢lA — Cullélla — oo

as ||¢|a — co. Then there exists a minimizer ¢ € Ha that, taking into account
that I is differentiable, satisfies the Euler equation I'¢) = 0 and that is

(¢,0)a = (A6, A*G)p = (pu)  forall ¢ € Ha.
In particular, for ¢ € E’,

(6, AA* Q) prp = (A", A"d)r = (9, u) i
This means that
(9) u=AA*¢ cIm A.
O
REMARK II.1. Proceeding in a similar way as in the proof of the previous theo-

rem it may be shown that is possible to identify “by continuity” H)y with a subspace
of E. In such case,

Hy={ueE: 3C, >0 such that | < ¢,u >p«p | < Cyul||A*¢||r for every ¢ € E'}.
Then, from the theorem it follows that Im A = HY .

REMARK I1.2. In general, it takes place the equality ITm A = (ker A*)*. From
this fact , it holds that Im A is dense in E if, and only if A* is injective. Con-
sequently, Theorem II.1 provides a description of Im A whenever it is dense in
E. On the other hand, the injectiveness of A* is equivalent to the fact that the
equation A*¢ = v has at most one solution. This is a uniqueness property to which
refer the name of HUM.
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Let us assume now that W is a Hilbert space such that W C E with continuous
and dense embedding. This allows to extend by continuity the linear and continuous
functionals in W to F, such that we can consider £ € W'.

The following result is very useful in order to characterize subspaces of Im A.

COROLLARY II.1. The subspace W 1is contained in the image of the operator A
if, and only if, there exists a constant C' > 0 such that

(10) I¢llw: < Cl|A™]|F,
for every ¢ € E'. In such case, for every u € W there exists p € F such that
(11) IpllF < 2Cullw.

Proor. Consider the set
Fr={¢peFE :|A"|r=1} CE.
Let us observe, that the existence of a constant C' > 0 such that

(12) ¢llw: < CllA"S|F,
for all ¢ € E’ means that I is bounded in W’.

On the other hand, the fact W C Im A is equivalent to the fact that I" is weakly
bounded in W’. Indeed, according to Theorem II.1, W C Im A if an only if, for
every u € W there exists a constant C,, such that

(13) | < dyu>wixw | =] <d,u>pxp | < Cull A" F,
for every ¢ € E’. Consequently, if W C Im A then, for all p € T, u € W',
(14) | <¢au>W’><W |§Cua

that is, T is weakly bounded. Conversely, if the inequality (14) is verified and

1 € E’ then, choosing ¢ = €T (JA*Y||r # 0 as A* is injective) it holds

A=)
(15) | <u>woow | = A Y]p[ < ¢ u >wiw | < Cul| AP r,

and then v € Im A*.

Finally, it suffices to recall the fact that the properties of being bounded and
weakly bounded coincide in Hilbert spaces 2.

In order to prove (11) it suffices to choose for u € W, the element p € F
obtained in the proof of Theorem II.1, that is, p = A*(Ab, where (Ab is a minimizer of

the functional )
16) = 3 I9lx — (6, ).

Then we will have,

0=1(0)> I(9) = 5 1013 — {6,
Then, R R R
o)A < 2(¢u) < 2| ¢llwllullw < 2C[Sl|allullw-
Finally, since ||p||r = ||¢|| o, it holds
IplF < 2Cullw.
[l

2This is an immediate consequence of the Banach-Steinhaus theorem and the reflexiveness
of the Hilbert spaces
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REMARK I1.3. In particular, Im A = E, that is, the operator A is surjective
if, and only if there exists a constant C > 0 such that

(16) ¢ller < CllA*S||p,

for every ¢ € E'. This condition is equivalent to the continuity of (A*)_l.
REMARK I1.4. Due to the continuity of A*, it is sufficient to prove the inequality

(10) for a dense subspace of E'.

REMARK IL.5. Inequality (16) is known as observability inequality. All along
this book, any inequality of the form (10) will be called generically observability
imequality.

Let us see now another possible way of constructing subspaces of Im A, which
will be frequently used in what follows. Assume that B : E' — E’ is a continuous
operator, whose image is dense in F’ and verifies the properties

1) There exists a constant C' > 0 such that, for every ¢ € E,
IBoll g < ClIA™l|

for all ¢ € E.
2) If B is not injective then, neither is A*; that is, if there exists ¢ € E'\ {0}
such that B¢ = 0 then there exists ¢ € E’ \ {0} such that A*y = 0.

Let us note that an operator B with the properties indicated above is injective
if, and only if, A* is injective. Consequently, it holds that the subspace Im A is
dense in F if, and only if, B is injective.

In such case, property 1 would correspond to the fact that Bo (A*)_1 be con-
tinuous. Moreover, if in addition B would be surjective, then, according to Banach
theorem on the open mapping, its inverse B! would be also continuous and then
the same is true of A*; so we would have Im A = F.

This cannot be asserted if B is not surjective. However, it is true for some
smaller subspace:

ProrosiTiON I1.3. If B is a continuous operator with dense image having the
property 1 then Im B* C Im A, where B* is the adjoint operator to A.

PrOOF. If u € Im B*, that is, u = B*v then

(u, @) pxpr = (B0, 9)pxpr = (0,BO) pxpr < ||[v]|g [IBYl 5 < Cllvl 5 [[A] g,

and so the assertion follows from Theorem II.1. O

Property 2 guarantees that the previous result is exact in the sense that it
provides a subspace dense in Im A whenever such a subspace exists. Unfortunately
that subspace may not coincide with the image of A, it may be smaller.

In this book we will use the results described above in the following concrete
situation. Let H be a separable Hilbert space and {6, } nen an orthonormal basis of
H. Let us denote by ® the set of all the formal linear combinations X = Y nen Tnbn,
r, € R, and Z the set of the finite linear combinations.
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Let (o), (3,,) be sequences of real numbers different from zero and define the
Hilbert space

E:{(X,Y)E@x(l): IX,D)Z = (022 + 522) < }

neN

provided with the norm ||.|g. Then, the dual of E may be identified with the space

E = {(X,Y) €2 x®: |(X,Y)|h =) (o, +8,°yn) < OO}

neN

endowed with the norm ||.|| g .

Let us consider as before the linear and continuous operator A : F — FE
with injective adjoint A*. Let now (c¢,) be another sequence verifying ¢, > cay,,
cn > df3,, for some c,d > 0 and define the space

W::{(X,Y)ed)x@: (XY = ch(adal + Boyl) < }CE-

neN

Then the results of Corollary II.1 allows us to assert that

ProprosiTiON I1.4. W C Im A if, and only if, there exists a constant C > 0
such that

(17) X =D (a2l + B7,°ys) < ClIA* (X, Y)||%,
neN

for all X,Y € Z, that is, for all finite linear combinations (x,), (yn)-

Clearly, if the inequality (17) holds, then Im A contains the subspace Z x Z
of all the finite linear combinations, but this condition is not necessary in general.
To clarify when this happens let us note that, due to the linearity of A, Z x Z C
Im A if, and only if, (6,,,0) and (0,0,,) belong to Im A for every n € N. According
to Theorem II.1, the latter fact is equivalent to the existence, for every n € N, of
constants C}t, C2 > 0 such that

| < (X.Y),(00,0) >prxp | < G AY(X, )] p,

| < (X,Y),(0,0n) >prxp | < CRl|A*(X, )] p.

It suffices now to note that

< (X7Y)a (ena()) >EIxXE= Tn, < (X,Y), (()aén) >E'xE= Yn

to conclude:

ProrosiTION I1.5. Z x Z C Im A if, and only if, for every n € N there exists
a constant Cp, > 0 such that

|Zn| + lyn| < Cull A (X, V)|,

forall X, Y e Z.
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2.2. Application to the control of the network. Let us apply now the
previous results to the control problem of the network. From Theorem II.1 it holds
immediately

COROLLARY I1.2. The initial state (tig,u1) € V' x H is controllable in time T
if, and only if, there exists a constant C > 0 such that

c/o Z 10,6 (1, v))2dt > |{0, 310 — (@, Do)vrser |

for every solution ¢ of the system (17)-(21) with initial state (¢y,d1) € Z x Z.

It is interesting to point out how the formula (9), obtained in the proof of
Theorem II.1, provides an algorithm for the construction of the control A that
drives the controllable state (i, 41) € H x V' to (0,0) in time T": we should solve
the extremal problem

(18) (o) = mmi/nl(\ll)

for the functional
1 _
- 5/0 Z 10,6 (t,v,)Pat + (0, 1) — (v, o)

over the space W, which is the completion of Z x Z with the norm

2

1(B0, 1)l = / Z|a (v, 2t

and ¢ is the solution of (17)-(21) with initial state ¥ = (¢, ¢;)-

Let U* = (&, ;) be the solution of the problem (18). Next, we solve the ho-
mogeneous system (17)-(21) with initial data (%, —@}). Let ¢ be the corresponding
solution. The control will be the trace 8n(,_b|e of this solution.

Besides, from remarks I1.2 and I1.3 it follows

CoOROLLARY I1.3. The system (I.11)-(1.16) is approxzimately controllable in
time T if, and only if, the following unique continuation property is verified

0,0 (t,vj) =0, j=1,...r, for almost every t € [0,T] implies (@,,d;) = (0,0).

Moreover, all the initial states (to,u1) € V' x H are exactly controllable in time T
if, and only if, there exists a constant C > 0 such that

(19) 0/0 Zw (6,v)2dt > [[(Bor B0 12

for all (¢g,01) €V x H.

The inequality (19) may be expressed in terms of the Fourier coefficients (¢y ,,), (¢1 ,,)
of the initial data (}50, b, as

(20) O/O Z|8 ()Pt > S (162 + 62.)

neN

Unfortunately, this inequahty is not valid for the system (11)-(16), except under the
very restrictive conditions on the graph G and the location of the controlled nodes
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indicated in Theorem I.1. All along this book, we shall deal with situations when the
inequality (19) is not true, that is, there exists initial states (g, @1) € V' x H, which
are not controllable in time 7. We will be only able to prove weaker inequalities of
the type

(21) /Zw ()Pt > 37 2 (ud,, +02,.)
0

neN

with coefficients ¢,, different from zero. This will allow to ensure, according to the
Proposition II.4, that the space of initial states (ﬂo, u1) € V' x H defined by

(22) Z —u Z 25 ——uf, < o0,
neN “n neN Cnbn
is controllable in time 7.
From that fact, it would hold, in particular, that the system is spectrally con-
trollable (and then approximately controllable) in time 7T'.
Let us remark that, if we would be able proof in addition that the coefficients
¢, en (21) verify a uniform inequality of the form
cnply, > C >0,
for some ¢ € R, then, the sequences (ug,,), (u; ,) such that
Zuiugﬁn < 00, Z/f 1u%n < 00,
neN neN
would satisfy the inequalities (22). This would imply that the space W¢ is control-

lable in time 7.

REMARK I1.6. Let us assume that v = 1 and the inequality (21) is verified. If
we replace ¢ by its explicit expression (1.23), we obtain

T D1k
(23) /0 | Z 21 (Pg 1, cOS Mgt + )\— sin A\pt)[2dt > ch Hk‘% et gbl &)

keN keN
where s, = Op0.(V1).
If we define for k < 0, A := —Ay and denote ay = %(uo k| —iZ
k € Z., the inequality (23) becomes

T
/ | Z %‘k‘ake”"“t|2dt > Z Ay, laxl®
0

kEZ, keEN

) for

Consequently, we can assert that the latter inequality would be verified for every
finite sequence (ay), in general of complex numbers, satisfying a_j = .
Let us note, however, that,

iApt|2 iARt|2 iAgt|2
§| E H|g|ake k | < | E || ake k | +| E H|g|ake k
k€EZ k>0 k<0

E %‘k‘ake“\’“t: g wpage Mt = E PARNA

k<0 k>0 k>0

and since
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we obtain that the following inequalities hold

T
/0 1S sare™ Pt > CS g lanl,

ke ken
T
/ | Z sapape” 2L > CZ Ay laxl®
0 keN keN

for every finite complex sequence (ax).

3. The moments method

In this section we describe an alternative method for the study of the control
problem: the method of moments. These methods turns out to be useful not only
for networks of strings, but also in the study of systems obtained by replacing in
(11)-(16) the wave equation by the heat equation and, in general, by equations,
whose solutions may be computed using the method of separation of variables.

3.1. Description of the method. Let H be a Hilbert space and (a,) a
sequence of elements of H. Given a sequence (m,) € [2, the following problem is
known as problem of moments: find an element v € H such that

(24) (v,an)g = Mmp, n € Z.

A problem of moments appears in a natural way in the study of control problems
when we try to find the control v that drives an initial state to rest in time T directly
from Proposition I.1. In this case, the space H is L?(0,T) and the sequence (a,,)
is formed by the complex exponentials a, = e’*»*. This leads to the problem of
moments

T
(25) / v(t)ePtdt = my,, n € 2,
0

where the sequence (m,,) depends on the Fourier coefficients of the initial state to
be controlled.

Historically, this approach was the first giving important results on the con-
trollability of systems described by partial differential equations. For more details,
the reader may consult the papers [31], [73], [33], [74], [32].

A natural way to search for a solution of (24) is to solve first the problem

for the sequences of the canonical basis &* = (55) of [2. Here, the symbol 6" is

the Kronecker § (6% is one if n = k and zero otherwise). If we denote by vy, the
corresponding solutions (assuming that such solutions exists), we will have

(v, ap) = oF n,k € Z.

A sequence with this property is called biorthogonal sequence to the sequence (a,,)
in H. The usefulness of a biorthogonal sequence is immediate: if we choose

(26) v = Z MUk,

we have, at least formally, that, for every n, it holds

<'Uaan> = ka<vk;an> = ka(SZ = My,.

keN keN



3. THE MOMENTS METHOD 25

Under additional summability conditions on the sequence (my,,), formula (26)
provides a solution of (24):

PRrROPOSITION IL.6. If (v,) C H is a biorthogonal sequence to (a,) in H then,
for every sequence (my,) such that

(27) D Il ol < oo,

neN

there exists a solution v € H of (24). That solution is given by (26).

PRrOOF. It suffices to note that the function v defined by (26) belongs to H:

[Vl <7 Imnl lonll < oo
neN

O

Thus, solving a problem of moments with this technique involves to fundamen-
tal steps: to determine a biorthogonal sequence and to estimate the norms of its
elements. According to Proposition I1.6, if there exists a biorthogonal sequence,
we will be able to indicate a dense in [? subspace of sequences, defined by (27),
for which the problem of moments has a solution. In particular, the existence of
a biorthogonal sequence guarantees the solvability of the problem of moments for
every finite sequence (my,).

As it has been pointed out above, in the study of the control problems the
problems of moments (25) are relevant, where (\y,) is a sequence of complex num-
bers such that (R),) is increasing. In this case, a biorthogonal sequence may
be constructed in a relatively easy way thanks to the developments of Paley and
Wiener [67].

After performing the change of variables t — t + A with A = %, the problem
(25) may be written in the symmetric form

A
(28) / o(t)eMtdt = iy,
—A

which is a problem of moments in L?*(—A, A).
Let us assume that F' is an entire function satisfying:
1) F € L>*(R);
2) F is of exponential type not greater than A: there exist constants M, A >

0 such that |F(z)| < MeAl*! for every z € C.
3) all the numbers A, are simple zeros of F:

Then, it is easy to see that the functions

F(z)

(29) Fk(z> = (Z _ )\k)FI()\k)

3Rz denotes the real part of the complex number z.
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satisfy the property 2. Besides, it may be shown, using the Phragmén-Lindelof
theorem (see, e.g., Theorem 11, p. 82 in [81]), that there exists a constant C' > 0
such that for every k € N,

C
30 Frellpemy < = 1Fll poomy 3
(30) 1Bl L2 () F oW I oo ()

in particular, the functions Fy belong to L?(R).
Finally, let us observe that Fj(\,) = d}.
Now we are ready to apply the fundamental tool of this technique:

THEOREM I1.2 (Paley and Wiener, [67]). The function F is the Fourier trans-
form of a function ¢ € L?(R) with support contained in the interval [—A, A], that

18,

if, and only if, F is an entire function of exponential type at most A and F € L*(R).

If we apply Theorem I1.2 to the functions Fj, defined by (29) it holds that there
exist functions vy, € L?(—A, A) such that

A
Fr(z) = / ey (t)dt, keN.
-A

From these inequalities we obtain

A
/ ei)\"t’l)k(t)dt = Fk(/\n) = 52,
—A

and thus, the sequence (v) would be biorthogonal to (e“*»*) in L*(—A, A). By

this reason, the function F' is called generating function for the sequence (e”‘”t).
On the other hand, from Plancherel’s identity

||Uk||L2(—A,A) = ||Fk||L2(R)'
Consequently, in view of (30) there exists a constant C' > 0 such that for every
keN
C

(31) [0kl L2 a,a) < oW

Then, if we succeed in constructing a generating function F' of the sequence
(M), the problem of identifying subspaces of sequences (my,) for which the prob-
lem of moments (28) has a solution is reduced to estimate the sequence of norms
[F' (M)

REMARK I1.7. If it would be possible to establish uniform estimates of the form
[ ()| = C |77,
then it would hold
||UkHL2(—A,A) <O l®

and, according to Proposition I1.6 the problem of moments (28) would have a solu-
tion for every sequence (my,) satisfying

> [ M| < oo

neN
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It may be useful to characterize subspaces of sequences of the type h™ for which the
problem of moments has a solution. Let us observe that, if there exists v € R such

that
Z |)\k|V < 00,
neN

then, from the Cauchy-Schwarz inequality holds
Dl el < D AT ST A
neN neN neN
Thus, the problem of moments (28) would have a solution for every sequence (my,) €

ho—3,

REMARK I1.8. It is relatively easy to construct an entire function F vanishing at
the elements of the sequence (A,) if we have additional information on the numbers
An. If there exists p € N such that

ne”Z
we could take, e.q.,
sin (72,7 A\n) \”
reo) =TT (24
neZ

which is a bounded function for z € R. To guarantee that the zeros of F are
all simple is less easy. However, the truly difficult problem consists in estimating
F'(A\n). In [70] and [58] it may be found wide information on this theme. Good
examples of the difficulties involved in the application of this technique are the works
[32], [31], [33].

The following result due to Russell is very useful since it allows to obtain a
biorthogonal sequence to the exponential family that appears in connection with
the heat equation from a biorthogonal sequence of the family of exponentials of the
wave equation. Essentially, this result is contained in [73], though we state it in a
form similar to that of [2, Teorema I11.5.20].

Let (An),cz. be asequences of real numbers such that A_,, = —\,, and ()
a symmetric sequence of complex numbers: »_, = ,.

NELx

THEOREM I1.3 (Russell, [73]). If there exists a sequence (vy,) biorthogonal to
(%nei)‘”t)n in L2(—A, A) then, for every € > 0 there will exist a sequence (wy,)

biorthogonal to (%ne_kit) N in L?(—¢,¢). Besides, there exist positive constants
ne
C. and v such that

€7+

An
lwallp2(—e ey < Ce lonll 2 a,a) e,

for all m € N.

3.2. Application of the method of moments to the control of the
network. Now we will see how a problem of moments arises in a natural way
associated to the control problem for the system (11)-(16). This will provide an
alternative approach for the study of the controllability of a network. In what
follows we will consider for simplicity » = 1, that is, the network is controlled from
one exterior node.
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According to Proposition 1.1, the initial state (uo, %1) € H x V' is controllable in
time 7 if, and only if, there exists h € L?(0, T') such that, for every (¢, ¢,) € Zx Z
the following equality holds

T
(32) /o h(t)0n ¢ (t,v1)dt = (i1, do)vixv — (To, d1) HrxH s

where ¢ is the solution of the homogeneous system (17)-(21) with initial state

(¢07¢1>'

Let us observe that, if
(EO = Z ¢O,n9n7 a)l = Z (bl,nén
neN neN

then, from formula (23) we have

an¢1(t,vl) = Z »y <¢0,k cos A\t + %sinkkt) ,

k€L«

where s, = 8n9,1€ (v1) is the value of the normal derivative of the eigenfunction 6y
in the controlled node. With this, the condition (32) says that the initial state
o = D pen ug kOk, U1 = Y keN u1 0y is controllable in time 7T with control h
if, and only if, for all the finite sequences (‘%, k), (¢17k) the following equality is
satisfied

r ¢
(33) / 2> <¢’0,k cos Apt + _Al: sin )\kt) h(t)dt = (u1 ko p — tokdi ) -
0

keN keN

By choosing (33) ¢g ) =1, ¢g = 0 for k # k and ¢, , = 0 for every k, what
corresponds to the initial data ¢, = 0, ¢, = 0, we will obtain

T
(34) / X} COS /\kt h(t)dt = U1,k-
0

In an analogous way, with ¢; , = Ag, ¢1 , =0 for k # k and ¢ , = 0 for all £,

T
(35) / A, sin )\kt h(t)dt = 7)\}611,07}@.
0

Naturally, the relations (34), (35) are necessary for (33) to be satisfied. Besides,
they are sufficient. Indeed, if we multiply (34) by ¢q 4, (35) by ¢ ; and add over
a finite set / C N we obtain

r ¢
/ »y, Z <¢O,k cos At + —;]’j sin )\kt) h(t)dt = Z (u11k¢07k — Uo,k¢1,k) )
0

kel kel

and this is the equality (33).
Now, combining the equalities (34), (35) it holds

T
(36) / %kei)‘kt h(t)dt = Uik — IARUQ,
0

T
(37) / %keii/\kt h(t)dt = U+ i)\kuoﬁk ke N.
0

If we define for k < 0, Ay = —A_j then the previous results and (36)-(37) may be
unified in
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PRroPOSITION I1.7. The initial state (Go,@1) is controllable in time T with
control h if, and only if, the following equalities are verified

T
(38) / %|k|eM’“t h(t)dt = uq k) — iApuo, k| for everyk € Zi,
0

The equalities (38) constitute a problem of moments for the sequence (%|k| e”‘k‘t) ez
Let us observe that, if h is a real function (what is natural for the system

(11)-(16)) any of the relations (36)-(37) implies (34) and (35). The reason to write

two equalities consists in the fact that the method, which we will use to solve

the problem of moments does not guarantees a priori that the function A is real.

However, if we are able to construct a complex function v satisfying (38) then, the

real part of v would satisfy (34), (35). Indeed, it suffices to note that (37) may be

written as
T
/ P h(t)dt = w1k —iAguo k. para k >0,
0

from which we obtain, after adding this equality to the first one,

T
[t 0
O 2

This means, that the real function

dt = uy  — iA\guo,r para k > 0.

il@) _ h(t) + h(t)
2
satisfies (34) and (35).
As a consequence of the Proposition I1.7 the following characterization of the
spectral controllability of the system (11)-(16) is obtained:

PROPOSITION I1.8. The system (1.11)-(1.16) is spectrally controllable in time
T if, and only if, there exists a sequence (vy)iez, biorthogonal to (%|k|ei)‘k‘t)

en L(0,T).

kEZ,

PRrROOF. The fact that the existence of a sequence biorthogonal to (%|k| ei/\k‘t) -

in L?(0,T) implies the spectral controllability is immediate: the problem of mo-
ments (38) would have a solution for any finite sequence (ug ), (u1.,) and then, in
view of Proposition II.7, all the initial states from Z x Z would be controllable in
time T'.

To see that this condition is also necessary, we assume that the system (I.11)-
(1.16) is spectrally controllable and construct a sequence biorthogonal to (%‘ k| ei/\kt)
in L2(0, 7).

For every m € N, let gy, by, € L2(0,T) be the controls that correspond to the
initial states (6,,,0) and (0, 0,,), respectively. In such case, according to Proposition
I1.7, we have the equalities

k€L«

T T
/ s e M ho (B)dt = 5%, / et gm(t)dt = —i)\ké%,
0 0

formeN, k € Z,.
Let us define the functions

1 )
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We will have

T INVE i (o
/ s ety (H)dt = 5/ s et hlm\(t)dthK/ s, et G ()t
0 0 m Jo
Loml Ak siml _ sm
This means that the sequence (v, )mez, is biorthogonal to (%|k|ei)‘k‘t)kez . ([

If we know subspaces of controllable initial states for system (11)-(16), then it is
possible to give more precise information on the biorthogonal sequence constructed
in Proposition II.8:

ProroSITION 11.9. If the subspace W” of initial states for the system (1.11)-
(1.16) is controllable in time T then there exists a sequence (vg)rez, biorthogonal

to (%|k|ei/\kt)kez in L2(0,T), which satisfies

okl L2(0,m) < CAL Y, ke Z,,
where C' is a positive constant independent of k.

PrROOF. If the subspace W" is controllable in time T, there exists a constant
C > 0 such that

T
/0 18,61 (£, va) Pt > C||(Bo. b1 llv1-rsv—r-

Then, in view of Corollary I1.1, for every (ug,u1) there exists h € L2(0,T) such
that

1Al L20,m) < Cll (@0, 1) [lwr.
Thus, the functions g, hy, constructed in Proposition I1.8 satisfy

lgmllz20,r) < CNps - [Bamllz20,m) < CX
Then, from (39) it holds
l|omll 20,1y < CAR

Now it suffices to recall that the sequence (v, )mez, is biorthogonal to (%‘k‘eukt)kez .
[l

REMARK I1.9. If we perform the change of variable t — t — % we obtain that

the assertions of the propositions I1.8 and I1.9 remain to be valid if we replace the

space L*(0,T) by L*(—%,2).

REMARK I1.10. The numbers sq, = 0,05(v1) have a direct incidence in the
spectral controllability of the system (1.11)-(1.16). If 3. = 0 for some k then, from
(34), (35) it follows that the initial state (4o, U1) is controllable only if uo k= u1 =
0, that is, if g and @1 are orthogonal to 0. In this case, the space of controllable
initial states is not dense in H x V'. Consequently, the condition s, # 0 for every
k € N is necessary for the approzimate controllability (and in particular for the
spectral) of the system (1.11)-(1.16).

For the sequence (|s|) an upper bound is easily obtained. If we consider the
solutions

P(t, ) = cos A\t Ok (x), k€N,
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of the homogeneous system (1.17)-(1.21) and apply the inequality (1.28) it holds

T T
|%k|2/ |cos At|* dt = / |oh. (t,v1)|” dt < CE; = CX2.
0 0

In an analogous way, taking ¢(t, ) = sin A\xt Ok (x) we will have

T T
|%k|2/ |sin Agt|* dt = / |61 . (8, v1)| dt < CE; = 2.
0 0

From these two inequalities we see that the sequence ., satisfies

(40) sl <O\, keEN.

4. Riesz bases and Ingham-type inequalities

In this section we describe the technique for the proof of observability inequal-
ities based on a theorem recently proved by Baiocchi, Komornik and Loreti in [10]
and Avdonin and Moran in [5], which provides a Riesz basis of L?(0,T) formed
by finite linear combinations of complex exponentials (e**#*). From this result, we
obtain in II.7 a useful consequence: if we prove an Ingham-type inequality for the
sequence (), ), then a similar inequality is true for the sequence () with s > 1.

4.1. Riesz bases. In general, if H is a separable Hilbert space, the sequence
(a,) C H is called Riesz basis of the closure of its linear span if there exists con-
stants c1, co > 0 such that the following inequality is verified

ctlille < 11> vnanlli < ellFlle,
neZ

for every finite sequence of complex numbers such that 5 = (v,,). In particular, if
the sequence (a,,) is complete in H it is called Riesz basis* of H.

Thus, to prove observability inequalities (20) it would be very useful to have
the information on the fact that the sequence (e**"?) forms a Riesz basis of L2(0, T').

Let us observe that, essentially, the technique derived from the use of Riesz
bases coincides with the method of moments, since a theorem due to Bari [12]
asserts that the inequality

alllle < 1Y vaanllu
neZ
is equivalent to the fact that the problem of moments (24) has a solution for any
(my,) € 12

4.2. Generalized Ingham theorems. An important theorem due to Ingham
[38] asserts that the sequence (e'*»!) forms a Riesz basis of the closure of its linear
span in L?(0,T) if the sequence (\,,) satisfies the separation condition

(41) )‘n-‘rl - )\n > Y > Oa

with v > 2%

A stronger version of this result was given by Beurling in [16]: if the sequence
(\n) satisfies the condition (41), then (e*n?) forms a Riesz basis in the closure of
its linear span in L2(0,T) for every T satisfying

T >27rD"(\,),

4An equivalent definition is that (an) is the image of an orthonormal basis of H by a contin-
uous bijection. In [81] the reader may find more information on this topic.
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where DT (),,) is the upper density of the sequence (\y,):

+
D) i= lim T On))
n—o00 r
with n*(r, (\,)) being the maximum number of elements of (\,) contained in an
interval of length 7.

The inequality corresponding to this assertion

2
T
0 Cullell? < / T ettt
0

dt < Cs |lell
neZ
is known as Ingham inequality. This inequality has been an extremely useful tool
in the study of the control problems.

In several concrete problems, however, the separation condition (41) is not
verified. This is the case, for example, of the networks of strings (see Proposition
II1.7). That is why a lot of work has been devoted to obtaining inequalities similar
to (I), more precisely, of the type

(Is) /OT 3 et

ne”Z
where B : [2 — [? is a continuous operator, usually with a simple structure, when
the elements of the sequence ()\,,) may get close. We refer to the works [20], [21],
[41], [40], [5], [8], [9], [10] for further information.

Let us observe that an inequality of type (Ig) guarantees that the problem of
moments has a solution for every ¢, which belongs to the image of the adjoint of
B. This subspace is necessarily smaller than /2 if the sequence (\,,) does not satisfy
the separation condition (41), since otherwise B would have a bounded inverse,
what would lead to the Ingham inequality, which is not true in the case of lack of
separation.

The most complete result in this direction was simultaneously obtained by
Baiocchi, Komornik and Loreti in [8], [9], [10] and Avdonin and Moran in [5].
In their papers an inequality like (Ig) is proved for increasing sequences of real
numbers (\,,) with the following generalized separation property:

There exist § > 0 and a natural number M such that

(42) Ansat — An > M§

2
dt > C|Be|

for every n € Z.
This means that there may be at most M consecutive elements of the sequence
(M) that are close; in a larger number there must be some separation.

REMARK II.11. The separation property (42) may be described in an equivalent
way in terms of the upper density of the sequence (\,). It turns out that, if T >
2DV (\,) then there exist § > 2Z and M € N such that (\,) satisfies the separation
condition (42). The details of the proof may be found in [10].

In order to state the main result of the papers mentioned above and to describe
how the operator B corresponding to this result is constructed, we need some
preliminary elements.

Let us fix a sequence (\,,) satisfying the separation condition (42). We will say
that two integer numbers n, m are equivalent if |\, — A,,| < |n —m| §. This is an
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equivalence relation in Z. Let us denote by Ag, k € Z, the equivalence classes of Z
with respect to the defined relation. Obviously, every Ay is formed by consecutive
numbers and contains d(k) < M elements. We denote by n(k) the smaller of the
elements of Ag. Besides, we assume that the numbering of the classes has been
chosen so that n(k + 1) — 1 € Ay, that is, n(k + 1) = n(k) + d(k).
For every m € N we pick k such that m € Ay and define the function
Mo Nt
f m(t) = Z )

. Tim
j=n(k) 7

where 7, is the product of all the differences A, — A; with n(k) < j < m if
n(k) < m and T,(x)nk) = 1. These functions are called divided differences of the
family (e"n?), see [39], p. 246 or [79)].

THEOREM I1.4 (Baiocchi et al. [10], Avdonin-Moran [5]). For all the values
of 6 >0, M € N and T > 2% if (\,) satisfies the separation condition (42), then
the sequence (fn) forms a Riesz basis in the closure of its linear span in L*(0,T).

The following result is also proved in [5]. It allows to clarify what happens
when the value of T is not sufficiently large.

THEOREM IL5. If the sequence (\y,) satisfies the separation condition (42) and
T < 2xD™T then there exists a proper subsequence (1) C Z such that (f3) forms a
Riesz basis in L*(0,T).

As a consequence, after applying Theorem I11.3.10(e) from [2], it holds

COROLLARY IL4. If the sequence (\,) satisfies the condition DY (A\,) < oo
then, for every T < 2mD™T(\,), there exist complex numbers c,, not all of then
equal to zero , such that

Z |cn|2 < o0, Z cpet =0 en LQ(O,T).

n€e”Z ne”

In what follows, we write the result of Theorem II.4 as an equivalent inequality
of type (Ig).
Let 8", n € Z, be the canonical basis of {2 and consider the subspaces

Ly =span,¢,, (8").
Each subspace Ly, has finite dimension d(k) < M. Then, [? is decomposed as
> =PL,.

keZ

Let m € N. For every h = (hi, ..., hym) € R™, we define the operators A,,(h) :

R™ — R™ by A,,(h)Z = A, (h)Z, where A,,(h) is the matrix with components
i
I | R S R
(43) Amig(h) =9 1 ifi=j=1,
0 ifi>j.
where the symbol ’ in the product sign indicates that the factor corresponding to
k =i has been excluded.
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These matrices are invertible if all the numbers h; are pairwise distinct. Now
we take

-1
Bi = (Ad(k)()‘n(k)a ---a)\n(k)er(k)fl)) -
Finally, the operator B is defined for v =}, ., ¥ as

Bv = Z Bivyg,
kEZ
where v}, is the projection of ¥ over Li. This is the operator that appears in the
inequality (Ig) corresponding to the assertion of Theorem II.4.

THEOREM I1.6. For all 0 > 0, M € N and T > 27“, there exist constants
Cy,Cy > 0 such that, if the sequence (\,) satisfies the separation condition (42)
then
2

T
(Is) Cy [Be|% > / dt > Cy |Be|% .
0

E cnel)\nt

n€e”Z

for every finite sequence c.

We should remark that the operator B has a structure that makes it easy to
obtain information from the inequality (Ig). According to its definition we have
2

-1
—112 - 112 _
IBell = ZHBkcksz:Z (Ad(k)()‘n(k)a---a)\n(k)er(k)fl)) Ck
keZ keZ 2
— 12
2 Z’Yﬁ”cknz%
keZ
where

—1
Ve = H(Ad(k)()‘n(k)a ---a)\n(k)er(k)fl))H -

Taking into account that

n(k)+d(k)—1

_ 2 2
el = D leal”,

n=n(k)
from the inequality (42) it holds
T P (k) +d(R) -1
DI TEYEY SET D SRS
0 |nez ke n=n(k)

It simply says that it is sufficient to choose weights 77 in the coefficients corre-
sponding to n € Ag. Thus, we have obtained

COROLLARY IL5. If the strictly increasing sequence (\,) satisfies the separation
condition (42) or equivalently, DT (\,) < oo then, for every T > 2xDT()\,) there
exists positive numbers vy,,, such that

T .
/ E Cn ez)m,t
0

nez
for every finite sequence (cy,).

2
dt > "2 el
nez
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2
It is possible to make more precise estimations of HA(;(}C)E;c ‘ ) leading to in-
l

equalities with weights, which vary inside of every group Aj. It depends on the
particular structure of the operator A, , and of course, of the sequence (Ay).

4.3. A new inequality. The following result turns to be very useful for the
identification of subspaces of controllable initial states for the Schrodinger and
beams equations if we know subspaces of controllable initial states for the system
(11)-(16). This result will be used in Chapter VIL

THEOREM II.7. Let (\,) be an increasing sequence of positive numbers with
upper density DT (\,) < co. Assume that there exist constants C > 0 and o < 0
such that the inequality

(44) / '

is verified for every finite sequence ¢. Then, for all 7 > 0 and s > 1, there exists a
constant C7 > 0 such that

r

for every finite sequence c.

§ Cn ez)\nt

nez

dt>CZ/\2”‘ 2

neZ

2

dtzC’lZ)\Qo‘ 2

na

S\ s
E Cnezknt

ne”Z

ne”Z

The proof of this assertion is based on Theorem I1.6. We will need the following
technical results.

ProrosiTiON I1.10. Let K : R™ — R™ be a linear operator defined by the

matriz A=(a;;). If ||A||l is the norm of A considered as a linear operator from
I12(R™) to I? (R™) then

max ay| < A < vim | max - ais].

,  =1,....m

This fact is easily proved with the aid of Schur’s Lemma or directly using the
Cauchy-Schwarz inequality (see, e.g., [36], Theorem 3.4.7).

ProposiTiON II.11. Let Am_(i_L) : R™ — R™ be defined by (43) and assume
that 1 < hy < hy < --+ < hy. If B = (hY, ..., h},) (h* is formed by the s-powers of
the components of h). Then, for every s > 1,

(45) [Am ()| < v/m || Am (R
PROOF. Let us observe that
|h§ = B3| > s|hi — hj| b
and thus, from the definition of A, ;;(h*) we obtain
| A i (B)] < | A i (B)] A DU 61,
Now, using Proposition I1.10,
|An()|| < Vm max \Am i5(h%)] < \/_ jmax |Am7ij(ﬁ)\ p{emDO=D (-1

i,j=1,....m "' 77 L g g=1,...,

< \/E max ‘Am i h>| _IIllaX hgs 1)(1—j)5(1*]—)_
= Jj= m
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Taking into account that h; > 1 it follows

max hgsfl)(lfj)s(l_j) =1

Jj=1,..., m
and then ~ -
[Am B < vm | max |Amn;(h)|
Applying once again Proposition II.10, inequality (45) is obtained. O

ProOF OoF THEOREM I1.7. Let us choose § < # and T > 27”. According to
I1.6, there exists a constant C7 > 0 such that

T
CrBell = [ |3 cet
0

neL
In account of the hypothesis (44) of the lemma and the fact

IBell7 =

keZ

2

o2
(Ad(k) (An(k)s o An(k)-ﬁ-d(k)—l)) Ck N
I

we obtain
2

ZC A20402
oy e

l neg

-1
H (Ad(k) (An(kys oo An(k)-i—d(k)—l)) Ck
for all &, € R¥¥) . Since the sequence (),) is increasing, this inequality implies

2
2c 2
> CN a1 Y, o
2 neAy

—1
H (Ad(k)()‘n(k)a e )\n(k)er(k)fl)) Ck

Thus, we can conclude that

‘Ad(k)()‘n(k)a e )\n(k)er(k)fl)H < CX k) —1-
Now, Proposition I1.11 allows us to ensure that

(46)

‘Ad(@(Ai(k), )‘fz(k)-',-d(k)—l)H < ON Gy —1-

Let 7 > 0 and choose ng such that §' := (55)\231 > 27“ Then, for every n > ng
it holds
Noonr = A8 > s (Npaar — M) ASTH > MésA, = M&'.
In particular, every set of the partition (A7) of Z, defined for the sequence (\},) for
the value ¢’, which contains and element n > ng, will be contained in one of the
sets A,
Once again from Theorem II1.6 we obtain that for every finite sequence c,

- 2
(47) / cnent
3

dt > Cy | B¢ .
nez
Here, the operator B® corresponds to the sequence (A\3) and to &', that is, to the
partition (Aj).
It is possible to prove (see Lemma 3.1 in [10]) that, if Bs and By are the
operators defined by (43) for the partitions generated by ¢ and d’, respectively,
then there exist constants dy,dy > 0, depending only on § and &', such that

_ 112 _
di |Bselliz < |[Byel; < d2 |Bselli:
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for every finite sequence ¢.
Thus, we may assume that the operator B® has been constructed for the par-
tition (A,).
2

) el

12 !
and to use the inequality (46) to conclude that
- 2
/ S cpeitnt
n
0

Now it suffices to note that
5|2
Bl > <HAd(k)()‘n(k)a ooy An(k)+d(k)—1)
a — 2
dt > Co Z A2y ary—1 ekl -
nez kEZ
Finally, let us observe that there exists a constant C' > 0 such that for every n
satisfying n(k) < n < n(k) + d(k) — 1, it holds

keZ

Ay td(k)—1 < CAy,.
This concludes the proof. (I






CHAPTER III

The three string network

This chapter is devoted to the study of the control problem for the simplest of
non trivial networks of strings': the three string network. This chapter has mainly
a didactic intension. The most of the results presented here will be generalized
later in Chapter IV for the case of networks supported by tree-shaped graphs.
However, the generality of the problem in that case, involves complex notations,
unavoidable if the take into account the need of referring in a precise sense to each
of the multiple elements, which form a network. This cause the methods we use,
which are essentially simple, to appear hidden behind the notations. That is why
we have try to describe the fundamental ideas in a simple context, paying attention
in those aspects that will allow to extend the technique to the general framework
of tree-shaped networks.

1. The three string network with two controlled nodes

1.1. Equations of the motion of the network. Let T', ¢y, {1, {2 be positive
numbers. We consider the following non-homogeneous system

ul, —ul, =0 in Rx[0,4;] i=0,1,2,
u®(t,0) = ul(t,0) = u?(t,0) teR

(1) ul(¢,0) +ul(t,0) + u2(¢,0) =0 teR
ul(t,by) = vi(t), u?(t,4;) =0 teR i=0,1,

u'(0,z) = ud(z), ui(0,z)=ui(zx) z€0,4] i=0,1,2.

which models the vibrations of a network formed by three elastic strings eg, e1, e2
with lengths /g, {1, £5 coupled at one of their extremes. The functions u® = u'(¢, x) :
[0,¢;] = R, i=0,1,2, represent the transversal displacement of the strings. On the
free nodes of the strings ey and e; some external controls 2 and v! act to regulate
the motion of those points. Let us observe that in (1), the parametrization of the
strings has been chosen so that the points = 0 correspond to the common node,
while z = £;, to the exterior node of the string e;.

Sea T' > 0. According to the general results described in Chapter I, the homo-
geneous system (1) (v = v! =0)

¢l — ¢t =0 in Rx[0,¢;] i=0,1,2,
¢°(t,0) = ¢'(t,0) = ¢°(t,0) teR

(2) $2(t,0) + ¢u(t,0) + ¢%(t,0) =0  teR
qﬁ(t,ﬂo):O teR 1 =0,1,2,
¢'(0,2) = ¢j(z), ¢1(0,2) =¢i(x) z€[0,4] i=0,1,2,

LWith this, we want to indicate that it is the simplest of those networks, which are not
reduced to a single string.

39
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(nodo no controlado)

Lo

FI1GURE 1. The three string network with two controlled nodes

has a unique solution ¢ with initial state (¢q,¢;) € V x H satisfying
(3) ¢ eC(0,1]:V)[C'([0,T]:

This solution is expressed in terms of the Fourier coefficients (¢ ,,), (¢;.,) of the
initial data in the orthonormal basis (f,,) formed by the eigenfunctions of the elliptic
operator —A¢ associated to (1) by the formula

(4) o(t,x) = Z(¢O,n cos A\t + (b;—" sin A\, t)0, ().

neN n
The energy of ¢ is constant in time; it may be computed by the relation
(5) E; =2 (.05 n+91.0)-
neN
For the non-homogeneous system, for every v°,v! € L%(0,T), there exists a
solution of (31), defined by transposition that satisfies
we C([0,T): H)[C*([0,T]: V"),
which will be the unique solution of (1) having the latter property.

1.2. The control problem for the three string network. The control
problem in time 7' for the three string network defined by system (1) consists in
characterizing the initial states (to,u1) € H x V' of the network for which there
exist controls v°,v! € L?(0,T) such that the corresponding solution of (1) satisfies

w(T) = (T) = 0.
The control of a three string network from two exterior nodes satisfies the
hypotheses of Theorem I.1. In this case it holds

THEOREM IIL.1. The system (1) is exactly controllable in time T* = 2({s +
max{lg, {1}).

PROOF. Let us assume that ¢y > {1, such that T* = 2(¢y + ¢2). In view of
Proposition 1.1, the initial state (&g, @;) € H x V' is controllable in time T with
controls v°,v! € L?(0,T) if, and only if,

/ P2 (t, Lo)v dt+/ P (t, )0 (B)dt = (T, ¢y )1 — (1, Po)vrxv s
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for every solution ¢ of the system (2) with initial state (¢, ;) € Z x Z. Corollary
I1.3 of Theorem II.1 allows us to ensure that the system (1) is exactly controllable
in time T if, and only if, there exists a constant C' > 0 such that

T* T*
(6) lAIﬁ@%WﬁfélﬁwﬁwﬁzC%,

for every solution ¢ of the homogeneous system (2) with initial state in Z x Z.
In order to prove the inequality (6), it suffices to find £ € R such that

2(20+€2) 9 9 N
(7) / (ISt ) + oh(t, &2)[*) dt = CBy(B),  i=0,1,2.
0

Thanks to Proposition II.1 it is immediate for ¢ = 0,1 (that is, for the components
of the solution corresponding to the controlled strings) if € [£g, 202 +£o]. For i = 2
the idea is simple: the D’Alembert formula allows to express

(8) O (t, 0) = L3¢5 (1 o), 97 (1,0) = Lo 83t bo),
9) 6r(t,0) = 6 65 (t, 1), 61 (£,0) = (7 g, (t, 01).
In account of the transmission conditions in the common node
S (t,0) = ¢ (t,0) = {7 dy(t, (),
6p(t,0) = = (62(t,0) + (t,0)) = ((5 65t bo) + €1 &5 (t, 1))
Then, according to Proposition I1.1,

t+0o
Bed) < [ (|0 + o)) a

—4y

e -1 2 + 40 + 41 2
/ (‘61 ¢z(tﬂ£1)‘ + |€O ¢z(t7£0>+£1 ¢z(tﬂ£1)‘ )dt

t—0s

From this inequality and applying Proposition I1.2 we obtain

R t+Lo+4y 1 9 t+Lo-+L2 0 9
CE,:(1) < / |pa(t, €1)|" dt +/ |pa(t, €o)|” dt,
t—Alo—41 t—Lo—Lo
and thus, choosing # = £y + £, the inequalities (7) will be verified. O

REMARK III.1. It is clear that the same procedure would work in the case of a
general tree-shaped network controlled from all of its exterior nodes, except one: it
suffices to apply an induction argument. The application of the D’Alembert formula
and Proposition 1.1 allows to estimate the norms

a+l a+/l
/ |6, (t,0)* dt, / |, (£, )| dt
14

—a— —a—/{

of the traces ¢, and ¢, in the extreme x = £ from the norms

/|%@w%u /‘m@wwt

— —
of the traces ¢,, and ¢, in the extreme x = 0. Thus, if we start from the controlled
nodes, when we arrive to an interior node we will have estimates of the traces ¢,
and ¢, of all the components that are coupled in that node, except of one of them.
The coupling conditions allows then to obtain estimations for the traces of those
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components, and this would make possible to continue until we reach the string
containing the uncontrolled node.

(nodo no controlado)

FIGURE 2. Tree-shaped network with one uncontrolled node

2. A simpler problem: simultaneous control of two strings

A control problem similar to that of the three string network is the one of the
two strings e; and es of lengths ¢; and /5, which are simultaneously controlled from
one of their ends. This problem was implicitly studied in [41]. Later, in [78] and
[7] an essentially complete solution was obtained. The results of [78] are based on
a generalization of the Ingham inequality proved in [41]. This technique, however,
allowed only to guarantee the controllability of the system in a time larger than the
one, which is really necessary. In [7] the method of moments was used; this methods
provided the optimal control time. Here we describe a different solution, based on
completely elementary arguments, which in addition provides more information
than the other mentioned techniques.

The system corresponding to the simultaneous control of two strings is

ul, —ul, =0 (t,x) € Rx[0,4;],
(10) Wit 6) =0, ui(t,0) = v(t) tER,
ui(0,2) = ud(x), ui(0,2)=ui(x) x €10,4],
for ¢ = 1,2. In this case simultaneous refers to the fact that the control v applied
to both strings is the same. To this sort of problems, considered for the first time
by Russell in [75], is devoted the chapter 5 of [60]. o
For every T' > 0 the system (10) is well posed for initial states from (u),u}) €

L2(0,4;) x H=(0,4;), i = 1,2 and v € L?(0,T): there exists a unique solution that
satisfies

u' € C([0,T] : L*(0,£,)) N C*([0,T]): H~*(0,4;)), i=1,2.
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When v = 0 the system (10) becomes

(bit - ¢;z =0 (t,l‘) € RX[O’&]’
(11) G (t, 4;) = ¢'(t,0) =0 teR,

with ¢ = 1,2. Let us observe that the system (11) is formed by two wave equations
with homogeneous Dirichlet boundary conditions, which are uncoupled. Both equa-
tions are also well posed for (¢p, ¢}) € Hg(0,£;) x L?(0,¢4;) and the corresponding
solutions are expressed by the formula

1

(12) ¢'(t,x) =D (¢, cosoit + % singlt)sinolz, i=1,2,
neN n
where (o) is the sequence formed by the square roots of the eigenvalues of the
string e;:
nm
o, =—, neEN,
ti

and (qﬁé,n), (qbzln) are the sequences of the Fourier coefficients of qﬁé, qﬁ, respectively,
in the orthonormal basis (sin o? z) of L2(0,£;):

bh(x) = Z q%m sino’ x, P (z) = Z qbin sino’ i=1,2.

neN neN

The control problem in time 7 consists in characterizing the initial states(ub, ul),
i = 1,2, of the system (10) such that there exists v € L*(0,T) with the property
that the solutions u',u? of (10) satisfy

u'(T,x) = ui(T,z) =0, i=1,2,

for x €10,4;].

Let us observe that, though the system (11) is formed by two uncoupled equa-
tions, the fact that the same control is used generates coupling conditions, similar
to those in the three string network. In fact, if we apply HUM, it turns out that
the observability inequality associated to (10) is

(13) /0 |02.(£,0) + 2(8, 0)Pdt = Y~ > (ch)*((07,60.)° + (61,)°)-

i=1,2neN

If there exists sequences of positive numbers (cf), i = 1,2 such that (13) is verified
by all the solutions ¢', $* of (11) with initial states (¢g, ¢1) € Z* x Z1, (42, 43) €
7% x Z?, respectively, then, all the initial states (uf,u}), i = 1,2, satisfying

1, 1,
Z (Ci )2 (’Uo,n)2 + Z W(ul,n)Q < 0
neN n neN n-n

are controllable in time 7.
Our main observability result for the solutions of (11) is
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THEOREM II1.2. Let T* = 2(¢1 + £3). The following inequalities take place

-
/ 6L(£,0) + 2, 0)2dt > 01> (sinohta)” (0hép.)? + (61.,)7),
0

neN

2" (sino21)” ((0268,)% + (63,)7)

neN
for any solution of (11) with initial states (¢y, ¢%) € Z% x Z*.

v

-
/ |pn(t, 0) + ¢2(t, 0)[*dt
0

PRrROOF. We will proved the second inequality; the first one is proved in a similar
way.

Let us observe that, due to the 2¢;-periodicity in time of the solutions of (11)
it follows ff(bi(t, 0) = 0, where ¢] is the operator defined by (II.7) corresponding
to the number ¢;. Then, if we apply Proposition I1.2 we obtain

T* T* 41
/O 6L(8,0) + G2(1,0)Pdt > /Z 107 GL(E,0) + £ 62 (£, 0) [2dt

(14)

T* —{q
[ Eeeora.
£y
On the other hand, ¥ = Ef(bQ is a solution of the equation
Z/}tt - ’l/):nz =0
in R x [0, ¢1] and thus, from Proposition II.1 it results
T* —0q
(15) [ WP > k.
1
Taking into account that ¢, (t,0) = £7 ¢2(t,0), from (14) and (15) we obtain

o
(16) / OL(1,0) + 621, 0)[2dt > 4B, ..

It remains just to calculate the energy Ee; o2 From the formula (12) we obtain

that
2

_ - Pln ,— :
(17) (73 (t,x) = Z(¢g,n€1 cosoit + Jénfl sino?t)sino2x.
neN n
In view of the relations
1
0] cosoit = 3 (cosoZ(t+ 1) — cosoa(t —£1)) = —sinoly sinoat,

1
(] sino’t = 3 (sinoZ(t+¢1) —sinos(t — £1)) = sino>ly cosoat,

the equality (17) becomes
_ . Pim iy .
(73 (t, ) = Z sin aifl(g—éfl cos ot — qﬁanﬂl sino?t)sino?x.
neN n
If we apply formula (I.25) for the energy it follows

14
ot =7 2 (nontn) (02067 +(61,.)7).

neN

E
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Thus, it suffices to replace the latter expression in (16) to obtain the inequality
of the theorem. O

2.1. Identification of controllable subspaces. The aim of this subsection
is to identify subspaces of controllable initial data of the system (10) in time 7" >
2(¢1 + £3) with the aid of Theorem IIL.2.

An easily identifiable subspace is that of the finite linear combinations of the
eigenfunctions. It takes place

ProrosiTION II1.1. The system (10) is spectrally controllable in some time
4y
T > 2(01 + £2) if, and only if, the quotient 7 is an irrational number.
2
El o . . . . 1 . 2
PrROOF. If — is irrational then the coefficients sino, ¢y, sino; 1, n € N, ap-

2
pearing in the inequalities in Proposition II1.2 are all different from zero. Indeed,
if sinolfs = 0 for some n, then there would exist k& € N such that

—E =k
g 2T
o /61 n . “ . . B . . .
that is, "% € Q. Then, the initial states (uf,u}), i = 1,2, satisfying
2
1
18 S — 1 42
( ) ’I’;\] (Sln 0'1 £2 + Z Sln 0.1 [2 (ul,n) < o9,
1 1
19 S SR R S SR
( ) Z (Sin02€1)2 (UO*”) + Z (02 sin 0261)2 (uln) 00,
neN n neN n n

are controllable in time T > 2(¢1 + {3).
In particular, the initial states (¢p, ¢1) € Z' x Z1, (¢5, ¢3) € Z2 x Z? would
be controllable.

4
Let us see that the condition E_l ¢ Q is also necessary for the approximate
2

l

controllability. If E_l = % with n, k € N then, for every p € N the functions
2

nmtt . pnmx

Sin

4 0

pknt | pkmrx
sin

ly by

o' (t,z) = sin Z ¢*(t,z) = —sin

are solutions of (11) and satisfy

OL(t,0) + ¢2(t,0) = 0.

Consequently, the system (10) is not approximately controllable and, in particular,
is not spectrally controllable. (I

For the further identification of controllable initial states of the system (10)
with the aid of Theorem II1.2 we will need some definitions from Number Theory.
For n € R we denote by |||n||| the distance from 7 to the set Z:

llnl]| = Imin{z e R: n—x € Z}|.
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2
ProrposiTion II1.2. If 7 is irrational, then all the initial states (u},u}),

2
(ud,u?) satisfying

1 1
(20) Zﬁ(ué,nf"'Zﬁ(ul,n)Q < oo,
= n | = nPllin
1
(21) 0,n + 1n>2 < 00,
Z|||n |||2 Zn2|||” |||2

neN neN

are controllable in time T > 2(41 4 £2).
PROOF. Let us observe that for each x € R
x x
22 211=11] < [si < 7l||=
(22) =< Isinz] < aff[—]l]

(the proof of this fact may be found in Proposition A.1 in Appendix A).
Then,

62 . 62 61 . 61
20lln NIl < [sinople| < allln =l 2l |l < [sinop o] < 7llln=].
/1 4y ly Lo
Thus, the relations (20)-(21) are equivalent to (18)-(19). O

Therefore, in order to characterize subspaces of controllable initial states (10)
it suffices to estimate the norms of the sequences |||n I, |||n [Il, n € N.

A natural way of getting additional information is the followmg let p: R — R4
be an increasing function and define

v, = {:c € R, : liminf |||nz||[p(n) > o}.

Ly
Then, 1f € ¥, the inequalities

62 0
p(n
(23) S plm) (b, )P+ Y %(a},nﬁ <
neN neN
(24) Z + Z ul n < oo,
neN neN

guarantees the controllability of the initial state (ud,ul), (u3,u?).

However, in such a general setting the problem turns out to be extremely
difficult. That is why we restrict ourselves to the case p(x) = x® with o > 0. This
choice is motivated by two reason. The first one is that this choice of p leads to the
identification of subspaces of controllable initial states of the form

(’U,(i), uzl) € Ha(oa 61) X Hafl(()’ gl)a
where
H5(0,0;) { Zunsmo x: Zn% Up) <oo}
neN neN

Let us note that H(0,4;) is the Sobolev space H(0,¢;) with certain additional
boundary conditions. In particular, H'(0,¢;) = H}(0,¢;) and H°(0,¢;) = L*(0,¢;).

The second reason for this choice of the function p is that the problem of
describing the sets

U, =W,o = {:c € R, : liminf |[|nz||[n® > 0},
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is a classical and difficult problem in Number Theory. In [52] and [19] the reader
may find information on this theme. See also Appendix A where we have gathered
the most relevant facts, which will be used in what follows.

Positive results

The following results are known

1
1) For every a > 0 the sets ¥, have the property: if £ € ¥, then E eV,

2) WU, coincides with the set of irrational numbers n € R having a continuous

fraction expansion [ag, a1, ..., an,...| (see, e.g., [52], p. 6) with bounded
(an). The set ¥y is not denumerable and has Lebesgue measure equal to
Z€r0.

3) For every ¢ > 0 the complementary of the set ¥, is of measure zero
(see Proposition A.2 in Appendix A). This set is usually denote in the
literature by B. C R. As a consequence of the Roth theorem (Theorem
A.2), the set B, contains all the algebraic irrational numbers, that is, all
those numbers, which are root of polynomials of degree greater than one
with integer coefficients.

As a consequence we obtain
COROLLARY III.1. a) If f—; € B. then the subspaces of initial states
(Ué, ull) € H1+8(07 gl) X HE(Ov gl)a
is controllable in any time T > 2({1 + £2). In particular, if 5—; is an algebraic
irrational number, this subspace is controllable for any € > 0.

b) If 5—; admits a bounded expansion in continuous fraction then, the subspace
of initial states

(ué, ’U,ll) S H& (0, fz) X LQ(O, El),
is controllable in any time T > 2(41 + £3).
Negative results
We now describe some results that may be obtained as a counterpart to those

provided by Proposition III.2.
PROPOSITION I11.3. If there exists a sequence (n;) C N such that

14 14
e llpna) =0 or [llmeZlllo(m) =0, k= ox.

then, there exist initial states (ud,ul), (u3,u?) satisfying (23)-(24) which are not
controllable in any finite time T.

PROOF. Recall that the fact that all the initial states satisfying (23)-(24) are
controllable in time T is equivalent to the fact that the following inequalities are

verified:
T 1 2 2 1 1 2 1 2
@) [0+ Geora = 0% S (Groba + 0h?).
r 1
@) [0+ deola = Y oo (GRd) ),

neN
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for any solution of (11) with initial states (¢f, $.) € Z* x Z%, i = 1,2.
We assume that

L
(27) x5 lllp(e) — 0
2

and we will proved that under this assumption the inequality (26) is impossible.
Indeed, from (27) it holds that, for every k € N, there exists my, € N such that

l
nkg—l —my| p(ng) — 0.
2
Then,
(28) |02, — ok, | o) = |75 — T8 o) — 0.

On the other hand, after replacing in (26) the solutions

1 2

dr(t, ) = cos on, tsino), x, ¢r(t,x) = — cos o2 tsinol «,
it holds
T
/0 lor,, cosop, t— o5 cosor t]dt > Cop™?(ny)(0s, )
and then
(29) |02, — b, | = Cp2(m)

(we have used the inequality
T
x cosxt — ycosyt|?dt < 4|z — y|?2®T
Yy Yy Yy )
0

for y > x > 1, which is easily obtained using, for example, the main value theorem).
Thus, from (29) we obtain

02, = ob o) = C,

nk_

what contradicts the property (28) of the sequences (ny) and (my). O

The first important consequence of Proposition II1.3 is based on the Dirichlet
theorem: for all a < 1, £ € R and e > 0 there exist an infinite number of values
of n such that |||n&]||n® < € (see [19], Section 1.5).

COROLLARY III.2. For all the values £1,¢5 of the lengths of the strings and
every a < 1 there exist initial states
(uz)vuzl) EI:IO‘(O’&) x]floz—l((),&)’ i:172a

which are not controllable in any finite time T. In particular, there exist non-
controllable initial states in L?(0,¢;) x H=1(0,¢;), that means that the system (10)
is not exactly controllable in any finite time.

The following result of negative character is based on a construction due to
Liouville. Let us consider the series

(30) =) 107",

keN
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where (a) is an increasing sequence of natural numbers. Then, for each p € N,
€107 — m| =10 Y 107 < 10% %+,
k>p

Let us assume that p : R — R is an increasing function. Fix € > 0 and choose a
sequence (ay) that verifies

€
109k 74k +1 <
p(109%)”
or equivalently,
109
a1 > ax +1g %

Then, for the natural numbers n, = 10%, p € N, it will be true

np€lllp(np) < e

Summarizing, it is possible to construct real numbers, which are approximated
by rationals faster than any given order p.
From Proposition II1.3 it follows

COROLLARY III.3. For any increasing function p : R — Ry, it may be found
values of the lengths £1,0s of the strings such that there exist initial data in the
subspace defined by (23)-(24), which are not controllable in any finite time T. In
other words, the subspace of controllable initial states may be arbitrarily small.

REMARK IIL.2. The numbers of the form (30) are called Liouville’s numbers.
The discovery of such numbers had a transcendental importance in the history of
mathematics: Liouville had been able to prove that, if £ is an algebraic irrational
number of order p (that is, £ is a root of a polynomial of degree p with rational
coefficients and there is no polynomials of smaller degree having that property)
then, the inequality

[én —m| <

np—1
has no solutions m,n € N. Therefore, the numbers defined by (30) are not algebraic.
This fact allowed to show for the first time the existence of non algebraic numbers.

3. The three string network with one controlled node

The rest of this chapter will be devoted to the study of the control problem for
the three string network with a single exterior controlled node. The scheme we will
follow will allow us to deal in Chapter IV the case of general tree-shaped networks.
That is the main reason of the detail study we present here, though it is possible
to reduce the of identifying subspaces of controllable initial states to the analogous
problem for the system of two simultaneously controlled strings already solved in
Section 2 (see also Section 8).

The motion of the network is described by the system

ul, —ul, =0 in Rx[0,¢;] i=0,1,2,
u®(t,0) = ul(t,0) = u?(t,0) teR

(31) u?(t,0) + ul(t,0) + u2(t,0) =0 teR
u(t, o) = v(t), u'(t, ;) =0 teR i=1,2,
u'(0,2) = ud(z), ui(0,z)=ui(z) z€]0,4] 1=0,1,2,
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which coincides with (1), except by the fact that now v = 0.

(uncontrolled node)

F1GURE 3. The three string network

Let us observe that the homogeneous version of the system (31), that is, when
v = 0, coincides with (2).

From the general results of Chapter I we know that there exists a sequence (c,)
of positive numbers such that

T
(32) [ 1ht e = 3 cauadh + 63,0,
0 neN
for every solution ¢ de (2) with initial state (¢,, ¢;) € Z x Z, if, and only if, the
space of initial states (g, @1) verifying
2 2

u u
0, 1,
(33) E —* < oo, - < oo,
c 2u
neN " neN T

is controllable in time 7.

Let us observe that the exact controllability of the system (31) is then equivalent
to the existence of a subsequence (c,) with the property (32) and having and
positive lower bound:

(34) cn >c>0, n € N.

Unfortunately, that is impossible for the system (2), independently of the lengths
Lo, £1, €2 of the strings. In Proposition III.7 we will prove that, for any £y, £1, ¢2,
there exists a subsequence (ny) C N such that

lim (Anen = An) = 0.

Then, if the inequality (32) is verified, if we replace the solutions of (2)

(_bk(ta :L') -

COS Ap,+1t @nkﬂ(x) - COS Ap, 9% (x),

Hnp+1 Hny,
where
Hn = eg,x(g())a
we would obtain

/\2 1 /\2 T T3
C %ﬁ_ + % < / | cos A, 11t — cos )\nk_t|2dt < ?|/\nk_+1 — )\nk_|2.
0

%nk—i-l %nk
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But |s,| < O\, (see formula (70) in Remark I11.4). Consequently, if
cn > c> 0, n €N,
it would exist a constant C' > 0 such that
C < a1 = A%,

for every k. This contradicts the choice of the subsequence (A, ).
As a consequence, if a sequence (c,) has the property (32) then, necessarily,

liminf e, = 0.
n—oo

Thus, the system (31) is not exactly controllable for any choice of the values of ¢y,
01, {5 and T. That is why we concentrate on proving inequalities of type (32) with
coefficients ¢, (they will be called weights), which do not satisfy the condition (34).

4. An observability inequality

In this section we prove the following property of the solutions of (2)

THEOREM IIL.3. There exists a positive constant C such that every solution o
of (2) with initial data (¢gy, p1) € V x H satisfies the inequalities

-
|t era=ce g =12,
where T* = 2(bg + €1 + o).

In Theorem III.3, E;(,_b is the function obtained by applying the operator ¢~
defined (IL.7) for £ = £; to the solution ¢ of (2). Due to the linearity of £, the
function £; ¢ is also a solution of (2). In particular, its energy El;ib(w is conserved
in time.

If we intend to prove an inequality of the type

T
(35) | ek eopar > g,

for the solutions of (2), what is equivalent to prove that for some ¢ € R and
i=0,1,2,

T
/0 162(t, €0)[2dt > CEy (D).

it is natural to try to proceed as in Section 1, that is, to apply Proposition II.1 to
estimate the energy of each string. Thanks to Proposition II.1, we will have for
every t € R and i = 1,2,

B, (i) < C ( [oeopas | |¢i<t,o>|2dt) |

Ey(f) < C ( [t pas [ |¢2<t,eo>|2dt) = [1h0t, o

(we have not written the limit in the integrals, we will come back later to that issue
in detail).
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Thus, if we are able to prove that there exists C' > 0 such that, for i =1, 2,

T
c / 162t o) P,
0

IN

(36) JURE

IN

T
) Joiwopa < c [ idewpa,

we obtain the inequality (35).
The inequality (37) is proved without difficulty for ¢ = 1,2: in view of the
coupling conditions and the formulas (8) it results

(38) 1 (t,0) = 7 (t,0) = ¢ (t,0) = €5 d2(t, o)
and then

[1sicopa = [1g et < [1obwwpa =12

However, the inequalities (36) are more delicate; moreover, they are not true?.
In spite of what happens with ¢; (.,0), 7(.,0), the traces ¢L(.,0), $>(.,0) can not be
expressed in a direct way as a function of gbg(., £y); for them the coupling condition

in this node allows just to guarantee that
62 (,0) + ¢5(t,0) = —(F ¢ (¢, Lo)-
Nevertheless, the boundary conditions ¢ (¢, £1) = ¢2(t,¢2) = 0 provide additional
information:
0= ¢y (t, () = £ G1(1,0) + €7 ¢, (1,0),  i=1,2,
from where it holds
(39) 07 6o (1,0) = —(f 61(t,0) = 7 Lo 8 (t, bo), i=1,2,
In this way, we arrive to the system of equations
w) { g DGO =100
09, (8,0) = g1(t), L5 ¢5(t,0) = g2(t),
which is satisfied by the traces ¢.(.,0), ¢2(.,0), where

Let us observe that f, g1, g2 are functions such that their norms in L? may be
estimated in terms of the norm L? of ¢ (., y) with the help of Proposition I1.2.

Then the following question arises: is the information (40) sufficient to prove
the inequality (35), at least with a weaker energy? The answer is yes; the idea is
the following: if we apply, for example, the operator ¢; to the first of the equations
(40) we obtain uncoupled conditions

(41) (6:(0) =91, G (,0) =6 f =g
Due to the linearity of the system (2) and the operators ¢ and {5, if b is a
solution of (2) then the functions ¢ ¢ and ¢; ¢ (the operators act in this case over

21If this inequalities were true, it would result that the whole energy space H x V' be con-
trollable. This, as we will see later, never happens, independently of the values of the lengths ¢o,
01, £2 of the strings.
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the variable ¢ of @) are also solutions of (2). Besides, the following inequalities take
place

(l;Ne =0 0%, (7" =1L7¢;, for i=0,1,2, and j=1,2.
Then, if we choose the solution @ = ¢ @ of (2) we will have
(W =076y, (w)e=Lr¢p, for i=0,1,2,
and the relations (41) become
we(0)=g1,  wi(,0)={f—g1

This implies that wl(.,0), w2(.,0), may be estimated in terms of the L?-norm of

#°(., Lo). Of course, the same happens with the traces w; (.,0), w?(.,0) and w?(., o)
due to the continuity of £; (Proposition I1.2). With this it may be proved that

/|¢2(t,€o)|2dt > CE,.
Following this simple argument we will prove that

_ ProrosiTION IIL4. There exists a positive constant C' such that every solution
¢ of (2) with initial data (¢y, d1) € V x H satisfies the inequalities

T;
/ |02t  6o)Pdt > CE,-5, j=1,2,
0 J

where® T; = 2(€y + £; + max{l1, l2}).

PROOF. We have almost already prove this result; we just need to follow care-
fully the integration intervals to obtain the indicated observation time. We will
prove the assertion for ¢ = 1; for ¢ = 2 the proof is, obviously, similar.

Let us observe first that, since w?(t,fy) = 0, wO(t,4o) = €1 ¢2(t,Lo), then, in
view of Proposition I1.1, for any ¢ € R, the energy E,o of the solution @ on the
string eq satisfies

N erlo erlo
E,o(f) < C/ | (t, £o)|>dt = C’/ |07 @2 (t, £o)|?dt,
E*lo E*lo
and from Proposition I1.2 it follows that, for ¢ € [lo+ €1, T1 — Lo — £4],
R E+EU+21 T
42 EBa<c Bt )Pde < C [ 160 ko) P
t—Lo—t, 0
If we can prove that there exist C' > 0 and ¢ € R such that
t—4; . T
(43) | wteopa<c [ s P
i—¢; 0
i—t; T
(44) [ wieopa<c [Nie )P
i—; 0

3This result is very close to Theorem II1.3 but in a larger observation time. If £; < ¢2 the
inequality of the theorem is immediately obtained for 7 = 1, since T7 = T™.
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i = 1,2, for every solution of (31) with v = 0, then, based on Proposition II.1 we
would obtain

T
Ewi@)SC/ |62 (t, o) |*dt, i=0,1,2
0

and then, in account of (42),
T
By (®) = Byo®) + By () + By < € [ jobe o).
0

So, we concentrate ourselves in proving the inequalities (43). As it has been
pointed out above (in the formulas (38)-(39)) we have the equalities

(45) wi(t,0) = €7 ¢4 (t,0) = 6 Ly ¢t bo),  i=1,2,

(46) wy(t,0) = €7 ¢(t,0) = —£F $1(£,0),  wi(t,0) = wi(t,0) = b1 L GL(t, bo).
Then, combining (45) with Proposition I1.2, we can ensure that, for any # € R,

tAJrll erll E+€g+2€1
[ wbwopd= [l Geeopd <o 68t o) .
t

Afll t—41 1?76072/@1
In a similar way it is possible to prove the inequalities

401 t4+0o+201
[ wieore < c 80,0t
5721 57207261
t+0o t+Lo+E1 402

(47) / W3t 0)2dt < C 162t €o) P,
f—@g f—@o—ﬂl—ﬂg
i4+eo t4-Lo4-b1+L2
/ WA, 0)2dt < C / 162t €0) .
5722 5720721722

Now it is easy to see that if we choose t = fo + £1 + max{f1, {2} in (47) we
obtain® the inequalities (42), (43). With this the proposition is proved O

Let us assume now that ¢1 < f5. Then Ty = 2(dy + ¢4 + ¢2) and To = 2(¢g +
01+ 03) > Ty. In fact, the value of the observation time T3 may be reduced.

The possibility of choosing an observation time smaller than Ty (T already
coincides with 7), which allows to obtain the assertion of the theorem from Propo-
sition III.4, is based on a property of generalized periodicity in time of the solutions
of the homogeneous system (2) (see Proposition IIL.5), which allows that all the
L*information on the traces ¢ (t, £y) of these solutions may be obtained in a time
interval of length 7. This makes the observation in a larger time superfluous.

We define the operator
Q= 0070y + Ly by + by by 05
Then,
PROPOSITION IIL5. For every solution ¢ of (2) with initial data (¢g,d;) €

V x H it holds
Qp2(t, Ly) = 0.

4We have that £ € [¢o +4£,,T1 —4£o — £,], what is necessary for the inequality (42). This value
of £ has been chosen so that the numbers £ — lo — 204, f+£0 + 201, i— lo — 041 — {2, i+ lo+ €1+ lo
belong to the interval [0, T}].
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PROOF. From the relations ¢} (t,0) = —ly ¢2(t,4o), ¢2(t,0) = €52t Lo), we
have that
Qoo (t,lo) = Lyl (5o lt, b)) + (65 + €7 65)E5 63 (¢, o)
= L7l d5(1,0) = (6 by + 07659y (1,0).
We recall now that ¢} (t,0) = ¢} (t,0) = ¢7(t,0)
(48)  Qdg(t,fo) = £y ly ¢ (t,0) + Ly (—£{ 61 (¢,0)) + £y (=3 67 (¢, 0)),

and from the equalities (1 ¢; (t,0) 4+ €7 oL (t,0) = 0, (567 (t,0) + €5 ¢2(t,0) = 0
(obtained as in the proof of Proposition III1.4 from the coupling and boundary
conditions) from (48) it holds

Qpo(t, lo) = L1705 do(t,0) + 05 L7 ¢y (¢, 0) + €7 €5 ¢ (£,0)
= 0705 (62(t,0) + ¢4 (t,0) + ¢7(t,0)) = 0.
O

The usefulness of Proposition II1.5 in our context relies on the following prop-
erty:

For every T > 0 there exists a constant Cp > 0 such that every continuous
function 1, which is a solution of Qv =0, satisfies the inequality

(49) / W(0)[2dt < Cr / (),

where, as before, T* = 2({y + €1 + {3).

This fact, when applied to u%(¢,¢), give the assertion of Theorem I1I.3 from
Proposition II1.4.

The proof of this property will be given en Chapter IV in more general con-
ditions. Now we restrict ourselves to the particular version corresponding to the
operator Q, which allows to illustrate clearly the idea of the proof in the general
case.

Let us assume that ¢, = min{¢y,¢1,¢2}. If we are able to prove that, for
arbitrary 7' > 0 and 1 satisfying Q¢ = 0,

T T—24,
(50) / (t)2dt < C / () 2,

then we can get the proof of the assertion (49), iterating this inequality as many
times as necessary to obtain 7' — 2nf, < T™*.

Let us observe that, according to the definition of Q, the equality Qi = 0 may
be written as

(g ly + Lyt ey + 650003 =0
and then, from the definition of the operators @E results®

3Pt +lo+ b+ La) =t + Lo+ b —La) —Y(t + o — b + la)—
=t — Lo — b1 — o) — —p(t — Lo + {1 + L)~

=t —Llo+ b1 — La) —Y(t — Lo — b1 + L) + 3Y(t + Lo + 41 + £2) = 0.

5Tt is a lengthly, but completely elementary computation.
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Replacing the variable t by ¢ — (o + 1 + £2) the previous inequality may be
written as

Y(t) = et —7),

el
where

I':.= {2[0, 2[1,262,2(60 +£1),2(€0 +£2),2(€1 +£2),2(€0 + 4 +£2)}

and the coefficients ¢, are equal to 1 or —%. From this, using the Cauchy-Schwarz
inequality,

(51) / |dt<CZF/ Ot —7)dt = C’ZF/ (t)|?dt,

for some constant C' independent of ¢ (in fact, it may be taken C' = %)
But every 7 € I satisfies 20* <7 <T* sowe have T* —7>0and T —7 <
T — 2/4,; and then the following inequality

T—71 T—2¢,
/ hwwﬁs/ (),
T*—1 0

which, after being replaced in (51) gives

/ 1(8)] dt<CZ/T " ) dt?C/T " () 2dt.

el

T T T T—2¢,
2 _ 2 2 2
| ke = [ wwras [ popa<e [ wokae

which is the inequality (50).
Thus, we have proved the inequality (49) and with this, Theorem IIL.3 is also
proved.

Finally

5. Properties of the sequence of eigenvalues

The relation of the operator Q with the system (2) is not purely technical.
This operator is closely related to the boundary conditions (2), as Proposition II1.5
shows. Besides, the operator Q is linked in a direct way to the eigenvalues of —Ag.
Indeed, if we apply Q to the function e, where A is an arbitrary real number,
since £Te* = cos M e*M and £~ e = isin M e, we obtain

Qe = (s + Loy + Ly ey ef) e
= — (cos My sin My sin Ms + sin Mg cos Mq sin Mo+
+ sin Mg sin Ay cos M) et
Thus, if we define the function
(52)
g(A) := —(cos Mg sin My sin Ms + sin Mg cos Ay sin Mo + sin Mg sin Ay cos M),

we arrive to the relation
QeiAt — q()\)ei)\t.
It takes place
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PROPOSITION IIL6. Let A # 0. Then A? is an eigenvalue of —Ag if, and only
if, q(\) = 0.

PROOF. The necessity of this condition is immediate: if )\Q_is an eigenfunction
with associated eigenfunction @ then the function @(t, z) = e**d(z) is a solution of
(2). According to Proposition II1.5 we have

0= Q¢2(t, L) = Qe (£g) = q(N)e02 (o).

From this inequality it holds g(A) = 0if 2 (£y) # 0. On the other hand, if §2(¢5) = 0
then the function 6°, which is a solution of a second order ordinary differential
equation satisfies 6°(¢p) = 6° (£) = 0, and this implies #° = 0; in particular,
6°(0) = 0. From the boundary conditions we have that #'(0) = 6%(0) = 0. This
means that A? is also an eigenvalue of the strings e; and e, and therefore,

sin M = sin My = 0.

If we replace these equalities in (52), we obtain g(A) = 0.

Now we will see that the condition g(\) = 0 is also sufficient for A* to be an
eigenvalue. It suffices to construct a non-zero eigenfunction # associated to A\*. We
look for the components of 6 in the form:

(53) 0'(z) = a;sin Nz — £;), i=0,1,2,

what guarantees that the boundary condition are satisfied 6°(¢;) = 0. The remain-
ing boundary conditions lead to the linear system

ap sin )\60 = ai sin )\61 = a2 sin )\62,
agA cos Mg + a1 Acos M1 + asAcos Ay = 0,

whose determinant coincides with Ag(A). Thus, if ¢(A\) = 0 we can find numbers
ap, ai, az, not all of then equal to zero, such that the function 6 defined by (53) is
an eigenfunction. O

REMARK II1.3. The proof of the fact that the condition given in Proposition
1I1.6 is necessary may be done in a simpler way without using the operator Q,since
the boundary conditions imply that an eigenfunction is necessarily given by (53). If
this eigenfunction does mot vanish identically, the determinant of the liner system
is equal to zero. Thus, ¢(\) = 0. However, we have used the properties of Q because
this is natural technique we will use in Chapter IV to prove properties related to
more general networks.

An important consequence of Proposition IT1.6 is that, if we denote by (o,,) the
increasing sequence formed by the elements of the set
T T T
—NU —-NU —N,
o b 12
which are the positive square roots of the eigenvalues of the strings with homoge-
neous Dirichlet boundary conditions and by (A,,) the increasing sequence formed by
the positive square roots of the eigenvalues of the network, then, for every n € N,

=

(54) A < op < )\n-i-l < Op4ti-
Indeed, in every interval (o, 0,+1) the function g(A) may be expressed as

q(A) = hi(AN)ha(N),
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where
h1(X) = sin Mg sin M; sin Mz, ha(X) = cot My + cot My + cot M.

Let us observe that under the hypothesis that all the ratios f—; (i # j) are irrationals,
the numbers A, are the positive zeros of ha()\), while the numbers o, are the points
where ha()\) — £oo. It suffices now to note that on every interval (o,,,0,41) the
function ho(A) is strictly increasing to conclude that necessarily the numbers o,
and )\, alternate, that is, (54) is verified.

The inequalities (54) allow to obtain information on the numbers A,, from the
properties of the sequence (0,,).

Let us observe that from (54) we obtain for every n € N,

)\n+4 —Ap > Onp4+3 — Onp.
But, for every n € N, among the four numbers o,,0,41,0n+2,0n+3 there are at
least two corresponding to the same string. This implies that for every n, there
exists ¢ = 0,1, 2 such that

Ont3 — Op > —.
;i

Consequently, the following generalized separation property is valid

) 1 1 1
)\n+4 - An > T min (%7 Zv E) )
for every n € N. This generalized separation property allows to apply the technique
derived from Theorem I1.4 in the proof of observability inequalities of the type (32).
On the other hand, if ny and n, denote respectively, the counting functions®
of the sequences (\,,) and (¢,,) then

ny(r) <na(r) < ng(r)+ 1.

The function n, (r) may explicitly computed as the sum of the counting func-

tions of the sequences (Tl}—o’r) , (Tl}—f) and (Tl}—:) . It holds

PR )

o,

no(r) = |

where [n] denotes the integer part of the number 7. Therefore, we obtain

7‘£0+£1+£2—1§7’L)\(T)§1+7“£0+£1+€2+
Vs s

(55) 1.

Then, the sequence (\,) has density

D(\) = lim na(r) _ o+ 4y +€2,
r—oo T T
which coincides with the density of the sequence (o,,). It is essentially due to this
reason that the time of observation in Theorem II1.3 T* = 2(¢g+¢1+¢2) = 27D (Ay)
is optimal.
Besides, the inequality (55) implies that

An T
lm —=————.
(56) HLH;O n lo+ 41+ {o

6The counting function n(r) of the positive sequence (An) is the number of elements of the
sequence contained on the interval (0, 7].
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This shows that the eigenvalues of the network behave asymptotically as the eigen-
values of a single string of length £y + ¢1 + £5.
Another important consequence of the inequalities (54) is the following.

ProrosiTiON II1.7. For any values £y, £1, {5 of the lengths of the strings there
exists a subsequence (nr) C N such that

lim (A1 = A,) = 0.

PRrROOF. According to Dirichlet’s theorem on the simultaneous approximation
of real numbers by rationals (see [19], Section 1.5), for every € > 0 there exists an
infinite number of values of k € N for which there exist natural numbers pg, gx such
that

fl 62
k— — k— — .
‘ EO Pk <g, ’ 60 qk <e
Then
(57) kel o (TR T
60 61 EO 62
where

, . [ me me
g =minq —,—>.
0 0y

. {ﬂ'k: TPk qu}
Op, =Min{ —, —— —— 4.

Let n, € N such that
by 07 Ly
Then, from (57) we obtain the inequalities
Onpt2 — Oy, < 26
But, in view of (54), the latter inequality implies
A1 — Any, < 2€,

for infinite values of de k € N.
Taking into account that ¢’ may be chosen arbitrarily small, the assertion of
the proposition is obtained. (I

6. Observability of the Fourier coefficients of the initial data

Our aim in this section is to express the inequalities of Theorem II1.3 in terms
of the Fourier coefficients of the initial data of the solution ¢ of (2). To do this, we
should express Er&, j = 1,2, in terms of those coefficients.

J

If ¢y, 4, € Z, that is, if the sequences (¢o.n) and (¢;,,) are finite, then from
the formula (4) it follows

- _ Prn , . .
(58) 0 p(x) =D (Gonly cosAnt + ;—vej $in Ant)0n (2).
neN n

But we have the relations

1
£ cos At = 3 (cos Ap(t 4+ £;) — cos A (t — £;)) = —sin Al sin Apt,

1
£ sin A\t = 3 (sin A, (t + €;) —sin A\, (t — £;)) = sin A, ¢, cos Apt;
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if we replace them in (58) we obtain

(59) f;(fb(ac) = Z sin )\nfj(% o8 Ant — ¢y, Sin Ant) 0 (2).
neN "

Using the formula (5) for the energy of E;(} we arrive to

(60) Epp =D sin® Auly(, 85, + 01 ,)
neN

and therefore, Theorem III.3 allows us to ensure that there exists a constant C' > 0
such that the inequalities

*

/ 69t Lo)Pdt > C > sin® Ml (11,85, + 67 ), 5 =1,2,
0

neN

are verified for every <_b0, ‘_é1 € Z. Since Z x Z is dense in V' x H, this inequality is
still valid for all ¢ € V, ¢, € H.
If we denote

(61) ¢ i= max{|sin A\pfq|, | sin A, 2|}
we will have

THEOREM IIL.4. There exists a positive constant C such that every solution é
of (2) with initial state (¢pg, 1) € V x H satisfies

-
A 0t )Pt > C S R (2 + 620,

neN

7. Study of the weights ¢,

Theorem II1.4 provides a satisfactory result as it allows to ensure the control-
lability of certain subspace of initial data. However, that subspace depends on the
coefficients c¢,,.

Let us observe first that we cannot obtain an inequality like the one given in
Theorem I11.4, with non-vanishing coefficients ¢,, not necessarily defined by (61),

when the ratio ¢1/¢5 is an irrational number. Indeed, if i—; = g con p,q € 7Z then,
for every k € Z the function ¢ = (¢°, ¢*, ¢?) defined by
#° =0, ¢'=sin Iﬁgt sin k]Z-x, $* = —sin kijt sin k%:x,
is a solution of (2) and satisfies
O (. lo) = 0.

This implies that the system is not approximately controllable’. .
In fact this condition is also sufficient.

ProposiTION II1.8. If the ratio £1/¢s is an irrational number, then all the
coefficients ¢, n € N, defined by (61), are different from zero.

7Moreover7 the unique continuation property fails on a subspace of infinite dimension
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(nodo controlado)

FIGURE 4. A localized vibration when g—f € Q.

PROOF. It suffices to observe that ¢, = 0 implies |sin \,,¢1| = |sin A, lz] = 0,
and then
Aty = pm, Al = qmr.
An that is
b_ltecq
b g

O

Summarizing we have obtained the following characterization of the lengths of
the strings for which the system is approximately or spectrally controllable in some
finite time.

COROLLARY II1.4. The following properties of the system of the three string
network are equivalent:
1) The system is spectrally controllable in time T > T*;
2) The system is approzimately controllable in time T > T™;
3) The ratio 1/l is an irrational number.

In what follows we will try to find conditions over the values of £y, ¢1, {2 , which
allows us to ensure that for some o € R all the initial states (4o, %) € W* are
controllable in time T* = 2(¢y + ¢1 + £2). More precisely, if we define

Do = {(lo,01,02) €RY : W™ C Wr- },

our aim is to indicate explicit conditions guaranteeing that (£g, {1, f2) € P,
If we can prove that for the values £y, ¢1, {5 of the lengths of the strings there
exists a constant C' > 0 such that for every n € N,

(62) en > CANJ%,

then, as it has been pointed out in Section 3.1, we will have (£o, £1,02) € Py.
Let us consider the function

a“(ly, 03, A) := (| sin My | + | sin M |)A“.

It is clear that, if for some values ¢1, £5 the function a® (¢, £, A) has a positive lower
bound:
a%(l1,03,)\) > a >0 forall A € Ry,

then, for every ¢y € R4, then the inequality (62) holds. Thus, we will be concerned
with the study of the function a.
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It takes place

PROPOSITION IIL.9. If there exists a constant C > 0 such that |||n§—;||| >Cn~®
for every n € N, then

(63) a“(l1,02,)\) > a >0 for every A > 1.

PROOF. Let us assume that the inequality (63) is false. Then there exists a
sequence (\g) such that
(64) a%(l1, 02, \i) = | sin A 1| Ap +|sin A lo| Ay — 0 (B — 00).

Let us observe that in these conditions A\ — oco. Indeed, if (Ax) has a finite
limit point A, > 1 then, from the continuity of a® follows

aa(ﬁl,ﬁg, )\*) =0.
Consequently
sin A*gl = sin A*gg = 0,

14
and this may only happen if ﬂ_l is an rational number. But in such case there exist
2

values of n € N such that
141
=0
g1l =0,

and this contradicts the hypothesis of the proposition.
From (64) it holds

(65) |sin A, 41|A; — 0, |sin A, lo| Ay — 0.
Let us denote for every k € N,
£y Mg L1\
en o= |[=2E), = 22 — g eN,
T
129 129
Sk o= [|1225), = 22— eN.
T T
Since 0 < g, 0 < %,
I mi 1 I Nk 1
im — =~ im — = —.
k—oo g ' k—oo Ak T

In particular, as A\, — 00, the same happens with the sequences my and ny. Besides,
mer < 2|sinepm| = |sin(my + e )| = sin A 41,

and thus, from (65) we obtain e;A;; — 0. Analogously, dx A — 0.
Then we have

14 1
lim <nk€—1 — mk) ny = T lim <5k% — 5;6%) ng = — lim (exng — dpny) = 0.

k—o0 5 by k—oo Ak Ak {5 k—oo
From this
e e < (gt = ) =0
what contradicts the fact |||n2—;||| > Cn~“ for allm € N. O

The condition provided by Proposition IT1.9, which implies the inequality (62),
is sufficient for W* C Wr. Now we will see that this condition is also necessary in
the following sense
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PRropPoOSITION II1.10. If there exists a sequence of natural numbers ny, ngy — oo,
for which

V4
limigH e = 0. as & — oo,

then there exist values of £y € R such that for every T > 0, the space W is
not contained in Wr. That is, there exists initial states in W, which are not
controllable.

ProoF. It suffices to choose ¢y such that
14
|||nk£—0|||nz‘ -0, as k — .
2

In fact, let m and m be the closest to nkg—; i—g,
numbers. Let (0,) be the sequence defined in page (54) and denote by py the index
for which

and ny respectively, natural

. N
Op, = min (nkg,mz,m%> .
Then we have
|0pi+2 — Opy | O'gk — 0,
and this implies, in view of the inequalities (54),
(66) [Apit1 = Apy Affk — 0.

On the other hand, the fact that all the initial states (g, 1) € W are con-
trollable in time 7" is equivalent to the following inequality being true

T
/ 1600t €0)2dt > C SN (R + 6),
0

neN

for all solution (2) with (@,,¢;) € Z x Z. However, proceeding as in page 34, it
can be easily proved that, due to (66) the latter inequality is impossible. O

As in the case of the simultaneous control of two strings, Proposition I11.9
reduces the problem of identifying subspaces of controllable initial states to the
following diophantine approximation problem: given a < 0, determine for which
values of £ there exists a constant C' > 0 such that the inequality

(67) [Ingll| = Cn®,

is true for each n € N.
In view of the results described in Section 2.1 we obtain:

COROLLARY IIL5. a) If g—; € B, then, the space W'*¢ is controllable in any

time T > T*. In particular, if i—; is an algebraic irrational number then, Wte is
controllable for any e > 0.

b) If % admits a bounded expansion in continuous fraction then the subspace
W1 s controllable in any time T > T*.

¢) There exist values of the lengths Lo, {1, 0o such that no subspace of the form
W is controllable in finite time T .
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REMARK III.4. As we will see later, the numbers s, = 9%11(80), where 0,
are the eigenfunctions of the elliptic problem associated to (2), are relevant for the
control problem when we attempt to prove the observability inequalities in a direct
way.

The eigenfunctions 0,, may be explicitly expressed in terms of the eigenvalues

sin A\, (6o — )

9701 sin A\, 4o
5, = | o . sin A, (¢1 — x)
Z " sin Angl ’
0 sin A\, (b2 — x)
sin )\nfg
where )
o 141 Lo o
Tn = V2 { sin® A4 + sin? A, ¢y + sin® Al } '
Then

) ) 1

sin“ A, 4o sin® A\ lo ]

= A V24 0y + ¢ +4 .
o { 0 ! sin? Aty 2 sin? Anfs }

A rather rough estimation is

2
68 nl > Ay —————— [sin A\, 41 sin A\, 4o .
(68) [5¢,| > \/£0+€1+52 [sin A, 41 sin A, £

Is the lengths £o, {1, {2 satisfy the condition (S)® then, according to Proposition
A.4 from Appendixz A, for € > 0 there exists a constant C. > 0 such that

[sin A 01| > )\1—;, [sin Ayl > )\1—;, n €N,
and with this, from (68) it follows
C
(69) |5¢,| > /\1J€r€.

However, with the aid of Theorem III.J it is possible to establish more precise
estimations under weaker conditions imposed to the lengths. Indeed, it suffices to
apply the inequality of the theorem to the solutions sin A\t 0,, and cos At 6, to get

T T
|%n|2/0 |lcos Apt|* dt > Cc2 N2, |%"|2/o |sin A t]* dt > Cc2 N2,
From this we obtain
[5¢,] > CX, max{|sin A\, 1], |sin A, la|}.

This inequality is obviously more exact than (68). From it we can obtain: If the

ratio g—; belongs to B. then,

In spite of the estimation (68), the latter does not impose any restriction over the
ratio £g.

8The numbers Lo, 21,42 are said to satisfy the condition (S) if they are linearly independent
over Q and the ratios %‘ are algebraic numbers. For more details see Appendix A.
J
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Proceeding a similar way, from the inequality (I1.28) we obtain
(70) O\, > enl,

independently of the values of the lengths.

8. Relation between the simultaneous control of two strings and the
control of the three string network from one exterior node

As the reader has already noted, the conditions on the lengths of the strings
that allow to identify subspaces of controllable initial states, are the same for the
simultaneous control of two strings and for the control of one exterior node of the
three string network. Besides, when these conditions are satisfied, the corresponding
subspaces of controllable initial states coincide, up to the boundary conditions, on
the uncontrolled strings. This in not by chance. The reason is the following:

THEOREM IIL5. IfV is a subspace of controllable initial states in timel" for the
system of the simultaneous control of two strings (10) then the subspace (L?(0,£g) x
H=Y(0,40)) x V of initial states for the system of the three string network (31) is
controllable in time T + 2/y.

We need some preliminary elements for the proof of this fact. We consider the
spaces

Wo = {(¢0,01) €V x H: ¢5(0) = ¢5(0) = ¢55(0) = 0},
Vo = (Hg(0,¢1) x L*(0,£)) x (Hy(0,£2) x L*(0,65)) .
For (g?)o, $1) € Wy we denote by ¢ the solution of the homogeneous system

for the three string network (2) with initial state (¢, @), and by ¥ = (0, P, 1/12),
where ¢!, 1% are the solutions of the homogeneous system (11) with initial states

(9, #1) and (¢, ¢7), respectively.
Let us choose T' > 2(¢y + ¢1 + ¢3) and denote

T
m%@m@:4|ﬁm&W@

T—4o
m%@m@:é WL(E, 0) + 2 (1, 0)[2dt.

In view of the results of Proposition III.1 and Corollary III.4, the functions ||.||g
and ||.||s define norms in Wy and Vj respectively, if, and only if, g—l is an irrational

2
number.

PROPOSITION I11.11. There exists a constant C' > 0 such that for every (¢o, ¢,) €
W07

Cll(0, 801 = 110, DIz 12 + 11(@0, 61)] -

PROOF. Let us observe that, if we apply D’Alembert formulas (I1.5)to the
component ¢” we have, in account of the fact that ¢?(t, o) = 0,

O2(t,0) = L5 00t L), Y (t,0) = —LT 0 (t, o).
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Then, from Proposition II.2 we obtain the inequalities
(71)

T Tfe[) T Tfe[)
A T L A (O A [
0 Lo 0 Lo

On the other hand, if E o is the energy of the component #° from Proposition
II.1 it follows,

Lo
Ep(0)< [ 1620 0ot
_ZO
And then, from the property (49) (see Proposition II1.5)

T
(72) 165, )y 2=2Bn (0) < € [ 1ot o).
Let us observe now that the solution ¢ may be decomposed as
(73) ¢=v+m,
were @ = (W’ wh, w?) is the unique solution of the problem
wh —wi =0 in R x [0, 4], 1=0,1,2,
74) Wit ) =0,  Ww(t,0)=¢'(t,0) en R, i=0,1,2,
W0(0,2) = go(x),  wP(0,2) = ¢1(z) in [0, ),
wH(0,7) = wi(0,2) = 0, in [0, 4;], i=1,2.

Indeed, for every ¢ = 0, 1,2, the function

satisfies ' '
T]%t - 777_:61 =0 in R x [0561]7
n'(t,0) =n'(t,t;) =0 inR,
n'(0,2) = 14(0,2) =0 in [0,4;].
Thus, 7 = 0,that is, (73) is verified. In particular,
(75) ¢(£,0) = ¢, (£,0) + i, (£,0),  i=0,1,2.

In view of the coupling conditions
9L (t,0) + ¢5(t, 0) + 43(t,0) = 0,
from (75) follows
(76) — 9y (t,0) = Y5 (£,0) + ¥3(t,0) + wy(t,0) + wi(t,0).

Thus, we have

T—4o T—2Lg
/ 3 (£,0) + 92 (¢, 0)[2dt < / |¥3(£,0) + 12 (£,0) + wi(t,0) + wi(t, 0)[*dt
¢ ¢
0 0 _—
+/ lwl (t,0) + w2(t,0)|%dt
V4
T—Oéo T—4o
< / 69,0 [2dt + / WL(t,0) + w2 (1, 0)2dt.
ZU ZO
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On the other hand, if we apply Lemma 4.2 from [35] to the system (74), we
obtain that there exists a constant C' > 0 such that

T—4o T—4g T—4o
/ W(t,0) + w2 (t,0) 2dt < C / W0 (t,0)Pdt = C / 162(¢, 0)Pt.
Lo

e[) e[}

So, we arrive to the inequality

T—£o T—£o T—to
[ ke s etwopas [ keoParo [ 60
Lo Lo Lo
and, in view of (71),
Tt T
(77) [ o s edwopa <o [ lde o)
N 0

Finally, combining the inequalities (72) and (77) the assertion of the proposition

is obtained. O

PROPOSITION II1.12. Let g € H be a continuous function such that g°(0) # 0.
Then, there exists a constant C > 0 such that for every (¢q, 1) € Wy and every
AER,

Cll(¢g + AG, ¢1)| g = ||(¢87¢?)||H3xL2 +[1(0, 1)l 5-

~ PROOF. Let us denote by ®, the solution of the system (31) with initial state
(¢p + AG, ¢1). Let us observe that

(78) A2 = [¢0(0) + Ag°(0)* < Cllgs + Ag°llF < CEqy (0).

In a way analogous to that followed in the proof of Proposition III.11 it is proved
that

(79) B0 (0) < Cll(do + A7 1| -
Then, from the relations (78), (79) we have

1(@0: @)l < [1(@o + X, 0)ls + 1@ 0I5 < Cll(@o + Ag: @)l
and the assertion holds from Proposition I11.11 O

PROOF OF THEOREM III.5. Let us denote by Fg and Fg the completions of
H and Vo with the norms ||.||g and ||.||s, respectively. In account of the fact that

H = Rg + W,
Proposition II1.11 allows us to ensure that
(H§(0,60) x L*(0,49)) x Fs D Fp.

Then, the spaces of controllable initial states Cg = F, Cs = Fy of the systems
(31) and (10) given by HUM satisfy the relation

Cr C (L*(0,4) x H™(0,4p)) x Cs.
In particular, if V C Cg then
V C (L%(0,40) x H1(0,£0)) x V,
and this is the assertion of the theorem. (I

REMARK IIL.5. The advantage of this approach is that it provides subspaces of
controllable initial states of the system (31) in which no restriction is imposed on
the reqularity of the components d)g, d)?, in spite of what is needed in Corollary II1.5.
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9. Lack of observability in small time

Due to the finite speed of propagation of the waves along the strings of the
network (equal to one in this case), it is natural to expect that, when the con-
trol time T is small the system is not controllable and by that reason, that and
observability inequality of the type (32) is impossible. This would imply that the
system (31) is not spectrally controllable in that time. It turns out that such lack
of controllability, even approximate, will occur whenever T' < T* = 2({y + ¢1 + £2).

For an arbitrary network, the lack of spectral controllability for values of T'
smaller than twice its lengths may be proved on the basis of results from the The-
ory on Non Harmonic Fourier Series (concretely, the Beurling-Malliavin theorem)
and the asymptotic properties of the sequence of eigenvalues of the problem (see
Chapter V ). However, for the three string network it is possible to give a com-
pletely elementary proof of this fact based on the explicit construction (shown in
Figure 5)of a solution ¢ of (2), whose trace ¢2(.,£) in the observation point van-
ishes during a time 7" < T*. This allows to ensure that the system (31) is not even
approximately controllable. It holds

THEOREM II1.6. Let T' < T*. Then, there exist non-zero initial states
(&07&1) € ﬂ Waa
a€R

for which the solution ¢ of (2) satisfies
(80) dh(t,lo) =0 in [0,T).

t
To=2(a+b)
T<To
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FIGURE 5. Support of a non-observable solution

In the proof of this theorem we use some technical results. Let 7" > 0 and
0 < 0 < T. We define the operator I, : L?(0,T) — L?(0,T — o) by the formula

t+o
(L £)(t) == / f(r)dr.
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For arbitrary values of o1, o2 € (0,T) the system of functional equations

(81) I, fi=0 en L2(0,T — o) i=1,2,

f1+f2:0 enLQ(OaT)a
admits the trivial solution f; = fo = 0. Our aim is to study for which values of T’
this is the only solution of (81). The answer is given by the following

LEMMA II1.1. Let Ty = o1 + o2. Then, if T < Ty, the system (81) admits
non-trivial solutions f; € C*°([0,T1), i =1, 2.

Before proving this lemma let us see how Theorem II1.6 may be obtained from
it. It is clear that it is sufficient to prove Theorem IIL.6 for large values of T" so
that we assume T > 2({y + é), where / is the largest of the numbers /1, /5.

Let f1, f2 be non-zero solutions of(81) for o1 = 2¢1, 09 = 2¢5 and T =T —20,.
We define the functions

) 1 t+x
@' (t,x) = 5/ fi(r = Ly)dr, 1=1,2,
t—x

for x € [0,4;], t € [x 4 Lo, T — o — x]. These functions satisfy

(S) { (b?pz(ta 1') = _(bit(ta 1') )
! (bz(tv 0) = (bz(tvei) =0, (bzz(ta 0) =0,
whenever z € [0,4;] and ¢t € [{g + 2, T — o — z].
Each of the functions ¢’ may be extended to a solution of (S;), which we will
denote again by ¢', defined in the region [fo, T — €] x [0,%o]. Note that these
functions have been chosen such that ¢’ (t,0) = fi(t) for t € [y, T — £y]. Besides,

0, (t,0) + ¢3(£,0) = fi(t) + fo(t) and  ¢'(£,0) = ¢*(t,0) =0,

and then, ¢ = (¢° = 0,¢",¢?) is a solution of (2) defined in the time interval
[¢o, T — £o]. Consequently, the unique solution of (2) defined on [0, T] that coincides
with @ on [y, T' — £o] satisfies the inequality (80).

It just remains to prove that the initial data of ¢ belong to W ¢ for every real
a.

As ¢° =0 and f1, fo € C°°([0,T]) this is equivalent to proving that for some
T* € [y, T — lo] and every k € N the following inequalities hold

(82)

a2k P an P a2k+1 . a2k+1 .

52k ? (T7,0) = 522 ? (T, 4;) = W¢1(T ,0) + W¢2(T ,0) =0,
and

a?k ) a2k . 82k+1 1 82k+1 9
(83) o5r (17, 0) = 5o b (17, 4) = 5 @ (T7,0) + oo 04 (17,0) = 0.

Let us observe that, if f is a smooth function then

(Lo /)P (1) = (Lo fP) (1)
This implies that, if f1 and fa are smooth solutions of (81) then so are the functions
fk), fék). That is why the functions fl(m) and fQ(m) are also solutions of the equation

(81) that defines f; and fs. Then, choosing, e.g., T* = o+ we obtain the equalities
(82) and (83).

The proof of Lemma III.1 is based on the following facts:
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ProrosiTioN II1.13. If Z—; € Q then, for every T > 0 there exists non-zero
functions ¢ € C*([0,T]) such that
I,,o=0 in [0,T—o1],
I,,0o=0 in [0,T —o3].
ProoF. If Z—; € Q there exist numbers p,q € N, v € R such that

o1 02

p q
Let ¢ € C*°(R) a not identically vanishing, v-periodic function such that

/OV o(rT)dr = 0.

t+o1 t+yp t4y
I, 0= / o(r)dr = / o(r)dr = p/ o(T)dr = 0.
t t t

In a similar way it may be proved that I,op = 0. (|

Then,

PropOSITION IIL.14. Let € > 0, T = 01 + 02 — € and Z* ¢ Q. Then, there
exists a non-zero function ¢ € C*([0,T)), such that

I,,p=0 in [0,T —o04],

(84) I,,0o=0 in [0,T —o3].

PRrROOF. The real number o5 may be expressed as g2 = no; +w, n € N,

. G1 i s W .
w € (0,01). Since & is irrational, so is ;2. Let us consider the sequence {wy}

defined by

wi € (0,01), k—wi €012
(the values of kw modulo o1). As a consequence of the irrationality of w, we have
wy # wy if k # 1 and that the sequence {wy} is dense in the interval [0, 0;]. Then
there exist k1 < 0, ko > 0 such that wg,, wk, € [01 —¢&,01) and wy, € [0,01 — ) for
every k satisfying k1 < k < ko°.

Now let us define the subsets of [0,071) :

Y = (wk,wi +7)
for k1 < k < ko, where v > 0 is sufficiently small so that it holds
N Q=0 ifk#1 and Q C (0,01) for ky < k,1 < ko.

It is not difficult to show that the sets €2 have the following properties:

(¢) ift € Q with k1 <k < ke and t = wy + 7 for some 7 € (0,7) then,
t+w=wgs1+7 if wp <wgt1,
ttw=wrp1+7—01 I wrr1 <wg.

(i) if t € [0,01 — ) \ U, then,

t+w ¢ UQ if t<o1—w,
t+w—01¢UQ if t>01—w.

9n other words, k1 < 0 and k2 > 0 are the values of k with the smallest non-zero absolute
value such that wy, is in the interval [¢1 — €, £1).
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Let us choose now a function ¢ € C°°([0,01]) with support contained in the
interval (0,7) and satisfying [,/ ¢(7)dr = 0 and define the function ¢ in [0,01] by

ot —wg) if teQy,
w(t) = { 0 it ¢ e[0,01]\ U
Then it follows ¢ € C*°([0,01]) and supp ¢ C UQ; C (0,01). In particular, the
o1-periodic extension of ¢ to R, which we still denote by ¢, verifies ¢ € C>°(R).
Let us check that ¢ is in addition one of the functions, whose existence is asserted
in the lemma.
Let t1,t5 € [0, 0'1] \ UQg, then
wm+y

/tt o(r)dr = > /Qm o(1)dr = ;/w (T — wm )dr

m:Qy, C(t1,82) m

= ;/va(T)dT =0.

In particular, if we choose t; = 0, to = 01 we get foal p(r)dT = 0, and therefore,
since ¢ is o1-periodic, I, =0 in R.

It remains to calculate I,,¢ for the values of ¢ in the interval [0,01 — ). Two
cases are possible:

Case 1. t € Qy, for some k. Then, t = wy + 7 with 7 € (0,7). We will assume
that wg < w1, since when wg1 < wy the result is obtained in a similar way.

In view of the property (i) of the sets Q) mentioned above, we obtain

t+w Wr+1+T
/ o(s)ds = / p(s)ds
t

Wr+T

Wty Wk+1+T Wh+1
/ o(s)ds +/ o(s)ds +/ p(s)ds.

wrtT Wht1 Wity

I5,0(1)

But wi + v and wg41 do not belong to U, f::j:'ly ©(s)ds = 0, and thus

Wity Wh1+T
/ (s — wy)ds + / (s — wit1)ds

k+T Wh41

I5,0(1)

= [ weas+ [ v =o.

Case 2. t ¢ UQy. In view of the property (ii), if t < 01 — w, then ¢ + w does
not belong to U2, and we have

t+w
lglt) = [ ts)ds =0,

Ift > 01 —w, then t — o1 + w ¢ UQ and it holds

t+w—o1
uww=/ (s)ds = 0.
t

This proves the proposition ([

ProoOF oF LEMMA III.1. It follows immediately from the previous proposi-
tions. It suffices to take fi = ¢ and fo = —¢ according to Propositions III1.13 or

111.14, depending on whether g—; is rational of irrational. (I
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10. Application of the method of moments to the control of the three
string network

In this section we will study the problem of moments (11.38)

T
(85) / %|k|eM’“t h(t)dt = uq k) — iAgug,p for every k € Z,,
0

for the three string network. Recall that, in view of the results of Section II.3, the
existence of a solution h € L?(0,T) of the problem of moments (85) is equivalent
to the controllability in time T of the initial state (g, @1) with

Uy = E UO,nenv u; = E Ul,nen-
neN neN

With this, our aim is to show an alternative way to the study of the control problem
for the system (31).
If we perform in (85) the change of variable t — t — £ we obtain

T

z T 1 -
/ et p(t — E)dt = — (U1,n, — IARUO.n) et

Hn

Sl

Denoting m,, := %L (U1, — PApUQ ) e“‘"%, A= %, the problem (85) will be
written in the form (I1.28). This implies, in account of Proposition II.6, that, if
we can construct a sequence (v,) biorthogonal to a (e**»*) in L? (=%, Z) then the

2172
initial states satisfying

(86) >

NELy

Pz og 12 < 00

1 .
— (U1.n — AqUo ) €
n

are controllable in time 7" with control
1 . T
v = Z %—n (u1,n — PN UO,) ez y,.
NELx

The inequality (86) is equivalent to

1
> T (] + 20 g u]) lewll e < oo
NELy "

In particular, if the biorthogonal sequence (v;,) has been obtained from a generating
function F' then all the initial states that satisfy

1
(87) > el IE" O] (Jarn] +2n Jug.0]) <00
HGZ* n n

are controllable in time T'.

Let us remark that for the three string network it is easy to construct a gener-
ating function, since we already know a function that vanishes at the numbers A,:
recall that, as it has been shown in Proposition IIL.6, g(A,) = 0, where
(88) q(z) = coszlysin 24y sin 205 + sin z€ cos z{ sin z{o

+ sin z€g cos 247 sin z{1 cos 245,

and this is an entire function bounded on the real axis: |¢(z)| < 3.
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On the other hand, if we replace in (88) cos zf), and sin z¢) by their expressions
in terms of e**** and e~**:

)

1 . ' i _
cos 2, = 3 (e”ek + 671Zlk) , sin 24y, = —3 (e”e’“ — e*”e’“)

we can see that ¢ may be written as the sum of eight terms of the form cje**",
where ¢;, are constants and

|h] < lo+ €1 + Lo
Then, there exists a constant C' > 0 such that for every z € C
a(2)] < Celtortate),

that is, the function ¢ is of exponential type at most £y + ¢1 + £o.

Then, based on the results of the Subsection II1.3.1, we can assert that there
exists a sequence (v,,) biorthogonal to (e“‘"t) in any interval (—%, %) with T >
2 (bg + 01 + £2) that satisfies

C
|onllp2—z 2y < oW neN,

where the constant C' > 0 does not depend on n.

This guarantees immediately that the spaces of sequences for which the problem
of moments (85) has a solution is dense in [2. Therefore, the space of controllable
initial states in time T > 2 (¢y + ¢1 + £2), is dense in H x V’. Moreover, all the
initial states from Z x Z are controllable.

Now we estimate |¢'(\,,)| in order to identify larger subspaces of controllable
initial states. Observe that the function ¢ may be written in the form
(89) q(z) = sin 2y sin 245 sin 245 (cot 24y + cot z¢1 + cot z43) .
Then it follows
(90) l[g'(An)| = |sin A\pfo sin A\, 0y sin A\, o] Ay,

where we have denoted

Lo 14} Lo )
A, = + + .
" <sin2 Mbo  sin? A\l sin? \plo
In account of (87), we can ensure that the initial states satisfying

1
(1) (ugn] + A Juga) < 0.
ng* |5n] 1q’ (An)] ! 0

are controllable.
To make this information more precise, we need to estimate the product|se, | ¢’ (An)|-
Recall that (see Remark II1.4)

V2h, i

= 7A
|%n| |Sin>\n£0| "o
and thus we have

en] 16" (M) = V2, [sin Anf sin Anfo| A,
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Then,

el 1d W) = 2Ai|sinAnelsinAnz2|2( fo Gl & )

+ +
sin? \,lo  sin? M\, fp sin® M\l

> 2X2 ((ysin® \plo + Lo sin® £1) > CAZc2.
Here ¢,, = max (|sin A\, 41|, [sin A, ¢2]) are the coefficients defined by (61) in Section
6.

With this we can conclude that a sufficient condition for the initial state (i, @1)
to be controllable is

1
(92) > P ([0 |+ An Jug u) < 0.
neZ, "

Let us observe that this result is weaker than that given in Proposition 6, since,
if the initial state (&g, @) satisfies (92) then it also satisfies

1
Z = (u%n + )\nu?),n) < 0.
n€Z, "

Let us choose § > 0. The series

1
Z )\’}14-5

NELy

A

converges for every ¢ > 0, as lim,, .o, 5* = y e

Cauchy-Schwarz inequality we obtain

Then, with the help of the

6—1
n

1 A 1
Z .\ (lug | +AnJuoml) < Z 2 (i + Anu ) Z o
nez, "o NEZs n n€Z, "M

< C Z ZQ (“%n + )‘iug,n) :
NELx n

Thus, for (92) to be verified and consequently the initial state (o, %1) to be con-
trollable in time T, it is sufficient that

6—1

A

n 2 2 2

E 2 (U1,n + )\nuO,n) < 00.
NEL n

In particular, if g—; € B, the controllability condition (92) obtained with the method
of moments guarantees that all the initial states from

3., .
(G, @) € W? T = VETe+d  yatets
with arbitrarily small § > 0 are controllable.

This difference between the result is due to the technique we have used, mainly

to the possible inaccuracy in the estimation of the sequence |s,||q'(A\n)]-

REMARK II1.6. According to Proposition I1.9, once we have identified subspaces
of controllable initial states in time T of the form W™ it can be constructed, a
posteriori a sequence (0y,) biorthogonal to (e"*') in L?(0,T) satisfying

190l 2o, ry < O
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Thus, in view of Corollary II1.5, if g—; € B. then for the system of the three string
network is can be constructed a sequence () biorthogonal to (e"*') in L?(0,T)
verifying

(93) [onll20,my < CAZ-

Let us remark that the biorthogonal sequence (vy,) used in this section not neces-
sarily coincides with (0,,). Recall in addition, that we do not resort to that sequence,
since to attempt to get information on controllable subspaces without using the in-
formation provided by Corollary II1.5. The norms of the elements of the sequences
(vn) could be estimated in the following way. Since

Ionllzaaty < s
(% =T,/
nllL2(—A,A) |q/(/\n)|
it suffices to estimate |¢'(A\y)|. From the equality (89) we obtain
I’ (An)| > Lo lsin Ay sin A\ la| + €1 |sin A€o sin A\ la| + £a |sin A, £g sin A, 41 |
Z CS(A,go,Kl,EQ),
where we have denoted
s(A\, Lo, €1, 02) = |sin A fo] [sin Ap 1] + [Sin A Lo [sin Ay la| + [sin Apfy | [sin Apfa] .
To obtain lower estimates of the function s we need to impose additional restrictions
on the lengths £y, 01,05. Let us assume that those lengths satisfy the following
rational approximation conditions, which we will call briefly conditions (S) (see
also Definition A.1 in Appendiz A ):
o (o, 01,05 are linearly independent over the field Q of rational numbers;
e all the ratios % are algebraic numbers, that is, roots of polynomials with
rational coefficients.

Under these hypotheses it is proved in Proposition A.4 that for every e > 0 there
exists a constant Cc > 0 such that for every n = 1,2, ..., the following inequality
holds

5(Ans o, 01, 62) > C= (N) ™1 7°.
This guarantees that
1
||Un||L2(_A,A) < OA

Unfortunately, we have imposed restrictive conditions on £y and we have been
able to prove an estimate weaker than (93). This fact could be caused by two reason:
that the norms of the elements of the sequence (v,) are actually larger than those

of the elements of the sequences (Uy,) or that the technique we have used to estimate
|¢'(A\n)| is not precise enough.






CHAPTER IV

General trees

In this chapter we study the control problem from one exterior node for net-
works of strings, which are supported on a tree-shaped graph. We will follow the
technique described in Chapter III for the three string network, which is the sim-
plest example of a network supported by a tree-shaped graph, not reduced to a
single string.

Let us briefly recall this technique. The key element is the construction of
an operator B : V. x H — V x H, which guarantees the existence of a constant
C > 0 such that all the solutions of the homogeneous system (I.11)-(I.16) with
initial states (¢g, ¢;) € Z x Z satisfy the observability inequality

T — —
c / 10,64 (t, vo)Pdt > B, 1) .

where T is twice the total length of the network (here we used the notations intro-
duced in Chapter I for general networks).

The operator B has the property of being essentially a diagonal operator: there
exist real numbers b,, such that

neN
This leads to the inequality

T
c / 10,6t v) Pt > S8 (102 + 62.)
0

neN

which allows to indicate subspaces H x V' of controllable initial states in time T

1. Notations and statement of the problem

1.1. Notations for the elements of the graphs. In this section, we in-
troduce precise notations for the elements of the rest configuration graph. This is
needed to write the equations of the motion of the network in a way that takes into
account the topological structure of the graph.

Let A be a planar, connected graph without closed paths. According to the
usual terminology in Graph Theory, those graphs will be called trees. By the
multiplicity of a vertex of A we mean the number of edges that branch out from that
vertex. If the multiplicity is equal to one, the vertex is called exterior, otherwise,
it is said to be interior. We assume that the graph A does not contain vertices of
multiplicity two, since they are irrelevant for our model.

In what follows, we describe a procedure for indexing the edges and vertices of
the graph. In Figure 1 an example is given of a tree with indices defined according
to this rule. First, we choose an exterior vertex and denote it by R. It is called

7
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the root of A. The remaining edges and vertices will be denoted by e5 and Og,
respectively, where & = (aq,..., ) is a multi-index (possibly empty) of variable
length £ defined by recurrence for every edge in the following way.

For the edge containing the root R we choose the empty index. Thus, that edge
is denoted by e and its vertex different from R is denoted by O.

Assume now that the interior vertex Og, contained in the edge es, has multi-
plicity equal to mg +1. This means that there are mg edges, different from eg, that
branch out from Q5. We denote these edges by eaos, 8 =1,...,mg and the other
vertex of the edge eaop by Oaop. Here, & o B represents the index (aq, ..., ag, 3),
obtained by adding a new component 3 to the index & = (a1, ..., ax). In general,
if @ = (ay,...,a) and B = (B4,-..,3,,), then &o 3 will denote the multi-index of
length k + m defined by a0 8 = (a1,...,ak, B1s-- - Bm)-

Let now M be the set of the interior vertices of A and S the set of exterior
vertices, except R, and define

JM:{d, OQEM}, jgz{d, 0&68},

which are the sets of the indices of the interior and exterior vertices, except R,

respectively. Note that with these notations, we admit the empty multi-index,

which corresponds to the vertex O and belongs to one of the sets Jy or Jg. Finally,

J =T JTn is the set of the indices of all the vertices, except that of the root R.
Further, for & € Jyq, the sets

As = {e&og; aofe J}

are called sub-trees of A. Note that Ag is formed by the edges having indices with
a common initial part &. This means that Ag is also a tree branching out from the
vertex of es different from Og. Then, if one chooses that vertex as the root R5 of
As and denotes by eg the edge with index 3 in A4 according to the numbering
rule defined above for trees, it holds that

€503 = e%‘ Os0p = O%.

In order to prove properties of trees, we shall often proceed by induction with
respect to the largest length of the indices @ used to number the edges according
to the procedure described above. To do this we should prove that:

(1) The property is true for the simplest case of a one-edged tree (i.e., the
corresponding network is formed by a single string).

(2) If the property is true for all the sub-trees Ay, ..., A, branching out from
O, then it is also true for the whole tree A.

In what follows such process will be called simply induction.

Besides, the length of the edge e; will be denoted by £5. Then, ez may be
parameterized by its arc length by means of the functions 74, defined in [0, £5] such
that 75(¢a) = O and 75(0) is the other vertex of this edge.

Finally, we denote by L4 and Lg, & € J, the sum of the lengths of all the edges
of the tree A (i.e., the total length of A) and of its sub-trees Ag, respectively.

1.2. Equations of the motion of the network. In this subsection we write
the equations of the motion of the tree-shaped network with a controlled node (I.11)-
(I.16) with the specific notations introduced for trees in this chapter. The vertex of
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02,21

FIGURE 1. A tree with indices for its vertices and edges

the graph A corresponding to the controlled node of the network has been chosen
as the root of the tree.

1) ul(t,z) =ul, (¢ ) in Rx[0,45], @€l

(2) u(t,0) = v(t), in R,

(3)  u*(t,la)=0 inR, aecls,

(4)  u™P(t,0) = u®(t,l) inR, B=1, ...,ma, @€,
(5) > A= uS(t,0) = uS(t,la) inR, &€ I,

(6) u®(0,7) = uf(x), ud(0,2)=uf(z), in[0,4s], @ €.

For every & € J, the function u®(¢,z) : R x [0, £5] — R denotes the transversal
displacement of the string with index a. We will denote by u the set whose elements
are u®, @ € J. In particular, the sets of initial states (u§)acy, (uf)aey of the strings
are denoted by @° and @!. With these notations, the remaining elements relative
to the system (1)-(6) are defined exactly as in Subsection 2.2 of Chapter I.

We also consider the homogeneous version of the system (1)-(6)

(1) ot x) = 65,(t,2) in R x [0,05], ac],

(8)  ¢(t,0)=0, in R,

(9) ¢*(t,la) =0 inR, acJs,

(10)  ¢°P(t,0) = ¢*(t, La) inR, B=1, ....ma, @€,
(11) > 3 ¢5°0(t,0) = 5 (¢, La) in R, &€ Iy,

(12)  ¢%(0,2) = ¢§ (), 7(0,2) = ¢ (x), in[0,4a], @c.

The solution of problem (7)-(12) is given by

(13) B(t) = Z (¢0,k cos A\t + qb/\l—: sin )\kt) 0,

keN
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where (fg ;)ken, (¢1.1)ren are the sequences of Fourier coefficients of the initial

state (&30,&1) in the orthonormal basis (f3)ren formed by the eigenfunctions of
the elliptic operator —A 4 corresponding to (1)-(5). Recall that (uy)ren is the
increasing sequence of eigenvalues and Ag := /1.

For technical reasons, we will also consider solutions ¢ of (7) such that ¢ €
C?(R x [0,44)), satisfying (9), (10) and (11), but not necessarily (8). That is, ¢ is
a smooth solution that satisfy the boundary conditions given in (7)-(11) at all the
nodes, except at the root R. These solutions will be briefly referred as solutions of
(N). In the same way we define a solution of (N) on the sub-tree Ag.

For a solution ¢ of (N) we define the functions

(14) Ga(t) == o2 (t,0), Fa(t) := ¢2(t,0),

(15) Galt) == ¢%(t,ls),  Fs(t) == ¢%(t,la),

for every @ € J. These functions are the velocity and the tension at the extremes
of the string ej.
According to the coupling conditions (10)-(11), we will have the formulas

(16) Gaop(t) = Galt), Z Faop(t) = Falt),

foreveryt e R, @ € Ing, 8= 1,...,mg5.
On the other hand, from the D’Alembert formulas (5) we obtained the equalities

ﬁ@ :ggF@+€;G@, é@ :ggF@+€gG5”

for all @ € J. In view of them, the coupling conditions (16) at the interior nodes
may be expressed as

(17) G@oﬁ(t) - g;F@ +£;G@,

(18) > Faoplt) = (IFs+1;Ga.
B=1

For a function w(t) defined on the tree A the energy of @ on the string e is
defined by

1

la
Fa () = 5/0 (lwf (8, 2)[ + [wl (¢, 2)|?) da.

For a sub-tree A4, we denote by E2 the total energy of w on the sub-tree:
ES(t) = Y EXP().
B:a0pBeT

In particular, the total energy of w on the network is

Ey(t) =Y _ E3(t).

acd
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2. The operators P and Q

In this section we define two linear operators P and Q that allow to express the
relation

(19) PG +QF =0

between the velocity and the tension of the solutions of (N) at the root of the tree.
These operators will play an essential role in the proof of the main observability
results, so we study them in detail. In particular, we need information on how they
act on the traces F5 and G5 of the other components of the solution at the interior
nodes.

First, P and Q are constructed for a string. Then, using a recursive argument,
they are obtained for general trees.

2.1. A tree formed by a single string. Assume that ¢ € C?*(R x [0,/])
satisfies the wave equation

¢tt - ¢mx =0
in Rx [0, /] and that ¢(¢,¢) = 0. Thus, ¢ is a solution of (N) for the network formed
by a single string of length ¢. Let us note that in this case, with the notations (14)-
(15), we get G(t) := ¢,(t, £) = 0.
From the D’Alembert formula (I1.5) it holds

(20) 0=("G+(F,
for every ¢ € R. This is a relation of the type (19) with P =/¢*, Q=1/¢".

2.2. Operators of type S. As stated above, we are interested not only in the
existence of the operators P and Q satisfying (19), but also in their structure. That
is why we consider a class of linear operators constituted by linear combinations
of certain shift operators. This class of operators allows to describe the main
properties of the operators P and Q we use in this chapter.

For the real number h we denote by 74 the shift operator defined by

Thf(t) = f(t+h).

As we shall be concerned only with algebraic properties of those operators, we may
assume 7, to act on the vector spaces of mappings f = f(¢) : R — W, where W is
a vector space.

Let A = {{1,...,¢,} be a set of positive numbers, not necessarily different. In
what follows, whenever a set is denoted by A we tacitly assume that it may contain

repeated elements. If A = {Zl, .. ,jn/} is another such set, we use the notation
AU A for the set {/y,.. by ,gn/}, which once again may contain repeated
elements. Observe that this operation differs from the usual union of sets in the

fact that the multiplicity of the elements is taken into account.
We set

S(A) :=span{rp: heHp},

(the set all linear combinations of shift operators 7, with h € 3, ) where

j‘CA = {h = ZEZ'KZ', E; = :l:l} .
i=1
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Observe that the set H contains at most 2" elements, so S(A) is of finite
dimension.

For an operator B € S(A) we shall write s(B) := s(A) := > ; £;. We say that
B is of type S if B € S(A) for some set A.

The operators T and £7, defined in Chapter III by (7) for a string are of type
S. They belong to S({¢}), since they may be expressed as

Ty + T—¢
="t
2
We write these formulas in a unified way as
(21) o= TETETt *2”*4,

where £ = +1.

In the following proposition we gather two elementary properties of the oper-
ators of type S. The operator P and Q, which we will construct for the network
with the property (19), will be products of the operators ﬂf constructed for the
lengths of the strings. The proposition shows why it is natural to consider the class
of operators S(A) to characterize the operators P and Q.

PROPOSITION IV.1. (i) B € S(A) if, and only if, it may be written as a linear

combination of operators of the form (7452 - - - £5n | where each €; is —1 or 1.

(ZZ) ]f B, € S(Al) and By € S(Ag) then, B1Bs = BB, € S(Al L AQ) and
S(Blgg) = S(Bl) + S(BQ)

PROOF. These properties are based on the fact that, if a, 8 € R then,
TaTg = Ta+B = TRTa-

This implies, in particular, that the operators ¢;* and E;j commute.
In account of (21), a product of the form £7'£5? - - - £ may be expressed as

n
gilggzgin _ H <7'€i +2€z7'li> :

i=1
then we get
00l = Y enth € S(A).
heHA
Thus, any linear combination of the operators ¢5'¢52 - - - £5» is an operator of type

S(A).
Conversely, if h € Hy, then

n
h:ZEiEi, Ei :il,
=1

and in view of the fact that, as it follows of (21), for any ¢, 7.0 = el + £~ ¢,

n n

Th = HTfiéi = H [Elﬂfl +£;El} :

i=1 i=1

From here, 7, may be expressed as a sum of products of the form £;'¢5% - - - £ and
the same will be true for each B = ZheJ{A ChTh.
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The assertion (ii) follows immediately. If
A ={l,...,0,}
and
Ao = {losr, .. bn)
then,
A1|_|A2 = {61,...,61\[}.
If Bl = Eil o ff{l € S(Al)a BQ = Efﬁ?ll e E%V S S(AQ),
B1By = BBy = €1 -+ L5 - L € S(AL U Ag).

Taking now into account that any By € S(A;) and By € S(Az) may be ex-
pressed, respectively, by means of linear combinations of the operators ¢5' - - - ¢5r

and £, -+ - €3Y, (ii) is obtained in the general case. O

In the rest of this chapter, when an operator B of type S is applied to a
function w depending on the real variable ¢ (and, possibly, on other variables), we
will assume that B acts on that variable. In particular, if w(¢,z) is a function
defined on R X [a, b] then

(Fw(t,z) = %(w(t +0,x) £w(t — ¢, x)).
The following facts are widely used in the proof of our main results.
PROPOSITION IV.2. Let w(t,x) be a function defined on R x [0,¢]. Then,
Ep+,(t) < LTEL(1).

Proor. ForeveryteR

1/
E+,(t) g/ {lwa(t + €,2) T wy(t — €,2) ] + |wy(t + £, z) £wy(t — £,2)*} da
0

IN

1 é
1/ {lwa(t + €,2) + [wa (t = €,2) + Jwi(t + £, 2)]” + [we(t = €,2)]* } do
0

= %(Ew(t—’—g)""Ew(t_[)) :£+Ew(t)'
(I

PrOPOSITION IV.3. If B is an operator of type S with s(B) = s then there
exist positive constants C1, Cs, depending only on the coefficients of B, such that

b b+s
(i [ mrarpa<e [P

for all the functions f for which both integrals are defined".

(i) If the function w(t,x) is defined on R x [0,£] and there exists a constant
M > 0 such that E,(t) < M for every t € [a,b] then Egz,(t) < CoM  for
tea+s,b—s.

n other words, B is continuous from L2[a — s,b + s] to L2[a, b].
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PROOF. (i) When the set A is formed by a single element: A = {{}, we have
B =c1 0T + col™ and s(B) = £. Then,

b b 9
/|Bf(t)|2dt _ /]clﬁf(t)—i—cﬂ’f(t)] dt

A —2 (4 1)
< (ClJrc?) /|ft+€| dt+< >/|ft 0 dt
(52 [ v (352 [ o

b+4
< () [ I

When n > 2, it suffices to iterate this inequality taking under consideration
Proposition IV.1(i). Let us note that Ci may be chosen as the maximum of the
squares of the coefficients of B in its representation given by Proposition IV.1(i)
and then, C; depends only on B.

(ii) Is an immediate consequence of Proposition IV.2. O

2

1+ c2 dt

fero+ 4

The next proposition plays a crucial role in obtaining the optimal time in the
observability inequalities that we prove for the solutions of the homogeneous system
(1)-(6). Let us note that this fact was already proved in Section IIT.4 of Chapter
IIT for the operator Q corresponding to the three string network.

PROPOSITION IV.4. Let A = {{y,...,4} with {1 < ... < £, and denote Th =
2s(A) =237 £i. Assume that B = 37, qc cnmn € S(A) and that the coefficient
Coy - te,, 1S different from zero. Then, for any T > 0 there exists a constant Cr > 0

such that
T Ta
/ |u(t)|2dt§CT/ () 2t
0 0

for any continuous function u satisfying Bu = 0.

PrROOF. We shall prove that, for any natural number n and any function w
satisfying Bu = 0, it holds that

TA+2nlq TA
(22) / IWWﬁSW/ fu(t) P,
0 0

where 7y is a positive constant depending only on B. Clearly, the assertion of the
proposition immediately follows from inequality (22).

If Bu=0,ie, 0=72cqc, caThu(t) =Y ;cqc, chu(t + h), then, replacing the
variable t by ¢t — ({1 + -+ - ¢,,) and taking into account that cg,4...p,, # 0 we get

(23) u(t)= > dnult—h)

heHy

where 5% = {I/ =h — ({1 + L) th € Hy, h# (4 - £n)} and 6 = — bt |

Cglﬁﬂugm
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From (23) and the Cauchy-Schwartz inequality it follows
(24) u®)> <6 Y fult —h)P,
h' €3
where § = Zh'ef}C;g 53
Note that, for every b’ € 3} we have 2¢; < h' < 2(ly+---+4,,), and therefore,
Ta+2(n+ 1) —h' <Tx+2nl; and Tp+2nly —h' >2(n+1)¢; > 0.
This fact implies that

Ta+2(n+1)01—h' Ta+2nly
(25) / lu(t) Pt < / lu(t) 2.
Ta+2nl,—h' 0

On the other hand, from (24) it follows that

Ta+2(n+1)6 Ta+2(n+1)6
/ w(b)2dt < 6 E:/ lult — ') [2dt =
ThA+2nlq B EFCx ThA+2nlq

A

Ta+2(n+1)¢1—h'
5y / lu(t) 2.
picacs J Ta+2nts—h

Now, taking into account (25), the previous inequality becomes

Ta+2(n+1)61 Ta+2nty
/ lu(t)|?dt < (2™ — 1)5/ lu(t)|*dt.
TA+2nlq 0

From this latter inequality we obtain

T +2(n+1)€1 Th+2nly TA+2(n+1)€1
/ () dt = / lu(t) Pt + / lu(t)Pdt <
0 0 Tr+2nt;

Tr+2nly Ta+2nly
/ () 2dt + (27 — 1)5/ lu(t) 2t <
0 0

Th+2nly
< (4@ 1)) / ()P,
0

IN

which proves inequality (22) with v =14 (2™ — 1)4. O

REMARK IV.1. If B is an operator of type S there exists a unique function b(\)
such that BeNt = b(\)e*. Indeed, it suffices to express B in the form

(26) B o= > dnl5te L,
me{0,1}"

given by Proposition IV.1(i), to see that

Be™ = " dp b5t L5
Taking into account that

(TN = cost\ e, 7™M = jsin )\ M,
it holds
Be'N =Y " dp L5H(N) - L (Ve
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where L' (A) = cos ;)\ if e, =1 and L () = isinl; A if e; = —1. This means that
the function b(\) may be constructed by replacing the operators E;-" and £ in the
decomposition (26) of B by cos At and isin \t, respectively.

The uniqueness of b()\) is immediate: if Be' = b(\)e™ = c(N\)e™, then
b(A) = c(N).

2.3. Construction of P and Q in the general case. The construction of
P and Q will be done by induction. We remind that such operators have already
been constructed for a network consisting of a single string.

We shall denote by A; the set of all the lengths of the strings of the sub-tree
A; and by A4 that of all the lengths of the tree A. Suppose that for the sub-trees

A;, i =1,...,m, we have already constructed the operators P;, Q; that belong
to S(A;) and verify
(27) PG+ Qi F =0,

where G; and F; are the velocity and the tension at the root of the sub-tree A;,
i.e., at the vertex O of A.
We define the operators

(28) ?:ﬁiﬂzﬂgﬁfﬁgj,
j=1

i=1  j#i

m m

(29) Q=Y P[]+ Y

i=1 i j=1

(here the products denote the composition of operators).
Those are precisely the operators we are looking for.

PROPOSITION IV.5. The operators P and Q defined by (28)-(29) belong to
S(Aa). If @ is a solution of (N) then

PG+ QF =0.

PROOF. To prove that P, Q €S(A4), it suffices to observe that, according to
Proposition IV.1, all the terms of the sums in (28) and (29) belong to S({¢} U
AU UA,) = S(Aa). Using (17)-(18), the coupling conditions (16) between the
strings may be expressed as

(30) S F=0G+('F, Gi=('G+(F, i=1,..m

i=1

From (28)-(29) we have

@ [JoerG+ ﬁ Q=G+ i(fm 12 F+ ﬁ Q;*F
j=1 j=1

1 VE i=1 JFi

-

PG+ AF =

K2

@ [Je)tG +eF)+ ﬁ Q;((~G+ (T F).

1 i j=1

I
NgE

.
Il
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Then, using formulas (30),

PG+ oF =Y (% [[2)Gi+ > (JT2)F = > (I 2)@:G: + k) =0,
i=1 i i=1 j=1 i=1 ji
where the last equality follows from the hypotheses (27). Thus, P and Q, defined
by (28)-(29), satisfy the relation (19). O

REMARK IV.2. From the definition, an S(A)-operator B may be written in the
form

(31) B = Z ChTh-
heHa

In general, this representation is not unique, since some elements of Hp may coin-
cide. However, the coefficient cypy = oy +...44,,, corresponding to the largest value
of h, is determined in a unique way, as {1+ -+ + £y, cannot be equal to another
element of Ha. Besides, it is easy to see that cy(p) is a multiplicative function, i.e.,
if B1 and By are S-operators with s(B1) = s1 and s(Ba) = so then

Cs1+4s2 (%132) = Csy (%1)052 (BQ)

In the next proposition we study this coefficient for the operators P and Q.

PROPOSITION IV.6. Let cr,(B) denote the coefficient, corresponding to h =
s(Aa) = La € Hp, in the expansion (31) of an S(Aa)-operator B. Then ¢, , (P) =
CL, (Q) > 0.

Proor. We proceed by induction. For a string,

T:€+:Th+7'—h’ Q:€+:Th_7'—h.
2 2

This implies ¢¢(P) = ¢,(Q) = %

5
Now assume the assertion is true for the sub-trees Ay, ..., A,,. It means that

(32) cr,(P)=c¢,(Q) >0, i=1,...,m,

where, as above, L; is the sum of the lengths of all the strings of the sub-tree A,;.
Then, from formula (28) and the assumption (32)

cL,(P) = e, (> P[]+ [[Y)
j=1

i=1 i
= CLA(KJFZTZ'HQJ‘) +CLA(£7 HQ])
i=1 i j=1
= ()Y en (P [ en,(Q) +eele) [ er,(9))
i=1 J#i j=1
1 m
= Sm+1 HCL].(QJ-) > 0.

1

J
In the same way it may be proved that

e1,(9) = 5(m+1) [ es, (@),
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what completes the proof. O

2.4. The action of P and Q on the tensions and velocities at the
interior nodes. For the index @ = (ay, ..., ax) € J we denote

Ag = {67 gaugahaza --~,£a1,a2 »»»»» ak—l}'

Observe that Ag is the set of the lengths of the strings forming the unique simple
path that connects the root R with the sub-tree A5 . For completeness we take for
the empty index A = 0.

The following proposition gives information on how the operators P and Q act
on traces of the components of a solution at the interior nodes of the network.

PROPOSITION IV.7. For any & € J there exist operators Lg € S(Aq U Aa)
such that, for any solution of (N)

QF@ = L&G, TF& = — LaF

PROOF. We proceed by induction. Note that from the relation PG + QF = 0,
it follows that when & is the empty multi-index the property is true with L =
—P e S(Ax) = S(As U A). In particular, for a single string the assertion of the
proposition holds.

Suppose now that the operators L5 have been already constructed for the sub-
trees A;, i = 1,...,m, of A. This means that we have for ¢ = 1, ..., m, the operators
LL € S(A; UAL) such that

PiFioa = — LLF;, QiFioa = LG,
where i\g is the set defined as Ag for the sub-tree A; and Pi, Q; are the operators

P, Q corresponding to that sub-tree.
Then, using relation (29),

QFioa = P [ %)Fioa + (] Q) Fioa
k=1

J=1  k#j

= (i P; H Q1) Fioa + 0~ (P; H Qx)Fioa + er(ﬁ Qi) Fioa
k=1

=1 k] k#i
g s 7

= L5 O P TG — e (J] o) Fi + e (]| )G
I i k=
= L | (I @G+ 9 F) — e~ ([ ) F + (][ )G

G k2 k#i k#i

= Lo G~ F) =i ) (¢F (¢ F +¢+G) — ¢~ ((HF +£7G))
ki ki
= i(Tow (-G

ki
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In a similar way, it may be obtained that
PFioa = — L4 ] % ((€7)* = (¢7)*) F.
k#i
Thus, we arrive to the recursive formula
Lioa = L [T Qe ((€7)? = (07)?),
k#1
from which, in particular, according to Proposition IV.1, it holds that the operators
Lioa belong to S(A; LUAL U{4,0}) = S(A; U {€} UAL L {£}) = S(AqUAjos). This
proves the proposition. Il

The action of P and Q on the velocities G5 may be described in a similar way:

PROPOSITION IV.8. For any & € J there exist operators K, 3/%@ € S(Aa I_I/~\@)
such that, for any solution of (N)

0G4 = KaG, PGy = Ko F.

PROOF. From the relation PG + QF = 0 it follows that for the empty multi-
index X = Q and X = —Q. For the remaining indices the operators K5 and JC—
are constructed by recurrence. Assume that for the index & the operators X5 and
K4, verifying the conditions of the proposition, have been already constructed.

Then, for the indices @ o ¢ with i = 1,...,mg, we have that

QG&oi = Qé& = EgQG& + ngFa = (fgj(:a + fgL&) G,
where L5 is the operator constructed in the previous proposition.

In an analogous way it may be obtained that

PGaoi = (1 K5 — 07 L5)F.

Then, the needed operators may be constructed by the rules

(33) K@oi = ngd + E;L@
(34) j%&oi = g;j%& - K;La
As in the proof of the Proposition IV.7, from the relations (33)-(34) it holds, in
particular, that the operators Xs0; and Kgo; belong to S(A4 U i&&oi). O

2.5. Action of P and Q on the solution. If ¢ is a solution of (N) and B is
an operator of type S, then, due to the linearity of B and (N), B¢ is also a solution
of (N). Moreover, if ng) and Ff ¢ @& €9, denote the velocity and strength traces
of the strings at the vertices of the network for the solution B¢, then

G20 =BG,  FP?=BF;.

That is true, in particular, when B is one of the operators P or Q. The following
lemma contains a fundamental technical step in our construction

LEMMA IV.1. There exists a constant C, independent of ¢, such that
T*JrQLA T*+2LA

(35)  Egy(t) <C / F()2dt,  Boy(t) < C / G (1) 2dt

T*—2L 4 T*—2L 4
for every T* € R and t € [T* — L, T* + La].
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PROOF. (i) Fix T* € R. We shall prove first that

T*+2L 4 T*+2L 4
(36) Egu(T%) <C |F(t)|%dt, Eq;(T*) < C |G (t)|?dt.

T*—2L 4 T*—2L4

As a consequence of the Propositions IV.7 and IV.8 we have

QF@ = LQG, QG@ = K&G,
(PF@ - 7£J5¢F, (PG@ - J/ZQF

for @ € J. Then, from Propositions II.1 and IV.3(i) it follows that

- T"+4g5 T*+4+2L 4
Eg;(T") < C (1LaGOP + | KaG®)?) dt < C G)dt,

T*—Lg T*—2L4

. T*+45 R T*+2L4
E5,(T*) < C (ILaF®F + [ XaF(@)P) dt < C |F(¢)[2dt,
T*—l4 T*—2L 4
where, as above, E% is the energy of the solution in the string es.
It suffices to note that E = Z E® to obtain the inequalities (36).
aed

(ii) Now we prove that these inequalities remain true for all t € [T* — L4, L* 4+
T4). Indeed, if t € [T* — L, T* + L], from the formula (I1.24) for the energy we
have

t

Eps(t) = Eygl1)~ [ F(rG"(r)de

< Byp()+ | [ (PP + G4
T*+La

< BT+ [ (PROE + 196
T"+Ly

< Bop)+ [ (PO +19F0)Pa

T*42L 4 !
< C o |F(7)2dt

(in the last step we have used Proposition IV.3(i) and the result of (i)). For the
operator Q the proof is similar. O

REMARK 1V.3. When ¢ is a solution of (7)-(11) (i.e., G = 0), Lemma IV.1
gives Eqg(t) = 0. This implies that Qp(t) = 0. This relation may be viewed as a
generalization of the time periodicity property of the solutions of the 1-d wave equa-
tion with homogeneous Dirichlet boundary conditions, which with our notations may
be written as £~ u(t) = 0. As we have shown in Proposition 1V./, this generalized
periodicity implies that all the essential L? information on ¢ is contained in an
interval of length 2L 4.
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3. The main theorem

In this section we prove the main result on the observability of the solutions of
the homogeneous system (1)-(6).

For every non-empty multi-index & = (a7, ...,ax) € J we define the operator
Da by

m May Loeees ap_1
(37) Da = H Q; H Qahi T H Qal »»»»» ap_1,1
i=1, itas i=1, i#as i=1, iZar_1

and for the empty index D is the identity operator. We recall that Q3 is the operator
constructed in the previous section for the sub-tree Az and that the products in
(37) denote the composition of operators.
Note that for every & € J the operator Dg is of type S with s( Ds) < L4.
The observability result we will prove is

THEOREM IV.1. There exists a constant C > 0 such that
2L 4
Ep,3(0)=Bn,s()< C [ [F(r)fdr,
0
for every solution ¢ of (1)-(5) and every & € Jg.
The proof is based on
LEMMA IV.2. There exists a positive constant C, such that for every a € Jg

and every solution ¢ of (N)

t+2L 4
Bog<C [ (PR +IGEOP) dr

for any t € R.

PrOOF. We proceed by induction. For the case of a single string the assertion
is an immediate consequence of the Proposition II.1.

Now fix & = (aq, ..., @) € Js and assume that the assertion of the theorem is
true for the sub-tree A,,. That implies that

t4+2La,
(38) Ef L e (t) < C/ (1Fay (7)) + |Gy (7)) dr
@ t—2La,
for any solution ¢ of (N), where
May Mayq,..., ap_q1
(39) D= [ Qai|l | Il Qorvcnor
i=1, iZas i=1, itoy_1

is the operator Dg for the sub-tree A,, with & = (a2, ..., ag).
First, we estimate the energy E%{és of D¢ on the sub-tree A,,. To do this,
we set

(40) o= [[ 26 @=C]] 26 i=1..m

j=1, j#on J=1, j#ay
J#i

Note that these functions are also solutions of (N). They verify
(41) @ = Q;©;, Dagp = DG,
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Besides, from (38)

t+2Lq,

(42) B (0 <C [ (RS OF +1GE, () dr.

@1

But, from the coupling formulas (16) we obtain that
(43) inﬁ G? =G",
i=1
so that it holds
(44) F2 = F% - i QF% = F + i PG, GO =GR

and then, using the equalities (44), (42) gives

t+2La1 o m — o
B, (0 =C [ For+ Y PG OR+IG(? | dar
¢ t—2La, i=1, it
and this implies
t+2La1 o m o o
(45) E%Ge (1) <C F2(n)P+ Y [RGE()]? +|GP () | dr.
¢ t—2La, i=1, i

Now, from the definition of @ and the formulas (17), (18) we have

FF=( I @F=C [ werr+c [ orc
J=1, j#oa J=1, j#o J=1, j#oa
and consequently

15-',—2La1 o t+2La1 m m
/ |F“)2dr < 2/ I( H QNTF2 +|( H Q)~G)? | dr.
t

—2Lay t=2Loy =1, j#a1 J=1, j#en

Observe that the operators ([Tj; ;.,, 2)¢" and (I[jZ, .., Q)¢ are of

type S with s < Lg — Ly, so that, the latter inequality combined with Proposition
1V.3 provides

t+2La;, t+2L 4
/ |[F2(r))Pdr < C (IF(T)]? + 1G(r)[*)dr.
t

—2Lq, t—2L,

In a similar way it may be proved that

t+2Lq, o t+2L 4
/ 19,67 (1) 2dr < C / (IF(r)P + |G(r)P)dr

t—200, t—2L,
and
t42La, t+2L 4
/ |G¥(T)Pdr < C (F ()P +|G(r)[?)dr.
t—2La, t=2Ly
Therefore, these three inequalities together with (41) and (45) give

t+2L 4
(46) By 0 <C [ (PP +IGMP)r.

t—2L,
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Now we proceed to estimate the energies i@& S of Dag¢ on the remaining sub-

trees A; (i.e., for i # ay). According to Lemma IV.1, applied to @; in the sub-tree
A;, it holds that for every ¢ in [t — L;, t + L;]

, . , t+2L;
(47) E;(t") =Eqq,(t)<C |Gy (7)|?dr,
o t—2L;
for i =1,...,m. Taking into account that
(48) Gr=( 1] 29¢=0 I wer+c [ 96,
=1, j#ay J=1, j#ay =1, ja1
i i i
we get from (47) and Proposition IV.3(i)
(49)
) t+LA+Li7La1 t+2L 4
E;(t) < C/ (E()?+|G(r)P)dr < C/ (E(r)*+|G(r)[*)dr,
t*LAfLi+La1 t—2L»

(here we have used the fact that the operators applied to F' and G in the right hand
term of (48) are of type S with s = Lg — Lo, — L).

Now, if we apply Proposition IV.3(ii) with B = Dg' to (49) (recall that
s$(Dg') < Lq, ) we obtain, after choosing t' =1,

o _ t+2L4
(50) D, ¢(t) = Epe (') < C (|F(T)? +|G(r)[*)dr.
t—2L,4

Finally, from Proposition I1.1 we obtain that the component ¢ of ¢ verifies, for

every t' € [t — La,t+ Lal,

t+0+L 4
E(t) < C / (P + G (r)P)dr.
t—0—L gy
Thus, using Proposition IV.3(ii), it holds that
tJrlJrLA
Ep 4t < C (F() + G(r)P)dr,
t—¢—L 4

for every t' € [t — La + s( Da),t + La — s( Dg)] and, since s( D5) < L4, this is
true in particular for ¢ = ¢. Therefore,
t+2L 4

(51) Eop )< C / (F () + 1G(r)[2)dr.

t—2L 4
Now, it suffices to combine (46), (50), (51) and the fact that

E Dag =FE Dag + ZiDmﬁ
i=1
to conclude the proof. O

With the help of Lemma IV.2 the proof of Theorem IV.1 is simple.

PROOF OF THEOREM IV.1. If ¢ is a solution of (1)-(6), so is Dz¢. In par-
ticular, the energy of Dg¢ is conserved. Then, taking into account that G = 0 for
the solutions of (1)-(5), from Lemma IV.2 it holds

AL 4
(52) E p_5(0)=E p_;(2Tx) < C’/O |F(7)dr.
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On the other hand, in this case QF = 0 and then, using Proposition IV.4 (which
may be applied to Q on the basis of Proposition IV.6) we have

4L 4 2L
/ |F(7’)|2d7' < C/ |F(7’)|2d7'.
0 0

With this, the assertion of the theorem follows from (52). O

4. Relation between P and Q and the eigenvalues

Our next objective is to express the inequality (52) in terms of the Fourier
coefficients of the solution @ of (1)-(6). This will lead to weighted observability
inequalities with weights that depend on the eigenvalues p,, of the operator —A 4.
To study those weights we need some additional properties of the eigenvalues.

4.1. The eigenvalue problem. We consider the eigenvalue problem for the
elliptic operator —A 4 associated to the hyperbolic problem (1)-(5):

(53) —05,(x) = 1 0%(2) z€0,4a], ae€7d,
(54) 0°°P(0) = 6%(L5) aedy, B=1, ....,ma,
(55) > 0:77(0) = 65 (¢a) a € Iy,
B=1
(56) 0% (0s) = a e Js,
(57) 0(0)=0 at the root R.

As it has been pointed out in Chapter I, the spectrum of —A 4 is formed by
a positive, increasing sequence {u; } kez, of eigenvalues. We call it spectrum of A
and denote it by o 4.

Clearly, we may consider the problem (53)-(57) for each sub-tree A5 of A. The
corresponding spectrum is called spectrum of Ag and is denoted by o5.

For technical reasons, as we did for the system (1)-(5), we will also consider
smooth solutions of (53), which verify the boundary conditions (54)-(56) but not
necessarily (57). For brevity, they are simply called solutions of (Ng) correspond-
imng to .

ProrosITION IV.9. If 11 is a common eigenvalue of two sub-trees Aaoi, Aao
(i # j) with the same root Oy then p is also an eigenvalue of A. Moreover, there
exists a non-zero eigenfunction 6 associated to p such that

0(0) = 6,(0) = 0.

~00% 4

PrROOF. Let 67", 6™ be non-zero eigenfunctions corresponding to the eigen-
value p for the sub-trees Agao; and Agoj, respectively. These functions are defined
in the corresponding sub-trees but it will be sufficient to paste them conveniently
to build up an eigenfunction of A.

We may assume that the numbers §2°(0), #2°7(0) are both different from zero.
Indeed, if one of them, say Hg‘oi(O), vanishes then the relations

07°"(0) = 3°°(0) = 0
allow to ensure that the function @, obtained by extending by zero the function

0°°" to the whole tree A, satisfies (53)-(57) for that value of p and then is an
eigenfunction of A.
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Now define the function @ by

05°7(0) 05" ifa’ =aociof,
Oar =4 -05°(0) 057 ifa’=aojop,
0 otherwise,

i.e., O coincides in the sub-tree Ago; with 950]‘ (0)9a0i, in Agzo; with ngoi(O)émj
and vanishes outside those sub-trees. It is easy to see that  satisfies the boundary
conditions (54)-(55) at Og:

D057 (0) = 059 (0)05°7(0) — 05 (0)65°7(0) = 0 = 05 ().

k=1
As at the other nodes they are obviously satisfied, 6 is an eigenfunction of A.

Finally observe that in both cases, the eigenfunction @ constructed here is such
that

0(0) = 0.(0) =0,
and thus, § = 0, i.e.,  vanishes at the whole string containing the root of A. [l

REMARK IV.4. Note that the eigenfunction constructed in the proof of Propo-
sition IV.9 vanishes everywhere outside the sub-trees Agoi, Aaoj- If we denote
Aaoi V Aacj the tree formed by Aaoi and Aaoj in which the node Og is considered
as an interior point of a string of length lao; + Lacj, we obtain that these sub-
trees have a common eigenvalue if and only if there exists a an eigenfunction of
Aaoi V Aaoj that vanishes at the point Og.

FIGURE 2. The sub-tree Agoi V Aaoj

As it has been shown above, the operators P and Q are of type S with s(P) =
$(Q) = L. According to Remark IV.1, there exist functions p and ¢ such that for
all t, A e R,

(58) .:Pei/\t _ p(A)ei/\t, Qei)\t —_ q(/\)ei)\t.
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PROPOSITION IV.10. Let A € R\ {0} and f,g € C such that

(59) ag(\)f +ixp(\)g = 0.
If the tree A satisfies the property
(60) |q6¢0i()\)| + |q5t0.7()‘)| 75 0 f07" any Q€ JM; Za] = 13 Ma, ’L 7& j)

then there exists a unique solution @ of (Ng) corresponding to the value i = 22
such that

(61) 0(0)=g and 0,(0)=7f.

PROOF. First we construct the component 6 of 6 (the one corresponding to the
string e). We set
(62) 0(x) = gcos\x + § sin Az,
which clearly satisfies (61).

If the network consists of a single string of length ¢, then

p(A) = cos AL, q(A) =isin M
and condition (59) becomes
ifsin M + ighcos M = 0.
This implies that
0(¢) = gcos M + §sin M =0,

what means that 6 is a solution of (Ng) and so, the assertion is true in this case.
In the general case the remaining components of § are constructed by induction.
Assume that the proposition is true for the sub-trees Ay, ..., A,.
If we were able to choose numbers f1, ..., f,, verifying

(63) Z fr =05(0) and qr(N)fi + tAp(N\)0(0) =0 for k =1,...,m,
k=1

then, according to the induction assumption, we could find solutions 91, 0",
defined on the sub-trees Ai, ..., A, respectively, such that
08 (0) = 0(¢), 0%(0) = f, for k=1,...,m.

This would imply that

zmje’;(o) =0(¢) and 6%(0) =0(¢), fork=1,...,m.
k=1

Therefore, the function 6 defined on the tree by Oroq = 92 would be the solution
of (Ng), whose existence is asserted in the proposition. Consequently, it remains
to prove the possibility of the decomposition (63).

We remark that from the definition of p and ¢ and formulas (28), (29) it follows
that

(64) p=cosAlY pi[[ ¢ +isina ][]
k=1  j#k j=1
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(65) q—zsm)\EZpquJ—i—cos)\quj,
k=1 j#k
Note that condition (60) implies that among the numbers gx(\), &k = 1,...,m
at most one may be equal to zero. Thus, we consider two cases: a) all the numbers
qr(N\), k = 1,...,m, are different from zero and b) exactly one of those numbers,
say, e.g., g1 () is equal to zero.
Case a). If we take
_ —iApe(N)O(4)
fr=——"5—
ar(A)

Then

kaz—i)\e Z = —i)\ gcos)\f—i—iﬁ Af)zkﬂ]ﬁ:r{j#k%.
= k= A H_j:l q;

This equality, taking into account (64), (65), gives

S = —idg(mm— — isinAE) — f(sm— — cos AL)
iApg +qf

= —MAgsin M + fcos A\ — = —Agsin M + fcos A\l = 0,(0).

H;'nzl qj
Thus, the numbers f1, ..., fn, satisfy (63).
Case b). The relations (64), (65) together with g1 (A) = 0 give

p(A) = cos Mp1(N) [ ¢;(V), g(\) = isin Mpr(A) [T (V)
1 #1
and from (59) we obtain
0=q(\)f+ixp(\)g =iX(gcos )\f—i— sin A0)py (A H q;(N) =ir0(¢ H q; (A
J#1 J#1

But ]_[j?51 g;(A) # 0 and then, necessarily, 8(¢)p1(A) = 0. It means that if we
choose f1 = 0,(£) and fo, ..., f, verifying

> fr=0 and ge(\)fr +iApr(N)O(6) = 0 for k =2,...,m
as in the previous case then the condition (63) is satisfied.
So far, we have proved the existence of a solution. It turns out that for the
solutions satisfying (IV.10) we can give an explicit formula. Indeed, if we apply
propositions IV.7 and IV.8 to the solution

0(t, x) = e0(x)
of (N) we obtain
(66§ Ap(A)6%(0) = k(N)6=(0) = k(N S, p(NFZ(0) = ~1(N)8(0) = ~I(N)f,
(67)  q(N)6”(0) = k(N)O(0) = k(N)g, a(N)03(0) = iAI(X)0(0) = iA(N)g,
where k, 12:, [ and r are the functions associated to the operators X, JAC, L and R,
respectively, according to Remark IV.1.

On the other hand, the condition (60) implies that at least one of the numbers
p(A) or g(A) is different from zero (see Proposition IV.12 below). Therefore, one
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of the equalities (66), (67) provides us with an explicit formula for the values of
6%(0) and 02(0) for any & € Jy and thus, for the solution #. In particular, if
f = g = 0 the corresponding solution vanishes identically on A, what clearly
implies the uniqueness of the solution for arbitrary values of f and g. (I

REMARK IV.5. The converse assertion is also true, even if the condition (60)
is not fulfilled. Indeed, if 0 is a solution of (Ng) then

O(t,z) = e (x)
is a solution of (N) and
0:(t,0) = iXe"™0(0), 0,(t,0) = e**0,(0).
Then, from the relations (19) and (58) it follows
0= PO:(t,0) + Q0,.(,0) = (ipAO(0) + ¢, (0))e,
for every t € R. Thus, (59) holds.
Now we are ready to prove the following basic property.

PROPOSITION IV.11. Let 0 # A\ € R. Then \* is an eigenvalue of A if and
only if ¢(A) = 0.

PROOF. First we prove that ¢(A) = 0 implies that A\? is an eigenvalue, i.e., that
there exists a non-zero solution of (53)-(57) for that value of A. If the tree verifies
(60) then this fact follows immediately from Proposition IV.10 choosing g = 0,
f # 0. Note that the condition 0 # f = 0,(0) guarantees that 6 is not identically
equal to zero. In particular, the assertion is true for a string, as it always verifies
(60).

In the general case when the condition (60) may fail, we follow an induction
argument: we suppose that the assertion has been proved for all the sub-trees Ag
with non-empty a.

If gaoi(A) = gaoj(A) = 0 for some & € Ty, ¢ # j, then, according to the induc-
tion hypothesis, A? is an eigenvalue of both Ago; and Aaoj. Then from Proposition
IV.9 it follows that A? is an eigenvalue of A, too.

Let us see now the converse assertion. Let 6 be a non-zero eigenfunction cor-
responding to the eigenvalue A*. Then the function (¢, ) = e***f(z) is a solution
of (N). Choose @ € J such that one of the numbers #%(0) or #2(0) is different from
zero (that is possible since, otherwise, it would be # = 0). For this solution of (N)
we have for every a € J

Fa(t) = eM0%(0),  Galt) = ire™6%(0),
and in particular, G = 0. Then, from the Propositions IV.7 and IV.8 it follows that

0= LsG = QF; = Qe™0%(0) = ¢(1)6%(0),

0 =KsG = QG5 = e0%(0) = iAg(A\)0%(0),
and therefore, necessarily, g(A) = 0. O
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4.2. Further properties of p and q.

PROPOSITION IV.12. For every tree A the following properties hold:
(i) one of the functions p, q is even and the other is odd;
(ii) there exists Ao € R such that p(Ao) = q(Ao) = 0 if, and only if, there exist
two sub-trees Agoi, Aacj, © # j, with common root Og such that
daoi(A0) = Gacj(Ao) = 0.
Proor. We proceed by induction. For a single string
p(A) = cos AL, g(A\) = isin L.

In this case (i) is trivial. Assertion (ii) follows from the fact that [p|® + [¢|? = 1.
Suppose now that (i), (ii) are true for the sub-trees Ay, ..
Let h be a function, which is either even or odd. Denote

1 if h even,
p(h) = {

-1 if h is odd.
The function p is multiplicative:

p(hiha) = p(h1)p(ha).

According to the definitions of p and ¢ and the formulas (28), (29) we have
that

A,

(68) g(\) =isin A " pi(A) [ ¢V +cos M ] as(N),
i=1 J#i i=1

(69) p(A\) = cos )\EZpi()\)qu()\) + isin )\EHqi()\).
i=1 J#i i=1

The hypotheses with respect to the sub-trees imply that p(p;) = —p(g;), @ =
1,...,m. Then,

p(isin A pi(MN) [[ @) = [[ (@) pleos X[ @) =] rla)-
i i=1 i=1 i=1

From these relations and (69) we obtain

p(a) =[] (@)
i=1
In an analogous way it is proved that
p(p) = — [ pla)-
i=1

From these two last equalities it holds p(p) = —p(q). This proves the property (i).
We now prove (ii). If p(Ag) = ¢(Ao) = 0 then, from (68), (69) it follows that

0=q(Xo) =isin Aol Y pi(Xo) [J 45 (ho) + cos X [ ¢ (M),

i=1 j#i i=1

0= p(>\0) = COS )\06 sz()\o) H (b‘()\o) + ¢sin )\06 H QZ()\O)
i=1 Jj#i i=1
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This implies that

(70) Zpi()\o) [T =0,

J#

(71) H gi(Ao) = 0.
i=1
These equalities are verified if, and only if, for some i
Gic(M0) =0, piy(ho) [] as(ho) =0
Jj#io

and this is equivalent to the fact that one of the following assertions is true

(a) there exists i1 # ig such that g;, (A\o) = 0;

(b) pip(Ao) = 0.
In the first case assertion (ii) follows immediately. In (b), according to the induction

assumption, there exist sub-trees of A;,, and consequently also of A, that verify
condition (ii). O

With the aid of the previous proposition it is possible to calculate how the
operator Q acts on the functions sin At and cos At.

COROLLARY IV.1. The following equalities are verified

. ~f g(\)sin At if q s even,
Qsin A = { —iq(\) cos At if q s odd,
~f q(X)cos At if q is even,
Qeos At = { iq(\) sin A\t if q is odd.

REMARK IV.6. As a consequence of the previous formulas, when q is an even
function then it is real valued, while, when it is odd then iq is real valued.

5. Observability results

In this section we express the inequalities from Theorem IV.1 in terms of the
initial data of the solution ¢. This allows us to obtain weighted observability
inequalities, with explicit weights on the Fourier coefficient of the initial data of the
solution. Further, we study under what conditions those weights are different from
Z€ro.

5.1. Weighted observability inequalities. As stated above, a solution é
of (1)-(5) is expressed in terms of the initial data ¢g, ¢1 by the formula

(72) a(t) =Y <¢O L COS At + Pk i Akt) 0%,
s )\k
keZ
where {¢g 1.}, {¢1 1} are the sequences of Fourier coefficients of b0, @1 with respect
to the orthonormal basis of eigenfunctions {9k}kez+ and A\ = /fiy-
Besides, the energy of the solution ¢ is given by

1
(73) E; = B Z (Nhd s + 1) -

keZ
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The operators Dy defined in Section 3 are of type S. Then, according to
Remark IV.1, there exist functions d5 such that

Daeikt =d, (}\)eikt )
In particular, when @ is the empty index we have d(\) = 1.
These functions, taking into account (37) are expressed as

m Moy Mayq,..., ap_q
(74) ds = H qi H Qo | - H Qoy,..,ap_1,0 | »
i=1, iz i=1, izas i=1, itan_1

and then Proposition IV.12 allows to ensure that, for every & € J, dg is an even or
odd function. Moreover, from Corollary IV.1 we have the equalities

. _ dg () sin At for ds even,

Dasinxt - = { —ida(N) cos Xt for dy odd,

(75)

Dg cos At { da(X)cosAt  for ds even,

ida(N)sin At for dg odd.

Now fix @ € Jj; and denote @ = Dgé. The function @ is also a solution of
(1)-(5) and, from (72),

o(t) = Dad(t) = Z <¢0 & Dacos Apt + % Dg sin )\kt) 0y,
keZ
Then, from (75) it follows that

— Z da(Ak) <¢07k cos A\t + % sin )\kt> 0, if d5 is even,
keZ, k

w(t) = Z ida (k) (qu,k sin Agt — % oS )\kt) O, if dg is odd.
kEZy k
Thus, in both cases, the energy of @ computed by the formula (73) is given by
1
(76) Ep =5 D lda(Ww)* (ARg0, + ¢14) -
keZ

With this, the inequality of Theorem IV.1 may be written in terms of the initial
data of the solution ¢ as:

2TA 2TA
(1) 3 M (feds+ ot <C [ IP@P=C [ o, 0Par,
k€Z
Consequently, if we define
(78) e = max |da (Ax)],
we obtain:

THEOREM IV.2. There exists a positive constant C, such that

2T,
(79) S 2 (A2, +62,) < C / 16, (t,0) 2dr,

keZ

for every solution ¢ with initial data (¢o, ¢1) € V x H.
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REMARK IV.7. It is easy to prove, using, e.g., formula (72) for the solutions,
that if inequality (79) holds then for every o, T € R,

a+2T 4
(80) > (NRetuD) + i) <C / 6, (,0)dt,
keZ @
where ¢ .(T) and ¢y ,(T) are the Fourier coefficients of ¢li—r and ¢,|i—1, respec-
tively, in the basis {9k}ke7é+-

5.2. Non-degenerate trees. In general, some of the coefficients ¢j in the
inequality (79) may vanish. That is why we consider a special class of trees for
which all those numbers are different from zero.

DEFINITION IV.1. A tree A is said to be non-degenerate if the numbers c,
defined for that tree by (78), are different from zero for every k € Z,. Otherwise,
the tree is said to be degenerate.

The following proposition provides us with a more transparent characterization
of non-degenerate trees.

ProrosiTiON IV.13. The tree A is non-degenerate if and only if the spectra
Oaois Oaoj Of any two sub-trees Aaoi, Aaoj of A with common Og root are disjoint.

PROOF. Note that it takes place a more general fact: an inequality like (79)
with different from zero coefficients ¢ (not necessarily given by (78)) is impossible
for a tree having two sub-trees with common root that share an eigenvalue pu.
Indeed, in such case, with the help of Proposition IV.9 we can construct a non-zero
solution ¢ of (1)-(5) such that ¢,(¢,0) = 0. With this, a (79)-like inequality would
give

> (\db +dix) <0,
=
what is false, since ¢ is not identically equal to zero.

For the converse assertion we argue by contradiction. We will prove that if
¢, = 0 for some k € Z, and any two sub-trees of A with common root have disjoint
spectra then dg(Ag) = 0 for any @ € J. In particular, d(Ax) = 0, what would
contradict the fact that d(A\x) = 1.

Note firstly, that the property is immediate for exterior nodes, since

k= |da(Ar)]
for a € Jg.
For the interior nodes we follow a recursive argument: if & € Iy and daog(Ax) =
0 for all B =1,...,mg then ds(Ag) = 0.
Indeed, we have that, for every 8 =1, ..., mg,
(81) daop = da H Qaoi-
i#0
Assume that dgz # 0. Then (81) implies that
H Gaoi = 0
i#1
and thus, there exists i* # 1 such that
(82) Qaoix = 0.
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But then, from the equalities dzoi~ = 0 and (81) it follows that there exists j* # i*
satisfying

(83) Gaoj- = 0.

However, the equalities (82) and (83) ensure, according to Proposition IV.11, that
Y = )\i is a common eigenvalue of the sub-trees Ago;+ and Agoj«. But that is
impossible for the tree A. Thus, ds(u,) = 0. This completes the proof of the
proposition. (I

REMARK IV.8. According to the previous proposition, if the spectra of some
two sub-trees of A with common root have non-void intersection, inequality (79)
degenerates; we can not recover information on the Fourier coefficients ¢ ., ¢1 .,
of the initial data of ¢ from the observation of ¢,(t,0), for those values of n such
that ¢, = 0. However, as it has been indicated in the proof, this fact is not due
to the technique used to obtain the inequality, since for degenerate trees no (79)-
like inequality with all the coefficients ci being different from zero, holds. Thus,
Theorem IV.2 is sharp in the following sense: it provides inequality (79) whenever
one such inequality exists.

COROLLARY V.2 (Unique continuation property). If the tree A is non-degenerate
and ¢ is a solution of (7)-(11) such that ¢,(t,0) = 0 for almost all t € [0,2L 4]
then, ¢ = 0.

REMARK IV.9. Combining Propositions I1V.12(ii) and IV.13, we obtain an al-
ternative characterization of the non-degenerate trees: A is non-degenerate if, and

only if,
PN +[a(V)[* # 0
for every A € R.

PRrOPOSITION IV.14. If the tree A is non-degenerate then all its eigenvalues
are simple.

Proor. If )\i is an eigenvalue of a non-degenerate tree then, according to
Proposition IV.11 and Remark IV.9,

q(Ar) =0, p(Ax) # 0.

Consequently, if 6}, is an eigenfunction of A corresponding to A7, formula (66) gives

_ k(Ak) ainy — —1(Ax)
= pOy O 80 = 8a(0);

Thus, 6}, is determined, up to the constant factor 6,(0), in a unique way. [

6°(0)

REMARK IV.10. Let (fiy)nez, be the strictly increasing sequence of the eigen-
values p, of a tree without taking into account their multiplicity. In Chapter V
we will prove that iy, verifies py < fu, < pp, for k € Zy, where {u }rez, and
{Mév}kez+ are the ordered sequences formed by the distinct eigenvalues of the strings
with Dirichlet or Neumann homogeneous boundary conditions, respectively. This
fact will allow to prove that an inequality of type (79) is impossible for T < 2L 4
(see Theorem V.1). Moreover, in this case the system (1)-(5) is not approximately
controllable, and then, is not approximately controllable either.
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5.3. On the size of the set of non-degenerate trees. Now we give some
information on the size of the set of degenerate trees. It turns out that almost
all trees with the same topological structure are non-degenerate in the sense of a
measure, defined in a natural way on the set of trees with that structure.

Let us be more precise. We shall say that two trees are topologically equivalent
if their edges can be numbered with the same set of multi-indices. This means that
they may differ only in the lengths of their edges. In particular, two equivalent trees
have the same number of edges and vertices. The classes of topologically equivalent
trees are called topological configurations.

Fix a topological configuration ¥ with d edges. We assume that in the set of
indices J for the elements of the trees belonging to X, a criterion of ordering have
been defined and use the notation < A > for the corresponding ordered set of the
lengths of the edges of A € X..

Then ¥ may be identified with (R, )¢ by means of the canonical mapping
7Y — RY defined by

m(A) =< A >c R

Let s be the measure induced in ¥ by the Lebesgue measure of R% through
the mapping 7. That is, if B C X then

pis;(B) = ma(w(B)),

where my is the usual Lebesgue measure in RY.
It takes place

PROPOSITION IV.15. Given a topological configuration ¥, almost every tree (in
the sense of the measure s, ) with that topological configuration is non-degenerate.

PRrROOF. Let ng C ¥ denote the set of those trees A, such that its sub-trees
Aaoi and Aaoj are non-degenerate and have a common eigenvalue. Then the set
Ydeg C X of degenerate trees may be decomposed as

(84) Edeg = U Lj Dg‘j.

S

We will prove that ,uZ(ng) =0, forevery a € I, i,j = 1,...,mg, i # j. This
fact, in view of (84), will imply py(X4eg) = 0. In what follows we consider that &,
i and j are fixed.

The idea of the proof is simple. We fix a tree B having the structure? of
Aaoi V Agoj (defined as in Remark IV.4) and extend it (i. e., we add edges) to a
tree A € Dé—;j . According to Remark IV.4, that is equivalent to choosing the node
05 of A € ¥ in a point of a string of B (precisely, of that string where it should be
located to agree with the structure of ) where some eigenfunction of B vanishes.
Once O4 has been chosen, the lengths of the remaining strings of A may be taken
arbitrarily.

Observe that we may assume that no (non-identically zero) eigenfunction of
B vanishes identically on the string that contains Og, since, otherwise, one of the
sub-trees of Ago; or Aao; of the tree A, obtained with this procedure, would be
degenerate and thus, A ¢ ng . This assumption implies that all the eigenfunctions

2That is, B is topologically equivalent to Agoi V Aaoj-
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of B are simple and then the node Og should be chosen in a set of points, which is
at most denumerable. N

Thus, we have obtained, after some re-ordering if needed, that the set w(D3’)
is contained in a set of the form

(85) {(hla h?a ey hd) € (R+)d : hl + h2 = h7 hl € N(h7h37 7hd)} )

where N(h, hs, ..., hq) is a denumerable set depending on h and hs, ..., hq.

It is easy to see, using, e.g., the Fubbini’s theorem, that a set defined by (85) has
d-dimensional Lebesgue measure equal to zero. Thus, the same is true of 7(D%?)
and then ps;(D%’) = 0. This completes the proof. O

COROLLARY IV.3. The set ¥\ Zgeq of non-degenerate trees is dense in X
provided with the metrics induced in ¥ by the usual metrics of R through .

REMARK IV.11. The set Xqcq, even though is small in the sense of iy, is dense
in X. Indeed, it suffices to see that, if two edges of a tree with rationally dependent
lengths have a common vertexr and their other vertices are exterior then the tree is
degenerate.

6. Consequences concerning the controllability

Gathering the facts of the previous sections we obtain the following character-
ization of the controllability properties of trees.

THEOREM IV.3. Let A be a tree and T > 0. Then,
a) If T > 2L 4 the properties

1) the system (1)-(6) is spectrally controllable in time T';

2) the system (1)-(6) is approxzimately controllable in time T';

3) A is non-degenerate;

4) any two sub-trees of A with common root have disjoint spectra;

are equivalent and, when they are true, all the initial states of the space W,

defined by

1 1
W = {(1_1,0,1_1,1) eV x H/: 20—2 <|u2|2+u—|u,}1|2> < C)O}7
neN " n

where the weights ¢, are given by (78), are controllable in time T. Besides, these
properties are true for almost all tree, topologically equivalent toA.

b) If T < 2L 4 the spectral controllability property is false, independently on whether
the tree is degenerate or not.

PRrROOF. The assertion a) follows from the implications:

1) = 2). This is a general fact, since Z x Z is dense in H x V' and then, the
spectral controllability is a particular case of approximate controllability.

2) = 3). Follows from the fact stated in Proposition IV.13 and Remark IV.8,
that, for non-degenerate trees there exist non-zero eigenfunctions, which vanish
identically on the string that contains the root. Those eigenfunctions do not satisfy
the unique continuation property from the root.

3) = 4). Has been proved in Proposition IV.13.
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4) = 1). It is also a consequence of Proposition IV.13. If any two sub-trees of
A with common root have disjoint spectra, there exists a constant C', such that

2L 4
S E M, o) <0 [ oo
0

neN

for every solution ¢ of (7)-(12) with initial state (¢, ¢;) € V x H, where all the
coefficients ¢,, are different from zero. This implies that the space of initial states

W = {(ao,al) ceVxH: Z % <|u2|2 + L|u}1|2> < oo}
is controllable in any time T > 2L,4. In particular, the space Z x Z will be
controllable.
The assertion b) in the general case of arbitrary networks, whose structure is
not necessarily a tree. This fact will be proved in Theorem V.1. (I

7. Simultaneous observability and controllability of networks

The results of the previous sections allows to consider the one-node control
problem for several (a finite number) of tree-shaped networks when the same control
function is used to control all of them, i.e., when they are controlled simultaneously.

Let A',...,Af be the trees associated to the controlled networks. For the ele-
ments of the network whose graph is A" we will use the same notations as in the
preceding sections but adding the superscript r to them. Thus, the solution of
(1)-(6) for the tree A" (in what follows we shall briefly refer to this problem as
(1),-(6),) is denoted by @" and the spaces V and H constructed for that tree by
V" and H".

We define the space

R
W=][Vv" xH,

r=1
endowed with the product Hilbert structure. The elements of W are called simul-
taneous states.

We shall say that the simultaneous state w € W, is controllable in time T if

it is possible to find a control function v € L?(0,T) such that the solutions @" of
(1)4-(6), with initial states (ag,a]) (the components of @) and v" = v verify

a"(T,z) = u,(T,z) = 0,

for every i =1, ..., R.

Once again using HUM, the problem of characterizing the controllable simul-
taneous states is reduced to the study of observability inequalities for the corre-
sponding homogeneous systems. Indeed, assume that there exist non-zero numbers
cﬁ, n € Zy, k=1,..., R, such that for every k the inequality

T R
(86) / 1S w02t > 3 (eh)? (b b o2 + b )
0 r=1

neZ

holds for all the initial simultaneous states w € W, where {uj ,,} and {uf , } are the
sequences of Fourier coefficients of the components @ and @] of the initial state in
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the bases {6, } of H", respectively, and @" is the solution of (1),.-(6), with v" =0
and define the sets

(87) W' = {(ug, uy) € V7" x (H")": |[(ug, uy)|l» < oo},

where

1 1
I a1z i= Y o (16 + ol o)
neZy ~ " n
Then, all the initial simultaneous states w € W = [],_; W" are controllable in
time T'.
In particular, if the inequalities (86) hold then the initial simultaneous states
w € [[]_, Z" x Z" are controllable (recall that Z" is the set of all finite linear
combinations of the eigenfunctions 9;) In this case, the networks are said to be
simultaneously spectrally controllable.
Moreover, the set of controllable simultaneous states in time T is dense in
W (when that holds the networks are said to be simultaneously approximately
controllable in time T) if and only if the following unique continuation property
takes place:

R
(88) Zu;(O,t) =0 in L*(0,T) implies (u},u}) =0 for every r=1,.., R.
r=1
It is clear that, if a simultaneous state is controllable then each of its compo-
nents is also controllable for the corresponding network. This implies that the if
we expect at least the approximate controllability to hold, then we need to assume
that all the trees supporting the networks are non-degenerate.
On the other hand, if two of the trees, say A' and A2, have a common eigenvalue
then, using the pasting procedure described in the proof of Proposition IV.9, we
can construct non-zero solutions of (1),-(6),, r = 1,2, such that

ur(t,0) +ui(t,0) =0, teR.

Therefore, choosing zero initial states for all the remaining trees A", r = 3, ..., R, we
obtain a simultaneous initial state in W for which inequalities (86) are impossible
and moreover, for which the unique continuation property (88) fails.

Thus, the conditions that the trees A", r = 1,..., R, are non-degenerate and
their spectra are pairwise disjoint are necessary for the simultaneous approximate
controllability, and then for the spectral controllability. As we shall see, these
conditions are also sufficient.

Put T* ="', L". For every k = 1, ..., R we define the operator

R
%= J] 2.
r=1, r#k

where Q" is the operator Q for the tree A”. Note that Qy, is an S-operator with
5(Qg) =T — L*.
Let g be the function associated to Qi according to Remark IV.1. Then

R
(89) = [ ¢
r=1, r#k
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where ¢" is the function corresponding to Q".

PrOPOSITION IV.16. If for a given k there exist numbers c,, n € Z, such that
every solution of (1),-(6)r with vy, =0 and initial state

k k k
uOvul ZuOn naz 1n9n)€V x H

neELy nely

satisfies

2Ly
(90) [ k0P = 3 e (b + 1)

0 neZy
then

2T7* R

(91) /O 1> up(0,0)7dt = > g (uklu ) + [uf )

r=1 neZ

for every (ag,u}) € V" x H", r =1,...,R.

PROOF. As Qy, is an S-operator with s(@k) = T*—LF, using Proposition IV.3(i)
we get

27 T*+LF
(92) / |Zu 0t|2dt>/ |kau (0,t)[%dt.
0 T*—Lk

But, as Q"ul(0,t) = 0, then 0, @ if r # k. Thus, inequality (92) becomes

27 T*+L*
(93) / |Zu (0,8)%dt >/ |Qkuk (0, 1) 2dt.
0 Lk

Now we consider the function @ = Q. As @ is clearly a solution of (D)w-(5),
then, according to (90) and Remark 80 it holds

T*+Lk
(94) / |WI(0 t 2dt > Z :unwO n + Wy n) .

* k
-L neEZly

On the other hand, it is simple to prove that the Fourier coefficients of the
initial data of @ and & are related by

(95) L wh W3 =GN (g, +ul ) -
Finally, combining (93)-(95) and the fact that w,(0,£) = Quuk(0,), the in-
equality (91) is obtained. O

Now, if the trees A',...,A® are non-degenerate then we have for every r =
1,..., R inequalities (90) with non-zero coefficients ¢,, (depending on ), which are
explicitly computed by formulas (78). Therefore, according to the Proposition
IV.16, we shall also have inequalities (86) with explicitly computed coefficients

¢ = g (An)len,
which are all different from zero whenever the spectra of any two of the trees A"
are disjoint, since ¢, () #Z0 for all r =1,..., R and n € Z,. Indeed, if g,.(\;,) =0
for some r and n then equality (89) would imply that ¢*(\])) = 0 for some i # r

and thus, from Proposition (IV.11), " would be a common eigenvalue of the trees
A" and A°.
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Consequently, we are able to construct, under those assumptions, a space

R
w=]J[wr,
r=1

where W are defined by (87), of controllable simultaneous states in time 27*. In
particular,

COROLLARY IV.4. The trees Al,...,A are simultaneously spectrally control-
lable in some time T (and then in time 2T*), if and only if they are spectrally
controllable and their spectra are pairwise disjoint.

8. Examples

8.1. Star-shaped network with n strings. In the framework of the study
of the controllability of networks of strings from an exterior node, the star-shaped
network with n strings constitutes the simplest example of a network with an
arbitrary number of strings.

The star-shaped network with n strings is formed by n strings connected at one
point. When n = 3, this network is the three string network studied in Chapter
I11.

Let us call A the star-shaped graph that supports the network. Following
the numbering criterion introduced in Section 1 for trees, we will denote byR the
controlled node and by O the interior node, that where the strings are coupled.
The controlled string will denoted by e and its length by ¢. The remaining n — 1
exterior nodes are denoted by O;, ¢ = 1,...,n — 1, the string that contains O; by e;
and the length of this string by ¢;.

(nodo controlado)

4

FIGURE 3. Star-shaped network with n strings

The only sub-trees of A are the strings e;, t =1,...,n — 1:
.Ai = {ei}.

Therefore, the spectra o; of the sub-trees coincide with the eigenvalues of the ho-
mogeneous Dirichlet problem for a string and are given by

k2 )
o; = 7 ) kel t1=1,...,n—1.
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The non-degeneracy condition of A is o; No; = () for every pair 4, j with i # j.
This means

km  mm
—f#—f

for all k, m € Z, which is equivalent to the fact that —7' is irrational.

We can conclude, applying Theorem IV.3, that 1f L A is the sum of the lengths
of all the strings of the network then it takes place

COROLLARY IV.5. The star-shaped network with n strings is approximately
controllable in some time T > 2L 4 (and then spectrally controllable in time T =
2L 4) if, and only if, the ratio of any two of the lengths of the uncontrolled strings
s an irrational number.

Besides, when the non-degeneracy condition is fulfilled, all the initial states
(tg,u1) € V' x H satisfying

1 1
(96) Z c_2u(2J,k < 00, Z CQ—U%,k < 00,
keN K keN k
are controllable in time T = 2L 4. Recall than in (96) y;, = )\i are the eigenvalues
of the network and the coefficients ¢, are defined by (78):

Cp = _max H lg; (M)l
J#l
where ¢; is the function associated to the operator Q; for the sub-tree A;.

But, as A; coincides with the string e;, the operator Q; coincides with £ (see
Subsection 2.1, where the operators P and Q are computed for a string) and then,
from Remark IV.1,

qj (/\k) =4sin /\kgj-
In conclusion,
Ch=,_fax H sin Axl;| .
J#i
In Appendix A we pay special attention to the function

a(\, 01, ..l 1) = E:IIBmA€|

i=1 j#i
There we provide conditions on the values of ¢1, ..., £,_1 such that, for every A € R,
an inequality of the type
a()\,él, ...,gnfl) Z C)\a

is satisfied. These conditions involve certain set B., € > 0, which are defined in
Appendix A, p. 160, where in addition, some conditions on the lengths, called
conditions (S), are introduced.

As, obviously, neg > a(Ag, £, ..., £n—1) then, applying Corollary A.2 we obtain

COROLLARY IV.6. If the numbers ¢4, ...,4,_1 are such that for all values i,j =
1,....,n—1,14 # j, the ratios 5—; belong to B. then, there exists a constant Ce > 0
such that

g
Ck 2 NGt ke N.

Therefore, all the initial states (tig, 1) € V=21 x V"=3%€ are controllable in time
T=2Ly.
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Under more restrictive assumptions on the lengths of uncontrolled strings, it is
possible to guarantee the existence of a larger subspace of controllable initial states:

COROLLARY IV.7. If the numbers {1, ...,€,—1 verify the conditions (S) then,
for every € > 0, there exists a constant Ce > 0 such that

cp > k e N.

€
Therefore, all the initial states(iig, 1) € VT x V€ are controllable in time T =
2L 4.

REMARK IV.12. When n = 3 the results of Corollaries IV.6 and IV.7 coincide
coincide with Corollary II1.5 II relative to the three string network.

8.2. Simultaneous control of n strings. This problem is quite similar to
the previous one, though in fact it is simpler. It consists in controlling n strings
ey, ...,e, of lengths /1, ..., ¢,, which are not coupled; we just use the same function
to control all the strings. This is the simplest example of simultaneous control of
an arbitrary number of tree-shaped networks in the sense of Section 7. Let us note
that the case n = 2 has been already studied in Section 2 of Chapter III. As it was
pointed out there, this is the problem studied in [6], [4], [10], [8], [9], with the help
of Theorem II.6. In [27] this problem was solved using the technique we describe
here.

The controlled system is

ul, —ul, =0 (t,x) € Rx[0,4;],
(97) ul(t, ;) =0, u'(t,0) =v(t) t € R,

u'(0,2) = ud(z), ul(0,z)=ul(z) x € [0, 44],
fori=1,...,n.

Let us observe that this system may be viewed as a star-shaped network with
n controlled from the interior node, that is, from the coupling point.

According to Corollary IV.4 of Section 7, the n strings are simultaneously
spectrally controllable in some time 7' (and then also in time Ty = 237" | ¢;) if,
and only if, the spectra of any two strings are disjoint. This is equivalent to the
fact that all the ratios f—;{ with ¢ # j are irrational numbers.

It is possible to obtain additional information directly from Proposition IV.16.
In this case, the controlled trees are strings: A; = {e;}. Then we have Q;, = ¢; and
therefore

=0, G=[[9=]1¢. laWl=]]lsinx)].
J#i J#i J#i

Besides, the eigenvalues (ui) and eigenfunctions (92) of each A; may be explicitly

computed:
2
= () o=y

On the other hand, if (uf, ), (u} ;) denote the sequences of Fourier coefficients
of the initial state (@}, a}) of the string e; in the basis (), then

20 ) o o
(98) /0 it (1,07 > 4" (b ()2 + (d1)?) |

keN
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for every solution

uit — U;I =0, ui(t, 0) = ui(t,&) =0,

with initial states (@}, 4%) € Z; x Z; (this is the observability inequality of a string
from one of its extremes, see Proposition II.1).

Applying Proposition IV.16 to the inequalities (98) it hold that for every i =
1,...,n, the inequalities

™ | n
[0
0 i=1

are verified for every ¢« = 1,...,n and every solution of the homogeneous version of
(97) with simultaneous initial state (a,4}) € Z; X Z;, i = 1,...,n.

These are the observability inequalities associated to the problem (97): if for
each 7 = 1, ..., n, the simultaneous initial state (ug7 ui), i = 1,...,n, satisfies

i \2 i \2
Z (uo,k)’2 < o0, Z (U1,k) < 0,

i a2
e @ (A,) kent |G| 1
then, that state is controllable in time 7.
The numbers |;(A},)| may be easily estimated:

00| = T lsmie)| = [T .
J#i J#i
(Recall that |||n||| denotes the distance from 7 to Z.)
Then we obtain, in account of the results on Diophantine Approximation in-
cluded in Appendix A, conditions that allow to identify subspaces of simultaneous
controllable states in time 7% =237 | (;:

dt > 43 (GO (i ()% + (ud 1)?)
keN

> 0]

J#

0.
. k J
sin( ﬂ_fi)

f-
k=L
‘ b

COROLLARY IV.8. If the numbers {1,...,4, are such that for all the values
i,7=1,....n, i # j, the ratios 5—; belong to B, then there exists a constant Cc > 0

such that

~/n\d C.
@\ > (yn—ire’ ke N.

Therefore, the space of controllable simultaneous initial states in time T* = 2 2?21 l;
contains all those simultaneous states that verify

i Q 14-¢ €
(anul) € ‘/z X ‘/z )

for every i = 1,...,n, where V,* is the space V" defined in Chapter I by (1.27) for
the string e;, that is,

. km o
Vf{sozsokSIn(?z): S |sak|2<oo}.

keN keN

COROLLARY IV.9. If the numbers (1, ...,L, verify the conditions (S) then, for
every € > 0 there exists a constant Ce > 0 such that
C:

e k€ N.

|G(AL)] >
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Therefore, the space of controllable simultaneous initial states in time T* =23 " {;
contains all those simultaneous states that verify

(uh,ut) € Ve x Ve,
for everyi=1,...,n.
REMARK IV.13. The problem of simultaneous control of n strings may be suc-

cessfully studied with the aid of the method of moments. It suffices to note that the
function

F(z)= H sin z¢;
i=1

is a generating function of the increasing sequence (o.,,) formed by the numbers )\};,
i=1,..,n, k € N (the positive square root of the eigenvalues of the strings).
The function F' is bounded and of exponential type A = 2?21 {;. Besides,

POl =11
i
This allows to obtain results similar to those of Corollaries IV.8 and IV.9.

/.
. k _]
sin( ﬂ'&)

8.3. A non star-shaped tree. Now let us consider a tree A, which is not
star-shaped, having a very simple structure as shown in Figure 4. We will assume
in addition that ¢ 2 = f5.

(nodo controlado)

4

FIGURE 4. A tree which is not star-shaped

This tree contains four sub-trees. Two of them
Ay ={e1,e11,€12}, Ag = {es},
have the common root O. The other two
Arr = {91,1}, Ar2 = {91,2},

have the common root Q1.
The operators Q corresponding to these sub-trees are

Q =145, Q11 =41, Q1,2 =141,
Q) = (ET 07 7o + 400 07, + 0707 0T )
The first three operators are obtained immediately, since the corresponding sub-

trees are strings. The operator corresponding to Aq, is the operator Q for a three
string network and has been constructed in Chapter III.
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The functions associated to these operators are
q2(A) = isin Mla, q1,1(A) =isin My g, q1,2(A) = isin Ay o,

@1 (A) = —(cos AMlysin My 1sin Ay o + sin Ay cos My 1sin My o +
+ sin My sin M7 1 cos My 2).

The functions d corresponding to the simple uncontrolled nodes are

di1(A) = @2(N)aq1,2(N), di2(N) = @2(M)q1,1(A), da(N) = q1(N).
Finally,
cx = max (|di,1 (M), [dr2(Ak)] 5 [d2(Ak)]) -
Now it is easy to see when A is degenerate. If ¢ = 0 then,

|d1,1(Ak)| = [d1,2(Ak)] = |d2(Ag)] = 0.
Taking into account that ¢; » = f5 from the latter equality it follows sin A¢; 2 = 0
and then,
sin Agl sin Agl,l =0.
11

If sin Mq,; = 0 (resp., sin A{; = 0) then, necessarily, s (resp. ;ﬁ) is a rational
number. Consequently, we can ensure that A is non degenerate if the ratios 2—’;

and ;i—lz are irrational numbers.

Besides, we can give conditions on the lengths that guarantee that the coeffi-
cients ¢y are not too smalls. If a € R is such that Ajcy — 0 then,

Mo ldii(Ae)l — 0, Apdi2(Ak)| — 0, Ay |da(Ag)| — 0.

It is easy to see that this implies

(99) AZ [sin Aly sin Agly 1| — 0.
Then we can apply the results of Appendix A to conclude that (99) is impossible if
e the ratios 2—';, Z‘;—lz and ;i—ll belong to some B, and o« > 4 4 ¢ or

e the numbers ¢1,¢1,1,01 2 éatisfy the conditions (S) and a > 2 + ¢.
Then, in the above cases we will have that there exists a positive constant C
such that for every k € Z,
CL 2 —-
Ak

Consequently, all the initial states (i, ;) € V* x V=1 are controllable in a time
equal to twice the sum of the lengths of the strings.



CHAPTER V

Some observability and controllability results for
general networks

In this chapter we have gathered some results of general character, which do
not impose any restriction on the topological configuration of the networks.

The first of these results is described in Section 1, it concerns the spectral
controllability from an exterior node of arbitrary networks, which may, in particular,
contain cycles. A condition on the eigenfunctions of the network is given that
guarantees the spectral controllability of the network in any time larger than twice
its total length. For tree-shaped networks, that condition coincides with the spectral
controllability criterion given in Chapter IV (Theorem IV.3), except by the fact that
there it was possible to obtain information on what happens in the minimal control
time.

However, for networks with more complex structures it is quite difficult to give
an algebraic characterization of a condition guaranteeing the spectral controllability.
This would require to take into account the specific structure of the graph that
supports the network.

In Section 2 we present a result of general character, related to the control of
an arbitrary network when we are allow controls to act on all its nodes. In spite
of what may be expected at a first sight, such a large set of controlled points still
does not guarantee the exact controllability of the network. That is why we will be
concerned once again with the spectral controllability property of the system. It
will be shown that in order to reach spectral controllability, it is sufficient to choose
only four different control functions, simultaneously applied in several nodes of the
network.

Finally, Section 3 is devoted to show that the Schmidt’s theorem stated in
Chapter I (Theorem I.1) is exact in the sense that, if a tree-shaped network has
more than one uncontrolled nodes then it is not exactly controllable in any time
T >0.

1. Spectral controllability of general networks

1.1. Asymptotic behavior of the eigenfunctions. The eigenvalues of a
networks cannot be explicitly computed. Let us recall that is was already impossible
for the three string network: in that case, the eigenvalues are determined by the
transcendental equation g(A;) = 0, where ¢ is defined by the formula (II1.52).
However, it is not difficult to obtain certain information on the asymptotic behavior
of the sequence of eigenvalues in the general case.

The idea is simple: the eigenvalues of the network may be compared with the
eigenvalues of the strings with Dirichlet and Neumann boundary conditions.

115



VI6SOME OBSERVABILITY AND CONTROLLABILITY RESULTS FOR GENERAL NETWORKS

To be more precisely, let us denote by (&), (14N ) the sequences of eigenvalues
of the operator —A on the string e; of length ¢; with homogeneous boundary
conditions of Dirichlet and Neumann type, respectively. Let (u2),(ul') be the
strictly increasing sequences formed by the elements of the sets

M M
i,D i\ N
Uwi?,  UJws™),
i=i i=i
respectively.

Then, if (f1,,) if the strictly increasing sequence of the eigenvalues of the network
it holds

ProproOSITION V.1. For every n € N the following inequalities are true
pr < i < -

This proposition is proved in [62], [15] for the general case of equations with
variable coefficients. For vibrating strings, it seems to have been first stated by
Camerer in 1980 (see reference [3] in [15]), though a detail study of this property
has been also presented in [66]. A quite instructive application of these ideas for
networks of beams is given in [30].

Let us observe that the eigenvalues p%P, &N may be computed explicitly:

2 2
(1) T (2—”) comN = <w> neN.

Thus, u&P = Ni{ﬁ and the same is true for the sequences (u2), (ulV):

Mg = ,Uvzy-i-l-
With this, the inequality of Proposition V.1 becomes
(2) pin < fuy, < Mg-l-l'

If we denote 5\n ‘= /[, We get as an immediate consequence of these inequal-
ities the following property of generalized separation of the sequence of eigenvalues

) . 1
Anadrt = An 2 \Jinyy = \fu 2w min ().
=Ly 7

Indeed, from the inequalities (1) it follows that, for every ¢ = 1,..., M, and

every k € N
iN N T
Prt1 = VHe = 7
3
On the other hand, for each n € N, among the M + 1 numbers

\/ /1/7]:[’ \/ :u"r]y+15 cey \/ /1/7]:[+N

there are necessarily at least two corresponding to the same value i* of . Then
N i*,N i*N T . 1
VENen = N >y = = o2 ”Z—:TI,?M(E)'

In a similar way as it has been done in Chapter III for the three string net-
work, it is possible to obtain asymptotic information on the sequence (fi,,) from the
inequalities (2). Indeed, if n(r, (a,)) denotes the counting function of the sequence
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(an), that is, n(r, (ay)) is the number of elements of a,, contained on the interval
(0,7) then from the inequality (2) follows

(3) n(r, (V1)) = 1 < n(r, (A,) < nlr, (y/u).

On the other hand,

rl;

n(r, (i) = [

(here, [n] denotes the integer part of the real number 7). From this inequality we
obtain

J+1

and then, from (4),
ZL<n(r,(\Jud)) < ZL+ M.
T e

Finally, replacing this estimate in (3) we obtain
(5) ZL-1<n(r,(A\) < —L+M,
i i
Let us observe that from the inequalities (5) it follows that the sequence (A,)
has density:
. A L
(6) D(\,) == lim nr, (A,)) _ L

T—00 T ™ ’

It is possible to prove that (see, e.g., Problem 1, p. 142 in [81]) that for any
sequence (a,,)

fim M@n)
r—00 r n—0o0 (A,

Therefore, from (6) we obtain

L

that is, asymptotically, the eigenvalues of the network behave as those of one string
of length L. This suggests, in view of the fact that for the pointwise control of a
string of length ¢ the minimal control time is 2¢, that for the control of a network
for one of its exterior nodes the minimal control time should be equal to 2L. In
Theorem V.1 we will prove that this fact is indeed true.

Summarizing the previous results we can formulate

lim = =— lim —= =
n—oo n L n—oo n2

A, T iy, (7‘()2'

ProrosiTiON V.2. If (an) is the strictly increasing sequence formed by the
positive square roots of the eigenvalues of the network then |

1) The counting function of (\,) satisfies

ZL-1<n(r,(\,) < =L+ M.
™ ™
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2) The sequence (X\,) has upper density
s L

™

3) The numbers 5\n are separated in a generalized sense

i=1,... .M

. . 1
AmiMi1 — Ay = T min (ﬁ_)

4) For every T > 2L there exist positive numbers vy,,, such that

T 2
[ R A
0

nez neZ
for every finite sequence (cy,).
A, T
5) limy oo —2 = —
n

L

Let us note that the property 4 holds as an immediate consequence of Corollary
I11.5 of Theorem II.6.

Let us recall now a notion from the Theory of Non Harmonic Fourier Series.
Let (A,) be a sequence of distinct real numbers and denote by © the set of all the
finite linear combinations

ft) = chei)‘"t.

The number
R(\n) :=sup{r: ©is dense C([—r,7])}

is called completeness radius of (\,).
The information given by Proposition V.2 allows us to calculate the complete-
ness radius of the sequence (+A,,).

PROPOSITION V.3. The completeness radius of the sequence (£,,) is equal to
L.

This assertion is an direct consequence of the theorem 2.3.1 from [34] applied to
the sequence (£1,,). At the same time, that theorem from [34] is a consequence of
the famous Beurling-Malliavin theorem allowing to express the completeness radius
of a sequence in terms of its density (the details may be found in the original work
of A. Beurling and P. Malliavin [17]).

In [34] the following proposition is also proved.

PROPOSITION V.4 (Haraux and Jaffard, [34]). Let (\,) be a sequence of real
numbers. Then, the following properties are verified

1) For every T > 2R(\,) and every n € Z there exists a constant C,, > 0
such that

(7) / '

for any finite sequence (a,).

2
dt > Cy, |an|?,

E anez/\nt

nez




1. SPECTRAL CONTROLLABILITY OF GENERAL NETWORKS 119

2) If T < 2R(\,) there is no finite set I C Z such that there exists a con-
stant C; > 0 with the property that, for some finite sequence (an)ner the
inequality

(8) /O '

is valid for every finite sequence (ay).

2
dt > Cr

2

)

E anez)\nt

ne”Z

E Qnln

nel

If we apply this result to the sequence (ij\n), we obtain, in view of Proposition
V.3,

For every T > 2nL there exist positive numbersCy, n € Z, such that

T . 2
/ E anezkn,t
0

dt > Cy |an|?,
nez
for every finite sequence (ay,).

With respect to the similar result of the property 4) in Proposition, this latter
approach has the disadvantage that it has been obtained in a non-constructive
way, while the coefficients v,, in Proposition V.2 4) may be, in principle, explicitly
expressed in terms of the eigenvalues. The interest of this approach could be now
considered mainly of historical character: it is based on result known for more than
one decade, while the proof of Theorem I1.6 have been recently published. However,
the ready to use assertions and the simple proofs given in [34], will continue to be
a constant reference in this kind of problems.

1.2. Application to the control of the network. The results on the as-
ymptotic behavior of the sequence of eigenvalues allow to obtain the following
information in connection to the control of arbitrary networks of strings from one
exterior node.

THEOREM V.1. a) For every T > 2L the following properties of the system
(1.11)-(1.16) are equivalent

1) the system is approximately controllable in time T
2) the system is spectrally controllable in time T';
3) the spectral unique continuation property: wl(vi) # 0 is verified by any
non-zero eigenfunction @.
b) When T < 2L the system (1.11)-(1.16) is not spectrally controllable; no
element of Z x Z is controllable in time T .

PRrROOF. a) We will prove that 1) = 3) = 2). This, together with the imme-
diate implication 2) = 1) (the spectral controllability is a particular case of the
approximate controllability), will give the assertion of the theorem.

1) = 3). Let us observe that if s, = 0 for some n = ng then for the solution
of (I.17)-(1.21)

B(t, ) = cos Ayt Oy ()
we will have ¢L(t,v1) = 0 for every t € R. For this solution ¢ the unique contin-
uation property from the controlled node is not valid for any value of T > 0 and
thus, the system (I.11)-(I1.16) is not approximately controllable in any time 7" > 0.
Therefore, 1) = 3).
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3) = 2). From Chapter IT we know that, if the observability inequality

T
©) | lesten it = 32 (ualenal” +[onal”)

neN

is verified for every solution @ of the homogeneous system (I.11)-(I.16) with initial
data (¢, ;1) € Z x Z then, all the initial data (tg,@1) € H x V' satisfying

1 2 1 2
(10) Z = [uo,n|” < o0, Z 25 [ur,n|” < o0

neN neN i

are controllable in time 7'
Using the formula (I1.23) for the solutions of (I.17)-(1.21), the inequality (9) is
written as

(1) /OT

where (¢ ,,) and (¢, ,,) are finite sequences and s, are the values of the normal
derivatives of the eigenfunctions at the controlled node:

¢1,n

Z %n(%,n oS At + 5

neN

2
sinAut)| dt = 3 2 (i, |90, + |00.0]%)

neN

[n] = O 2 (V1)

1 D1 jn|
an =35 <¢07|n| + in, )

for n € Z,, where A\, = —A_,, if n < 0, we will have

Pop =0n+a_n, ¢, = (an—a_y)ir,, neN.

If we denote

With these notations, the inequality (11) becomes

T 2
(12) [ anue
0

nELy
for every finite sequence (a,) of complex numbers with the property a_,, = @,.
Let us observe now that, as the network is such that no eigenfunction vanishes
identically! on the controlled string, the eigenvalues y,, are all simple. Indeed, if 9
and @ are two linearly independent eigenfunctions corresponding to the eigenvalue
w1 then the function

=15 Gl
neN

© =g (vi)Y — ¥y (v1)p )
is also and eigenfunction and is not identically equal to zero as ¢ and @ are linearly
independent. Besides

wi(v1) = a (V)P (V1) = ¥y (Vi) (vi) = 0,
and this contradicts our hypothesis on the network.
Thus, the eigenvalue being simple, the sequences (A,,) and (;\n) coincide. Then,
as a result of Proposition V.2 4) there exist positive numbers +,, such that

T .
/ § an ez)\nt
0

NEL 4
1This condition is obviously equivalent to the fact that the normal derivative of the eigen-
function vanishes at the controlled node, since, by definition, the eigenfunctions are equal to zero

2
dt > 2 Z 7252 an|® .
neN

at the controlled node and satisfy a second order ordinary differential equation.
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Therefore, we can conclude that the inequality (12) is true with coefficients

Cn = ’yn |%n| .
V2,
Let us note that all these coefficients are different from zero, since the hypothesis
of 3) guarantees that s, # 0 for every n. Then, the initial states defined by (10)
are controllable in time 7" and in particular, so are those of the space Z x Z. This
means that the system (I.11)-(1.16) is spectrally controllable in time 7'

b) Let I C N be a finite set. If we apply Corollary I1.2, it follows that the
initial state

(13) (@0, W) = (O anbn, Y B,0n) € Z x Z
nel nel

is controllable in time 7" if, and only if, there exists a constant C' > 0 such that

T 2
/0 ’¢;(t,V1)’2 dt > C (Z an¢1,n - ﬁn(bo,n) )

nel

for every solution ¢ of (1.17)-(1.21) with initial state (¢q, ¢;) € Z x Z.
As a consequence of this, if the initial state (@, %;) defined by (13) is control-
lable in time 71" there exists a constant C' > 0 such that

T .
/ E an%nezknt
0

NEL
(14)

\

2 2
dt > C (Z an(an —a_pn)ir, — B, (an + a_n)>

2
Z(ani)\n = B,)an + (—anii, — ﬂn)an>

I
Q
3
m
~

Il
Q
~~
S
3
S
3
~—
()

for every finite sequence (a,,), where
Pn = Qn|iAn = By
On the other hand, if T' < 2L then, since R(\,,) = L we have
T < 2R()\,).

Then, in account of Proposition V.4 2) we can ensure that there is no sequence sat-
isfying (14). Therefore, the initial state (@o, @) defined by (13) is not controllable
in time T if T' < 2L. O

REMARK V.1. When T > 2L and the spectral unique continuation property is
verified, if we define the space W as the completion of Z x Z with the norm

T 9 2
[11(9, )| := {/0 |0x(t,v1)] dt} ,

then, all the initial states (g, 1) € H x V' such that (41,49) € W' (the dual of
W) are controllable in time T.
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In view of Proposition V.2, the space W contains all those (G, o) that satisfy

1 1
> o (lunal® 4 o) < o
b2 H

= n
where the coefficients vy, are computed according to Corollary 1.5 of Theorem II.6.

REMARK V.2. In general, when T < 2L we do not know what happens with
the approzimate controllability of the system (1.11)-(1.16); possible, the available
information on the sequences (\n) and (5¢,) is not sufficient to give an answer.

For the three string network we were able to prove in Section 9 of Chapter III,
that the approximate controllability does not hold whenever T < 2L. Recall that
in that case it was possible to construct explicitly a sequence for which the unique
continuation property fails. The same construction may be done for the star-shaped
network with n strings.

In [6], the lack of simultaneous approximate controllability of n strings was
obtained with the aid of Corollary II.4. This approach, however, is not appropriate
for networks which are not star-shaped, since we do not have sufficient information
on the sequence (3,).

Finally, unlike the case of tree-shaped networks, we do not know whether the
spectral controllability still holds in the minimal time T = 2L.

2. Colored networks

We consider now a network of N stings controlled at all of it nodes.
The motion of the network is described by the system

ul, —ul, =0 inRx[0,0], i=1,...,N,
15) uf(t, 0) = vk<vfj(t) teR, i=1,.,N—1,

ut(t,€;) = vFV) (1) teR,

u(0,2) = ui(z), ui(0,z)=ul(z) =z €][0,4], i=1,..,N.

Here we have denoted by v;", v; the initial (corresponding to = 0) and final
(x = ¢;) nodes of the string e;, respectively, and k(v) is the index of the node v.

The problem (15) is well posed for initial states (uf, u?) € L2(0, ;) x H1(0,¢;),
i=1,...,N, and controls v* € L?(0,T).

This system, being controlled at a large number of points, is expected to have
better controllability properties than the control systems studied up to now. As
usually, we will say that the initial state (uj,ui) € L2(0,4;) x H=1(0,4;), i =
1,...,N, is controllable in time T' > 0, if it is possible to choose controls v* €
L?(0,T) such that the solution u?, i = 1,..., N, of (15) reaches the rest position in
time 71"

u'(T,.) =ul(T,.) =0, i=1,..,N.
For every i = 1,..., M, we introduce the sets
X;r:{j: v:reej}, X;:{j: v;eej},

which are, respectively, the sets of the indices of those strings that are incident at
the initial and final nodes of the string e;.
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A direct application of HUM guarantees that, if for every ¢ = 1,..., M there
exists a sequence of non-zero real numbers such that

T
/ (I D 0t GVIIPH D 00! (vt > > () (1(00,0) + (61,0)°)
0 jEXj JEXT neN

for every solution ¢ = (qﬁl, - ¢N) of the homogeneous problem (15) then, the initial
states (uj,u}), i = 1,..., N, verifying

NGRS S Pl

b G =t (ch)

are controllable in time 7.

Let us remark that the homogeneous problem is a set of N uncoupled wave
equations with Dirichlet boundary conditions. The coupling in the original con-
trolled system (15) is shown in the fact that the “observed quantity” in every node
is the sum of the normal derivatives of the solutions corresponding to those strings
that are coupled it that node. Let us observe that this is a local problem, in the
sense that in the observability inequality for every string e; only those solutions
corresponding to strings that have common nodes with e; are present.

Recall that for the simultaneous control of n strings we have proved that if T;r
and T, are the sums of the lengths of all the strings that are incident to VZ-+ and
v, , respectively, then the following inequalities are verified

2T’L+ . . . . .
(16) / 1S 0 vHPdt > ST (k8 0) + (B0)?)

jEXj neN
2T . . . . .
(17) /0 | D0 0 (v )Pdt = Y () (1 (00,0)° + (61,0)°)
JEX; neN

with coefficients? that may be explicitly computed whenever i—’; are irrational num-
bers for every p,q € X;" for (16) and p,q € X; for (17).

Consequently, we can indicate conditions on the lengths of the strings, precisely
those given for the simultaneous control of n strings, guaranteeing the controllabil-
ity of the system (15) in explicitly characterized spaces. In particular, under the
irrationality hypotheses mentioned above, the system is spectrally controllable in
any time T that satisfies

T* > 2max {T;", T, } i=1,.., M.

Now we attempt to reduce the number of different functions used to control the
system (15) by applying the same control function at several nodes. Let us assume
that the in set {1,2,..., N} of the indexes for nodes a partition is established:

(1,2,.,N} =K, U---UK,,

such that there is no string having its two nodes in the same set K. We will say
that two nodes are equivalent if their indexes belong to the same class. A simple
way of representing this partition of the set of nodes is to suppose that the nodes

2The coefficients ¢, in the inequalities (16) and (17) son different. We have denoted them
with the same symbols to avoid to make the notations even more difficult.
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have been painted using r different colors such that no string has their nodes of the
same color. With this, equivalent nodes are those of the same color.

FIGURE 1. A network with colored nodes

In Figure 1 we have represented a network, whose nodes have been painted
with four colors, shown with the symbols: ¢, A, ¥, e. For this network, four is the
smallest number of colors that allows to paint the nodes without repeating the
colors at the nodes of one string.

Now we add and additional restriction to system (15): v, = v, if the nodes v,
and v, are of the same color.

It is easy to see that this restriction leads to the same observability inequality
as before, except by the fact that now the sets X;' and X, should be replaced by

X=|JU: vee}, X;=|J {: veel,
vrvv;r vev

(the notation v ~ v’ indicates that the nodes v and v’ are equivalent), which are
the sets of the indices of the strings, which have some node of the same color as
the initial node of e; and of the final node e;, respectively.

We may conclude that, if the lengths of the strings satisfy i—z ¢ Q for all the
indices p # ¢ such that some of the nodes of the string e, is of the same color as
one of the nodes of e, then the system (15) is spectrally controllable in any time

T>2 max (Ty),
k=1,...,r
where T} is the same of the lengths of all strings having some node of color k.

To avoid too detailed notations, we will replace the previous conditions by the

following, clearly more restrictive ones:

1) the ratios i—z are irrational numbers for all the indices p # ¢;
2) T is not smaller than twice the sum of the lengths of all the strings of the

network.

Under these hypotheses, the minimal number of different control functions nec-
essary to reach the spectral controllability of the network is equal to the minimal
number of colors, which are necessary to paint the vertices of the graph such that
no edge has its vertices of the same color. This is the classical problem on colored
graphs (and this is equivalent to painting a map). The solution, the famous Four
Colors Theorem, asserts that if the graph is planar, four colors are sufficient. This
is an apparently trivial fact, but a “purely mathematical” rigorous proof is not
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known. Nowadays it has been proved with the aid of computers. The details may
be found in [1].

Let us observe now that we have actually obtained two inequalities for every
string: (16) and (17), while only one of them suffices to prove the corresponding
observability inequality. That is why we may assume that the control associated
with one of the colors is equal to zero (this is, indeed a particular choice of the
control); to vary this control function is not necessary to control the system and
the nodes where it is applied may remain fixed.

Summarizing the previous results we have obtained

PRrROPOSITION V.5. If the network is supported on a planar graph and the lengths
of its strings and T satisfy the conditions (1) and (2) then, four different functions
are sufficient for the system (15) to be spectrally controllable in time T. Besides,
one of those functions may be chosen identically equal to zero.

REMARK V.3. The condition requiring that the extremes of the strings are of
distinct colors is natural if one expects at least the approximate controllability of the
system, since it is impossible to control a string using the same control function in
both of its extremes. Indeed, the observability inequality associated to that problem
would be

T
/0 16, (£,0) — 6y (1,0)2dt > 32 (B + 62.,)
neN

where ¢ is the solution of the wave equation ¢, — ¢

d(t,0) = ¢(t, ) = 0. It suffices to take

v = 0 with boundary conditions

2 2
o(t,x) = cos %t sin —ﬂ-:c,

14
to see that this inequality cannot be true. Moreover, in this example we have the

equality ¢, (t,0) — ¢, (t,£) = 0, and thus, the approximate controllability does not
hold either.

3. Sharpness of the Schmidt’s theorem

In this section we will prove that Theorem I.1 from Chapter I is sharp in the
sense that, if in a tree-shaped network there is at least two uncontrolled nodes, then
there exist initial states (@, @1) € H x V' of the network that are not controllable
in any finite time 7.

The proof is based on the fact that if there are two uncontrolled nodes, then
a simple path may be found formed by consecutive strings and connecting those
nodes. If there exists T > 0 such that every initial state (@g,%;) € H x V' is
controllable in time T then, we obtain the exact controllability of the system of
serially connected strings with controls at the coupling points studied in Subsection
3.1. That is why we concentrate on studied in detail that latter system. We will
prove that actually it is never exactly controllable, independently of the value of T'
or the lengths of the strings. From this will follow that a network with more than
two uncontrolled nodes is never exactly controllable.

3.1. Simultaneous control of serially connected strings. Let us suppose
that we have N strings of lengths /1, ..., {, which are connected in series and that
in every coupling point a control acts to determine the displacement of that point.

The motion of the strings of is described by the system of equations
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ul, —uk, =0 inRx[0,0), k=1,..,N,
(18) uk(t, ) = uFTL(t,0) = v*(t) t €R, k=1,..,N—1,
ul(t,0) = uN(t,ly) =0 teR
( 3 ) 3 )
uk(0,2) = uf(z), ukb(0,2) =uf(z) = €l0,4], k=1,...,N.
0 u? 2 0 ut Ly
0 W 6 0 u? A -
Tvl Tvz Tvs

FIGURE 2. Four serially connected strings with controls v!, v?, v3

at the connection points

For T > 0, this problem is well posed for initial states (uf,uf) € L2(0,£x) x
H=0,¢;), k =1,...,N, and controls v* € L?(0,T). The corresponding homoge-
neous problem is also well posed for (uf,u¥) € HE(0,0x) x L%(0, lx).

Let us note that is problem is a particular case of the problem on colored
networks studied in Section 2. Thus, we can indicate conditions on the lengths
of the strings guaranteeing that the system is spectrally controllable. However,
our in now to prove the existence of initial data (uf,u¥) € L?(0, ;) x H=1(0,4),
k =1,...,N, which are not controllable in any finite time 7" > 0, independently of
the values of the lengths of the strings.

Once again applying HUM it follows that the system (18) is exactly controllable
in time T if, and only if, there exists a constant C' > 0 such that the solutions of the
homogeneous system ¢ = (¢',...,¢" ), which in this case corresponds to N wave
equations with homogeneous Dirichlet boundary conditions, verify

N-1 T
(19) > /
k=170
for k =1,..., N, where Ej is the energy of the solution gbk, a conserved quantity.
Let us note that the inequality (19) cannot be true for arbitrary values of the

lengths of the strings. Indeed, if, for example, all the lengths coincide and are equal
to £ then the functions

N
2
Ph(t, ) — PET (2, 0)} dt > CY Ey,
k=1

qﬁk t,x) = —1ksint—ﬂsinﬂ, k=1,..,N,
L 14

are solutions of the homogeneous system (18) and besides

t t
Ok (8, 6x) — ST (L, 0) = (~1)F % <sin 7” cos %Izz +sin 7” cos %z_o) -0,

for kK = 1,...,N. But the energy of these solutions does not vanish, since the
solutions are non-trivial. Then, the inequality (19) is not true. Moreover, the
unique continuation property being false, the system is not even approximately
controllable.
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Similar examples may be easily given whenever the lengths of the strings satisfy
the conditions é;:l € Q for every k. On the other hand, if the ratio ’“—zl is an
irrational number for some k, the the unique continuation property holds and then,
so does the approximate controllability of (18).

However, as we have pointed out above, the inequality (19) is never valid,
independently of the values of the lengths of the strings. Our aim is to proof this
assertion.

For every kK =1, ..., N, the solution qﬁk may be expressed as

k
o*(t,x) = Z ((bl&n cos \Ft + d);—k" sin AZt) sin APz,

neN

nm

where AF = 7- are the eigenvalues of the k-th string and ((bg,n), (gb’fn) are the

sequences of Fourier coefficients of the initial data ¢f, ¢¥ in the basis (sin AXz),en

of L2(0, fk)
Then
Z ak “’ntsin)\ﬁx,
nez*
where
k k o \n|
Op = Sgn(n)Anv a’ (d)O | + )

ixk

n
The inequality (19) can now be written as

Z/

Our aim is to construct sequences (a¥), k = 1,..., N for which the inequality
(20) is not verified.

In order to simplify the notations, we assume N = 2. Let (O’n) be the increasing
sequence formed by the elements of the sequences (o) and (02). Define (a;,) by

an = (=)™ al

mm’

2
k k41
1" /\ a el )\k+1 k1 gion, t) )\Zafl

n

nGZ* k=1 nezZ*

if o, = ol
2 .
an = =X d if 0, = 02,

With this, the inequality (20) becomes

2
(21) / > ot dt>C Y ag?

nez* nez*
Note that the latter inequality could be obtained as a consequence of the classical
Ingham inequality, if there would be some uniform separation between the numbers
on. We will see that this is not the case.

As ol —op, = e 021 — 0% = 7 we can ensure that op40 — 0 >

ﬂmin{el, Z } however, it could happen that liminf, . (0n+1 —0pn) = 0. Ac-

tually, this always happens. It suffices to note that the number e_; may be ap-

proximated by rational numbers, that is, there exist sequences (py), (qx) of entire

numbers such that
¢
lim (—1 - @) —0.
k—oo \f2  qu
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This is equivalent to o} — 02k — 0. Thus, the elements of the sequence (o,,) may

P q
get close.

This lack of uniform gap between the numbers o not only makes impossible
to apply the the Ingham inequality, but also that (21) is not true. It takes place

PROPOSITION V.6. There is no positive constant C such that the inequality (19)
is verified by all the solutions of the homogeneous system (18) with initial states

(5, 0%) € HY(0,0) x L*(0,4k), k=1,...,N.

PROOF. The key element of the proof is the Dirichlet theorem of simultaneous
approximation of real numbers by rationals (see more details in [19], Section 1.5):

If €' &M are real numbers then, for every € > 0 and an infinite number of
values of p € Z there exist entire numbers q;(p), i = 1,..., M such that

S —aip)l < i=1,.., M.

Let us fix £ > 0 and choose &' = %, i=1,..,N — 1. Applying the Dirichlet
theorem to the numbers Ei, i=1,..,N — 1 it holds that there exist infinite values
of p for which the following inequality is verified

; 1
pr_ gt ( )

61 £i+1 i=1,..,N—1 £i+1

and that is
1 i+1
(22) Ay = X | < 1

Now denote by (o) the increasing sequence formed by the positive square roots
of the eigenvalues ¥ of all the strings.
For each value p whose existence was ensured by Dirichlet theorem, let us define

m(p) by

. 142 i
Jm(p) = min {Ap’ )\ql(p), ceey )\QN—l(P)} .
Then, for infinite values of p € Z the following inequality is true:

|Ome)+v-1 = O | < E1.
Since the elements o, (), Tm(p)+15 -+ Tm(p)+N—1 are close we can ensure that

among them there is exactly one of the eigenvalues of every string. Let ng(p) be
such that

k
M) € 1Tm(p)s Tm(p)+1s -+ Tm(p)+N -1}

(this value is unique).
Then it will hold

k K
(23) Ani(p) ~ A (o) | < €15

g

forall kK, k' =1,...,N.
Let us consider now for every kK = 1,..., N — 1, the following solutions of the
homogeneous version of (18)

1 .
Qﬁ]; (t, (E) = T() COS 2)\flk (p)t S1n 2)\flk (p).’L',
Nk (p

whose energy is

¢
Ekzg.
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On the other hand,
¢];,z(t7 ) — fi’];j;l (t,0) = cos 2)\F
Then, from this inequality

)t — cos 2\ ¢

k(P np41(p)”

" E+1 2 k E+1 277
/0 ¢P7I(t’£k) — by (t,O)‘ dt < )‘"k(P) - )‘nk+1(p) 3
(we have used the inequality
T 3
T
/0 (cosat — cosyt)? < -l — y|?,
which is easily proved with the help of the mean value theorem).
In account of (23), we may conclude that
I k+1 2 k k+1 7,
/0 qﬁp,m(t)ﬂk) - ¢p,l (t’ 0)‘ dt S C )\nk(p) - )\nk+1(p) S T&—l.

Finally, if the inequality (19) were true we would obtain

N N 2
C T, 1 T3
2 I;&C - C;Ek SR =1 oN 1 lin) 37

what is impossible, since € may be chosen arbitrarily small. (|

REMARK V.4. The problem of controlling N strings connected in a cycle with
controls in all the nodes may be studied exactly in the same way. This problem
is also described by the system (18) where the conditions u'(t,0) = u™(t,fx) = 0
are replaced by u'(t,0) = u™ (t,{n) = vn(t). In Chapter VII in [2] the reader may
find a proof of the lack of exact controllability in this case, based on the method of
moments.






CHAPTER VI

Simultaneous observation and control from an
interior region

This chapter is devoted to the simultaneous control of strings with different
densities from a common interior region of the strings.

This study is mainly motivated by the following fact. If we perform the changes
of variables x — f1z, x — flox in the equations of system (II1.10) for the simulta-
neous control from one of the exterior nodes of strings with density equal to one,
we obtain

k.=0 en R x [0,1], k=1,2,
u

(1) uF(.,0)=v, uF(,1)=0 en R,

(-
uk(0,.) = uk, uF0,.)=ul en][0,1].

2.1
Gugy —u

Thus, the simultaneous control of two strings of lengths ¢; and ¢5 from one of the
exterior nodes may be also viewed as the simultaneous control from one end of two
strings of lengths equal to one with densities ¢; and /5.

As we have seen in Chapter III, the answer to this problem depends on the
degree of irrationality of the number ¢;/¢5. More precisely, ¢1/¢2 needs to be irra-
tional to guarantee that all the Fourier components of the solutions are observable,
but, moreover, the space of data in which the controllability holds does also depends
on 61 /62 .

All this suggests to study the similar problem when the control acts over an
interior region of the strings, a situation when one expects to be much more robust
and not to depend on the ratio £;/¢2. Section 1 is devoted to this problem. When
the strings are of the same length and the control acts on the whole strings, then
it is possible to control the system in arbitrarily small time. This fact is true even
for membranes. We will study that problem in Section 2.

1. Simultaneous interior control of two strings

1.1. Statement of the problem. Let /1, ¢5 be positive numbers and w an
interval contained in (0,¢1) N (0, £3).
Let us consider the system
p%uft - u];m + wa =0 in R x [O,Ek],
(2) uF(,0) = uF (., 4) =0 in R,

uk(0,.) = uk, uF0,.)=ul in0,4],

where f € L2 (R?) and x,, is the characteristic function of the interval w.

131
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This system describes the motion of two strings e; and es of lengths ¢1, 5 and
densities pq,pq, respectively, which are simultaneously controlled by means of the
same force localized on the interval w.

The system (2) is well posed for initial states

(ul, uky € Wy :== H (0, 0,) x L*(0,4), k=1,2,
with a control force
f€LY0,T; L*(w)).

More precisely, under the previous assumptions on the initial data (uf, %) and the
control force f, the system (2) admits a unique solution in the energy space

(u®,uf) € C([0,T]; Wy), k=1,2.

We study the following control problem for (2): given T > 0, to determine for
which initial states (uf,u¥),k = 1,2, the function f may be chosen such that

uF (T, ) =uf(T,) =0, k=1,2.

We will say that the system (2) is ezactly controllable in time T if all the initial
states (uf,u¥) € Wy, k = 1,2, are controllable in time 7.

FIGURE 1. Two strings e; and ey of different densities controlled
simultaneously from the common interval w.

The application of the HUM guarantees that (2) is exactly controllable in time
T if, and only if, there exists a constant C' > 0 such that

® ¢ [ [ 1000+ a2 16h D + 166D o

for all the solutions ¢', ¢* of the homogeneous equations

prgt, — ¢t =0 inRx[0,6], k=1,2,
(4) ¢"(0) =" (. t) =0 in R,
¢"(0,.) =¢5. ¢ (0,.) = ¢} in [0, 4]

The solutions of (4) are given by the formula

nmw pilk . . nm .onm
5 gbk t,x) = qSk cos t+ — sin ——t) sin —u,
( ) ( ) 7;\]( 0,n pkgk: n 1,n pkgk: ) Ek
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where (¢§1n), (qﬁ]fn) are the sequences of Fourier coefficients of ¢f, ¢, respectively,
in the basis (sin ’g—:x)neN of L2(0, ).
If we denote

1 1Pl
k k k
ap = 5 <¢O,n| +

nm

¢’f7|H> ., k=12, neZ,

the formula (5) may be rewritten as

k B p Anmy . NT
P (t,x) = Z ayerk’ " sin "
NEL 4
Note that, by the definition of (a}) we have al = a™,.
With these notations, the inequality (3) is equivalent to

(6)

L.l

for all finite complex sequences (al)nez., (a2)nez. satisfying a®,, = al, a®, = a2.

Obviously, the inequality (6) is impossible if ¢; = ¢3 and p; = py. Indeed,
it suffices to take, e. g., aj = —a? # 0 and al, = —a? = 0 for n # £1, to see
that in this case, (6) is not satisfied. But note, that this extremely degenerate
case corresponds to controlling simultaneously two identical strings with the same
control and different initial configurations. This is obviously impossible in general,
since the control depends in a very sensitive way on the initial data to be controlled.

Our aim is to prove that the inequality (6) is verified whenever p; # p, if T is
sufficiently large. This is the object of the next subsection.

2
1 Anxg . N g dnmy . N 12 22
E a,erits smszraneP?Z smEz dtdx > E (lan|? + la2]?),
NELx neN

1.2. Control of strings with different densities. Now we consider the
case when the densities of the strings are different, i.e., p; # py. The following
holds

THEOREM VL.1. If py # py and T > Ty := 2max(p, L1, pola) then the inequality

(6) is wverified for all the finite complex sequences (al)nez., (a2)nez. satisfying
1 = 2 P

— g1 )
a_, = a,, az, =az.

COROLLARY VI.1. The strings e; and ey are simultaneously exactly controllable
in time T > Ty if py # py.

REMARK VI.1. This result shows an important difference between the control
from an extreme of the strings and the control from an arbitrarily small inte-
rior region. Recall that, according to Corollary III.1, oll the initial states from

(H$(0,1) x L*(0, 1))2 for the system (1) are controllable in time T > 2(¢1 + £2)

if, and only if, the ratio g—; belongs to the set' F , which is a set of null Lebesgue.

Besides, the exact controllability of (1) in the space (L*(0,1) x H~*(0, 1))22'5 never
reached, independently of the values of €1 and ¢s. This shows that controlling from
an interior subinterval provides a much more robust control mechanism than when
the control is exerted at an of the extremes.

1Recall that the elements of F are those real numbers having a development in continuous
fraction [ag,a1, ..., an, ...] with bounded (an).
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In order to prove Theorem VI.1 we will use the scheme followed in the proof of
Theorem III.2 relative to the simultaneous control of two strings from one extreme.
The idea is quite simple: given and interval w C R, we construct another interval
w’ C w and a continuous operator

B:L?(0,T) x w) — L*((0,T') x w')

such that, if qﬁl, ¢2 are solutions of (4) then qul = 0 and, besides, there exists a
constant C' > 0 such that

T/
c [ [ Befad > 686Dl

Then we will have

T T
c / / 6+ ¢?2dtdr > C / / B Pdtdr > [|(62,6) o gy
w JO w’

0
The inequality

T
c / / (6" + 62 2dtdz > (68, 1) 2 s

may be obtained in an analogous way.
Let us fix w = (w1,ws2) C R and define, for a > 0, the linear operator B, that
acts over a function ¢(¢,z) according to the formula

B.o(t,z) == o(t+2a(x —wi),z+alx —wi)) — ot + alx — wr),x + 2a(z — w1))
—o(t+alx —wi),x) + o(t,x + a(x — wq)).

Let us observe that, since w1 < we and T > 0, it is possible to chose for every

a > 0 a number @9 € (w1,ws) such that
2 N
(7) g < % and T =T — 2a(Gs — w1) > 0.

PROPOSITION VL1. If &y and T' satisfy (7) then the operator B, is continuous
from L2((0,T) x (w1,ws2)) to L*((0,T) x (w1,w2)), that is, there exists a constant
C > 0 such that

wo T @a T
c / / 6(t, 2) 2dtda > / / Byo(t, 2)|did.
w1 0 w1 0

for every function ¢ for which both integrals are defined.
PROOF. Let us observe that
Bo(to) = 3 (—1)P6(t + pa(e — 1), @ + qale — wr)),
(pg)es

where

S={(21),(1,2),(0,1),(1,0)}.

then,

(®)
Qo T w2 T

X 2 X a\xr—w T a\Tr—w 2 Z.
/wl / BL6(t, 2)Pdtde < 4 }j/ /0|¢<t+p< D+ ga(a—wn))2did

(p,q)€s "1
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To estimate the integrals
@2 T
(9) / / |p(t + pa(z — w1), z + qa(z — wy))|*dtdx
w1 0
we perform the change of variables

(10) E=t+pa(r—wi), n=2x+qga(zx—wy).

In these variables, (9) is written as
(+q0) [ [ 1o(en)dean,

where €, ; is the image of (0, T) X (w1,wWs) by the mapping defined by (10). Besides,
in view of (7), for all (p,q) € S,

Qp,q C (O,T) X (wl,wg).

/: /OT'W”’)'Qdfdnz | [ 1ot niacan

This fact, in account of the inequality (8), proves the proposition. O

Thus,

The following proposition shows how the operators B, act on the functions of

inTx

the form e sin 7=. It is proved by simple calculations.

ProrosiTioN VI.2. For all p, € R and n € N the following equality holds

B, (eiwt sin m;rx) — fepr (tFT—w) iy _m;‘:l: sin (771#(22 wl)a) sin (7n7r(x2; wl)ﬁ) .

where o = (p_1 + a) and B = (p_l — a) .
REMARK VI.2. If ¢(t,x) is a solution of the wave equation
PPt — Guw =0, ¢(t,0) = ¢(t,£) =0,
whose initial data ¢ |1—o and ¢, |1=0 are finite linear combinations of the eigenfunc-
tions (Sin %) then
B,-1¢(t,z) = 0.

ProrosiTION VI.3. Let £, # 3 be positive numbers and I an interval in R.
Then, there exists a constant C' > 0 such that, for alln € R,

2
/ sinn—zx sin (Ma) sin (Mﬁ) ’ dx > C.
I

20 20
This fact may be easily proved by computing the integral.

PROOF OF THE THEOREM VI.1. Let (al)nez,, (a2 )nez, be complex finite se-

o 1 1 2 _ 3
quences satisfying a®,, = al, a%, = a2 and
inmt | ML
(bk(t,z) = aFerrts sin o k=12

NELx

Let us take a = pfl. Since T' > Ty, it is possible to choose ws > wy sufficiently
close to w; such that @y and T satisfy (7) and, besides, T' > Tj.
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Then, according to Proposition VI.1,
w2 T @ T
(11) C / o + %2 dtdx > / / |Ba¢' + B,¢?dtdz.
w1 0 w1 0
But from Remark VI.2,
B,o' =0.
Thus, from the inequality (11) it follows

w2 T @Wa T
(12) C / |pt + ¢*|*dtdx > / / |Bo¢?|2dtd.
wi 0 0

w1

On the other hand, as

int y+  NTT
P2 (t,x) = aZer2t2’ gin 7
NELx

Proposition VI.2 guarantees that
Ba¢2(t,l‘) = Z a%e%ten(l‘)’

NELy
where
O, (z) == Qe rats @=w1) g % sin (%;wl)a) sin (%;wl)ﬂ)
with
1 1 1 1
a=—+—, = — — —.
P2 P1 P2 P1

Moreover, in view of Proposition VI.3, there exists a constant C' > 0 such that
for every n € N the following inequality is verified.

(13) /w 10, (2)2dz > C.

Wi

2

Therefore, since T > Ty > 2pyla,
a,er22°0,(z)| dtdx

&y T D2 2pala
/ / |Bo¢?|2dtdz / /
w1 0 wi 0 ’ILEZ*

= 2Z|ai|2/@

|
neN w1

Y

Oy (x)|*dz,

inmw

(we have used the fact that the functions er22’ are orthogonal on (0,2p,fs)) and
then, in view of (12) and (13),

w2 T
C/ / 6" + ¢ Pdtdz > Y a2,

1 J0 neN

The inequality
w2 T
C/ / 6"+ ¢*Pdtdr > Y |a}|?
wi 70 neN

is proved in a similar way, applying to ¢' + ¢* the operator B, with a = Py ! This
concludes the proof of the theorem. O
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1.3. Control of strings with equal densities. Theorem VI.1 does not pro-
vide any information on what happens when p; = py but ¢; # f2. This is due to
the local character of the operators B,: they cannot distinguish between solutions
of the wave equation that propagate at the same speed. This fact, however, is not
purely technical. If p; = p, = p, the condition ¢; # f5 is not sufficient for the
inequality (6) to be true.

Indeed, let us assume that

6o p
g PUE N
Then, the solutions
o (t,z) = evi b sin 1%, P (t,x) = _ertalsin q;‘_:l:
1 2

satisty
o' (t,x) + ¢*(t,z) = 0.

Thus, an inequality of type (6) is impossible for any interval w and any time T,
whenever the ratio ﬁ—; is a rational number. It is even impossible to replace the right
hand term in (6) by any other weaker norm of the initial data. In this sense, the
problem turns out to be similar to that of the simultaneous control of two strings
from one extreme, since the lengths of the strings do play a crucial role. When the
ratio f—; is an irrational number, it is possible to prove a weakened version of (6).
We use the same technique as in Theorem III.2,

We denote by Z*, k = 1,2, the space of the finite linear combinations of the

functions (sm o .
k' /J neN

THEOREM VI.2. Let p; = py = p and T > 2p(¢1 + €3). There exists a constant
C > 0 such that

(14) C// H(tx) + ¢ (t2)Pdtde > Y sin® 5 fonm ((qﬁo) +n7%(¢1)?),

cf / t) + 6700 P > 3 sin® T ((6)2 +n72(0)?)

for all the solutions ¢*,¢* of (4) with initial states in Z' x Z' and Z* x Z2,
respectively.

PRrROOF. The inequality (15) is equivalent to

O|° dtdx > a?|? sin® Elmr
| 2 a3 |

neN

where

inwt nmwxT o inmt nmwaxT

g a, Leoin gin —— +a,e "2 sin —,
b lo

NELy

. o 1 _ 1 .2 _ 2

for all the finite complex sequences verifying a-, =al, a, = a2.
To prove this assertion, let us observe that, for every = € w,

(16) (pt)~ (Y ake#i) =0,

nELy
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where (pf,)~ is the operator defined by (I1.7) for the number p¢, (the equality (16)
corresponds to the 2pf;-periodicity in time of the solution qﬁl). Then,

_ _ inwt | nmwx
()" = (o)) Y a2e ¥ sin
NEL 2
g inmt  fimmw | nwx
= E ape *f2 sin —— sin ——.
ly ly

NELy

Besides, from Proposition I1.2 we obtain that for every x € w,

(17)
T T—ply T—ply inmt {inm nmwx
[ etz [ et = [ S areE sin S sin S e
0 pla Pl NnELy f2 b
On the other hand, since T' > 2p(¢; + £3) then,
2
T—ply o dinmt /1 . nNmT
a,e *2 sin —nmsin —| dt
pla NELy 2 2
2
pli+2pla 9 inmt Elnﬂ' . nmx
Z ane rL2  SIn S —— dt
pél nEZ* 62 62

L onmx . o binm
=2 E la2 |? sin® e sin? o
neN 2 2

inzwt

(we have used here the fact that the functions (e Pl ) 5. 8Te orthonormal on any
NELix

interval of length 2p¢5).
Further, in view of (17),

T
{inm nmw
18 C o* dtdz > Y |a2[?sin® - — /'Q—d.
(18) /w/o |D| x > |aZ |* sin 0 wsm o4

neN 2

Finally, let us observe that for any interval w C R there exists a constant
C = C(w) such that

/ sin? mdm > C.
w 62

Therefore, from (18) it holds

T
{inm
C’// ®|? dtdx > a?|*sin? ——.
[ [ 10 e > 3 s 27

neN
The inequality (14) may be obtained in an analogous way. O
REMARK VI.3. When the nuber f—; is rational, some of the coefficients sin eZgl”r

or sin ZIZZ”T entering in the right hand side of inequalities (14), (15) vanish. This

agrees with the fact that in this case we cannot obtain an inequality of type (6).
COROLLARY VI.2. If the number g—; is irrational and T > 2p(€y + {3) then

the system (2) is spectrally controllable in time T, that is, all the initial states
(ud,ui) € Zt x Z1, (ud,u?) € Z* x Z* are controllable in time T.
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If we have some additional information on the rational approximation properties
of the ratio i—;, then it is possible to describe subspaces of controllable initial states
in the same way as it was done in Subsection II1.2.1.

COROLLARY VI.3. a)If 5—; € B. then the subspace of initial states
(uh, u) € H?T(0,4;) x HT2(0,0,),

is controllable in any time T > 2p(¢1 + £2). In particular, if g—; is an irrational
algebraic number, this subspace is controllable for any e > 0.

b) If i—; admits a bounded development in continuous fractions, then the sub-
space of initial states

(u%,uzl) S [H2(0,£i) n H&(O,&)} X H&(O,&),
is controllable in any time T > 2p(l1 + {2).

2. Simultaneous control on the whole domain

Let 2 be a bounded open subset of R™ with smooth boundary and f €
L% (R™1). Let us consider the system
pruk, — Auk + f =0 in Q x R,
(19) uF go =0 in R,

uk(0,.) = uf, wF0,)=u} inQ.

The system (19) corresponds to the motion of N elastic membranes with densities
P1s .-, py having at rest the same shape Q and whose borders are fixed. Those
membranes are controlled by means of a function f than acts on the whole domain
). When n = 1 the system (19) is a particular case of the system (2) with ¢; = ¢,
and w = (0,41).

The problem (19) is well posed for initial states (uf,u}) € HE(Q) x L?(Q),
k=1,..,N. When f =0, (19) becomes the homogeneous system

PR —AF+ f=0 in Q xR,
(20) *log =0 in R,
0°(0,.) = ¢5, 6/(0,.) =1 mQ,
which is also well posed for initial states (¢f, %) € L2(Q) x H-1 (), k=1,...,N.
If (u,,)nen is the increasing sequence of the eigenvalues —A with Dirichlet ho-
mogeneous boundary conditions in € and (6, )nen is the orthonormal in L2(£2)

sequences of the corresponding eigenfunctions, then the solutions of (20) are deter-
mined by the formulas

o (t,x) = Z aﬁe%HW(ac)

NELy

where

An = \/n| S8L N, N E Ly,

1
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The control problem associated to the system (19) is: given T > 0, to determine
for which initial states (uf,u¥) € H}(Q) x L2(Q), k = 1,..., N, there erists f €
L2((0,T) x Q) such that the solution of (19) satisfies

u¥ l—p = uf [i=r = 0.

System (19) is said to be ezactly controllable in time T when all the initial states
from HJ(Q2) x L*(Q) are controllable in time 7.

The application of HUM guarantees that the system (19) is exactly controllable
in time T if, and only if, there exists a constant C' > 0 such that the inequality

T| N

ey of [[S e
alo o

is verified by all the solutions of (20) with initial states (5, ¢¥) € L2(Q) x H~*(),

k=1,..,N.
This fact is equivalent to the existence of a constant C' > 0 such that

T| N ., 2 N
(22) C/ / Z Z aﬁeﬁe‘m(x) dtdx > 22 Z lak |?,
aJo

k=1n€Z, k=1neN
for all the finite complex sequences (a¥),cz., k = 1,..., N, verifying a* , = ak.

2
N
dtdz > " [[(65, $D)172 () xm-1 ()
k=1

THEOREM VL.3. The system (19) is exactly controllable in time T > 0 if, and
only if, the numbers py, ..., py are pairwise distinct.

PRrROOF. If two of the numbers py, ..., py coincide, say p; = p,, and we choose
al = —a? aﬁzO, k>N,
then the inequality (22) becomes

0>4) lay),

neN

what is not true in general. Therefore, if two of the numbers p,, ..., py coincide
(22) fails.

Let us observe that, due to the orthonormality in L2(f2) of the functions
(0n)nen, the inequality (22) may be written as

T N e | N
DS STLARTED 39 I
0

neN k=1 k=1neN

Then, for every T' > 0 and distinct numbers p, ..., pp it suffices to apply Proposition
V1.4 given below to obtain (22) and consequently, the proof of the theorem. ([

PROPOSITION VI.4. Let py,...,pyN be distinct positive numbers and (Ap)nen @
sequence of positive numbers that tends to infinite. Then, for every T > 0 there
exists a constant C = C(T, N, py, ..., px) > 0 such that

2 N
t
e dt>CY Jat P,
k=1

for alln € N and (a',...,a"™) € RV,
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ProoF. We proceed by induction with respect to the number N. For N =1
the inequality is immediate. Let us suppose that the inequality is true for N — 1.
Let us denote

I, = ae Pk .

Then, according to our induction hypothesis, there exists a constant C' > 0 such
that, for every n € N,

/ |1,,|? dt>CZ|ak|

k=2
On the other hand,

T|N it ?
(23) / Z akeri
0 k=1

Let us observe that

T it T
dt = |a*|*T + 23?(/ ale™r I,dt) +/ |1, |2dt.
0 0

T g T gt al
(24) §R/ ate ot T,dt| < |a'| / e e Lydt| = |a'| Zak'ynﬁkdt ,
0 0 k=2
where
T 1
Vn,k :/ e (77t gy
0
Besides,
N N | N
(25) o[> aF k| < a1 fa¥ vl < 52 jal [+ [a® %) [y, k-
k=2 k=2 k=2

Combining (24) and (25) it holds
T 1)\ t

R / ale I,dt
0

which, in view of (23), implies

T
(26) / dt > a'? kame C I al):

Let us observe now that?, for every k = 2,..., N,

N
1
< 57 (10 + 1) [l
k=2

2|py, — p1l
P1PRAn  n—0

Therefore, there exists ng € N such that, for all n > ng,

|’Yn,k| < 0.

¢ N
2

T
Z |’Yn,k| S 5) h/n,k' S k= 2,

)

It is precisely at this point of the proof where the condition that the numbers p;,, k =1,..., N,
are all distinct is esential.
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As a consequence of (26) it holds, for every n > ny,

TN it ? T C N N
(27) /O > dFen dtZ|a1|25+52|ak|2202|ak|2.
k=1 P —

Finally, it suffices to note that the functions e »» | k = 1,..., N, are linearly
independent over any interval, and thus

except when a' = --- = ¢ = 0. This allows to apply a standard compactness

argument to prove that, for every n € N, there exists a constant C,, > 0 such that
T N A, t 2 N
|13 ae | ae= oyl
0 frk=1 k=1
Therefore, there exists C' > 0 such that
T|N it
||
0 k=1

for every n < mg. This fact, in view of (27), gives the assertion of the proposition.
([l

2 N
dt > CY " |a¥)?,
k=1




CHAPTER VII

Other equations on networks

In this chapter we study the observation and control problems for the heat,
beam and Schrédinger equations on networks. We make emphasis on two main
issues: the spectral observability/controllability of the corresponding systems and
the possibility of identifying subspaces of controllable initial data for these equations
with the aid of the information we have already obtained in previous chapters on
the controllability of the system (I.11)-(1.16) of the network of strings.

The main spectral controllability result that we present asserts that whenever
the system (I.11)-(I1.16) is spectrally controllable in some time T' > 0, the heat,
beam and Schrédinger equations are also spectrally controllable in any time 7 > 0.
Then, in view of Theorem V.1, the spectral controllability of those systems admits a
spectral characterization: the systems are spectrally controllable in any time 7 > 0
if, and only if, no eigenfunction of the elliptic operator —A¢g associated to the
system (I.11)-(1.16) vanishes identically on the controlled string.

On the other hand, the possibility of describing subspaces of controllable initial
data for the equations considered in this chapter from subspaces of controllable
states for the system (I.11)-(I.16), and corollaries IV.5 and IV.6 for networks of
strings allow, in particular, to identify subspaces of the form V" (domains of powers
of the operator —Ag).

1. The heat equation

The following parabolic system will be called heat equation on a network:

(1) ul —ul, =0 inRx[0,¢4], i=1,..,M,
(2) u'(t,v1) = h(t) t € R,

(3) w9 (t,v;) =0 teR, j=2,..,N,

(4) u'(t,v) = u’(t,v) teR, veVy, i,j€l,
(5) Ziel‘ﬁnui(ﬁ, v)=0 teR, v eV,

(6) u'(0,7) = uf(z) xel0,4], i=1,...M.

The problem (1)-(6) may be viewed as a model for the heat propagation in a
network under the action of a controller on one of the exterior nodes of the network.
For every T > 0, h € L*(0,T) and 1o = (ug, ...,ud!) € H the system (1)-(6) has a
unique solution @ that satisfies

ae C(0,T]: H)ynL*([0,T]: V).
When h = 0, this solution is expressed by the formula
it 7) = 3 g ety (a),
neN

143
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if ug = ZneN uO,nén- Recall that p, = )\fl are the eigenvalues and 0,, the eigen-
functions of the Dirichlet problem for the laplacian on the network, which is the
same that corresponds to (I.11)-(1.15).

For the system (1)-(6) we consider the control problem: determine for which
initial data g € V', there exists a function h € L*(0,T) such that the solution u
of (1)-(6) satisfies

w(T,z) = 0.

When the initial datum g has this property it is said that @g is controllable to
zero in time T. If all the initial data @y € Z are controllable to zero in time T (as
before, Z is the set of all the finite lineal combinations of the eigenfunctions), we
will say that the system (1)-(6) is spectrally controllable in time 7.

Let us observe that, unlike it happens for the wave equation, or more general,
for time-reversible equations, the fact that @y and %, are controllable to zero does
not imply the existence of a function h € L?(0,T) such that the solution of (1)-(6)
with initial datum ug coincides with #; in time 7. This is caused by the lack of
time reversibility of the heat equation: due to the dissipative character of the heat
operator, the solutions with initial data iy € H satisfy u*(T) € C°((0,4;)) for
i =2,...,M. Thus, only very smooth states of the system may be reached.

Proceeding as in the case of the wave equation, we obtain the following criterion
of the controllability to zero of an initial datum:

ProPoSITION VIL1. The initial datum ug € H is controllable to zero in time
T with control h € L*(0,T) if, and only if, for every ¢, € Z the following inequality
holds

T
(w0, 8T = [ h(O2NT  tvr)i
0
where ¢ is the solution of the homogeneous system (1)-(6) with initial datum ®o-
~ Clearly, it is sufficient to check the equality of the previous proposition when
@ is one of the eigenfunctions. That is,

T
(7) / spe P TR () dt = ug e T keN,
0

where 2, = 8n9,1€(vl) is the normal derivative of the eigenfunction 6}, at the con-
trolled node v;.

After performing the change of variable ¢ — % — t, the control problem may
be written equivalently as the following problem of moments:

ProrosiTioN VII.2. The initial datum ug = ZnEN uoynén € H is controllable
to zero in time T with control h € L*(0,T) if, and only if, the following inequalities
are satisfied

T
(8) / se” FEER(t)dt = uoﬁke_”n%, keN.

Sl

This proposition allows to give the following characterization of the networks
for which the system (1)-(6) is spectrally controllable.

THEOREM VII.1. The system (1)-(6) is spectrally controllable to zero in any
time T > 0 if, and only if, >, # 0 for every k € N.
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PROOF. The necessity of the condition s # 0 is immediate: if s = 0 for
some value of k then, the equality (8) becomes

U0,k = 0.

Consequently, it will not be possible to control an initial datum @y = 0 € Z with
ug,k = 1.

In order to prove that the condition s # 0 for every k € N is sufficient for the
spectral controllability to zero of the system (1)-(6), it is enough to prove that for
every T' > 0 there exists a sequence (wy,), which is biorthogonal to (se #+?) in
(L)

According to Theorem V.1 the system (I.11)-(I1.16) is spectrally controllable in
time T' = 2L (recall that L is the total length of the graph). Then, using Proposition
IL.8, there exists a sequence (vy,), ;. biorthogonal to (sg.e"**") in L*(—L, L).

From Theorem II.3 we conclude that for every T' > 0 there exists a sequence

(wn) biorthogonal to (see ) in L?(—Z, L. 0

REMARK VII.1. When the network graph is a tree, the condition s # 0 for all
k € N coincides with the fact that any two sub-trees with common root have disjoint
spectra. Recall that this is the non-degeneracy condition introduced in Chapter IV.

Following the procedure introduced by Russell in [73], it is possible to obtain
additional information on the controllability of the system (1)-(6) as a consequence
of the controllability of subspaces of initial states of the form W for the network
of strings:

ProrosiTiON VIL.3. If the subspace W" is controllable for the system (1.11)-
(1.16) in time T > 0 then all the initial data ug € H are controllable to zero in any
time T > 0 for the system (1)-(6).

PRrROOF. According to Proposition I1.9, if W" is controllable for the system
(L11)-(L.16) in time 7' > O then there exists a sequence (vy),, ¢, biorthogonal to

(sae™t) in L2(—Z, L). Besides, there exists a constant C' > 0 such that for every

2: 2
n € Z,, the sequence (v,) satisfies
-1

) lonlla-g.3) < ON

From Russell’s Theorem II1.3 we obtain that for every 7 > 0 there exists a
sequence (wy,) biorthogonal to (sexe™#+") in L?(—Z, Z), for which there exist positive
constants C; and 7y such that
(10) ||wn||L2(—g,g = ||UnHL2(_%,%) 67)\",
for every n € N.

In view of (9), (10) we obtain

-1

(11) s 5) < ONL M,

Finally, applying Proposition I1.6 to the problem of moments (8) it follows that
all the initial data @y € H satisfying

(12) Z ‘uo,neﬂ‘ﬂ%

neN

lwnll L2~z 2y <00

are controllable.



146 VII. OTHER EQUATIONS ON NETWORKS

In view of (11), after applying the Cauchy-Schwarz inequality we obtain that
the convergence (12) is true if

(Z |u0,n|2> (Z )\ffze%)‘"_“"T> < 00.

neN neN

Since p,, = )\i and A\, — oo, the series

Z AQT_2€2'Y/\" —p, T
n
neN

is convergent for any r € R and then, all the initial data, which verify

Z |u07n|2 < o0;

neN

are controllable. And that is, any @y € H is controllable. (I

Theorem VII.1 and Proposition VII.3 allows to immediately obtain information
on the controllability of the heat equation on the star-shaped networks studied in
Section 8 of Chapter IV, from the corollaries IV.5 and IV.6.

COROLLARY VIL.1. If the lengths {1, ...,4n—1 of the uncontrolled edges of the
star-shaped network are such that

1) all the ratios % with i # j are irrational numbers, then the system (1)-(6)

1s spectrally controllable to zero in any time T > 0.

2) all the ratios f—; with i # j belong to some set B then all the initial data

uog € H are controllable to zero in any time T > 0.

2. Schrodinger equation

Let us consider the Schrédinger system on the network:

(13) iuf —uf, =0 inRx[0,0], k=1,..,M,
(14) ul(t,v1) = h(t) t eR,
(15) P (t,v) =0 teR, j=2,..,N,
(16) uF(t,v) =l (t,v) teR, v eV, kjEky,
(17) Zkekvanuk(tav) =0 teR, v eV,
(18) uF (0, 2) = ul(z) x€[0,4], k=1,..,M.
For every T' > 0 and (_bo = (gb(l), e éw) € V the homogeneous version of the

system (13)-(18) with A = 0 has a unique solution ¢, which is expressed by the
formula

(19) Bt,x) =Y do e 0n(x),

neN

if ¢ = Y onen ¢01n9n. Once again, p1,, = A2 are the eigenvalues and 6, are the
eigenfunctions of the Dirichlet problem for the laplacian on the network. The
homogeneous system (13)-(18) is well posed in any of the spaces V"; the solution
is also given by (19).
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The non-homogeneous system (13)-(18) is well posed for any T > 0, h €
L?(0,T) and initial datum % € V': there exists a unique solution @ of (13)-(18)
satisfying

ue C0,T]):V").

For the system (13)-(18) we consider the control problem: determine for which
initial data o € V' there exists a function h € L*(0,T) such that the solution u of
(13)-(18) satisfies

w(T,z) =0.
When this is possible, it is said that the initial datum ug € V' is controllable in
time T

The following proposition provides a characterization of the initial data that

are controllable in time 7.

ProposITION VIL4. The initial datum ug € V' is controllable in time T with
control h € L*(0,T) if, and only if, for every ¢y € Z the following inequality is
satisfied

_ T
i, G0) s = [ 1(6)2,87(t v,
0
where ¢ is the solution of the homogeneous system (13)-(18) with initial datum ¢,,.
This characterization may be written as a problem of moments:

ProrosiTioN VIL5. The initial datum ug = ZnEN uoﬁnén € V' is controllable

in time T with control h € L*(0,T) if, and only if, the following equalities are
verified

T

T
(20) /2 stpe” Hnth(t)dt = uoynefi“"%, n € N.

2

On the other hand, the technique of HUM allow us to give an alternative
characterization:

PROPOSITION VIL.6. There exist T > 0 and a sequence (¢n)nen of positive
numbers such that the inequality

T 1 2 2 2
(21) /0 0 (v dt > 37 2 (g0l

keN

is verified by every solution é of the homogeneous system (13)-(18) with initial
datum ¢y € Z, or equivalently,

T
(22) / Hpapetnt
e

neN
for every finite sequence (ay,) of complex numbers, if, and only if, the space

_ 1
W= {ﬂo = Zuo,nGn ev': Z =2 Juo.n” < OO}

neN neN

2
dt > Z A lan)?,
neN

is controllable in time T.

THEOREM VIL.2. The system (13)-(18) is spectrally controllable in any time
T > 0 if, and only if, s, # 0 for every n € N.
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PROOF. The necessity of the condition s, # 0 is immediate: if sz, = 0 for some
value of n then the equality of Proposition VII.5 becomes ug ,, = 0. Consequently,
it is not possible to control an initial datum @ = 6,, € Z with U, = 1.

The proof of the sufficiency can be obtained from VIL.5. The key element is
provided by Proposition V.2, which ensures that

o,
A s = T

This implies that the sequence (y,,) satisfies
1
(23) Y — <,

As it has been pointed out in the section 3 of Chapter II, the problem of
moments (20) has a solution for any finite sequence

My, = Luo,ne*i“"%, n €N
n
if it is possible to find a biorthogonal sequence to (ei”nt).

But the property (23) guarantees that for every 7 > 0 there exists a non-
trivial entire function of exponential type at most 7, vanishing at every p,, (see,
e.g., Theorem 15, p. 139 in [81]). Then, for every 7 > 0 there exists a sequence
biorthogonal to (e*~') in L*(—, 7). O

REMARK VIL.2. It is also possible to give a proof of the sufficiency of the
condition s, # 0 for every n € N for the spectral controllability of the system (13)-
(18) using Proposition VIIL.6. Indeed, as the sequence (\,) has finite upper density
DT (\,), then DT (u,) = 0. If we apply Corollary I1.5 of Theorem IL.6 it follows
that for every T' > 0 there exist positive numbers v,,, n € N, such that

T .
/ E Hp Ay e Hnt
0

neN
for any finite sequence (a,) of complex numbers. This is the inequality (21) with
Cn = #nYy,; oll these coefficients are positive if s, # 0 for every n € N.

2
dt > Z T |an|2 ’
neN

COROLLARY VIL.2. For every T > 0 the properties of the system (13)-(18):
— unique continuation from the controlled node of the solutions of the homoge-
neous system:

o' (,v1) =0 in L2(0;T) implies ¢, = 0;
— spectral unique continuation from the controlled node:
s, #0  for every n € N;
are equivalent.

Like in the case of the heat equation, for the system (13)-(18) it is possible to
describe subspaces of controllable initial data based on similar information for the
wave equation.

ProrosiTiON VIL.7. If the subspace W" is controllable for the system (1.11)-
(1.16) in some time T > 0 then all the initial data @iy € V2" =% are controllable in
any time T > 0 for the system (13)-(18).
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PrROOF. According to Remark II.6, if the subspace W" is controllable for the
system (I.11)-(1.16) in time 7" > 0 then the inequality

T
(24) / Z Sy et
0

neN
is valid for any finite complex sequence (ay,).

Let us observe that if W” is controllable in time T for the system (I.11)-(1.16)
then (I.11)-(1.16) is spectrally controllable and thus s, # 0, n € N. Besides, pro-
ceeding as in Remark ITI.4, from (24) it follows that there exist constants Cy,Cy > 0
such that for every n € N,

(25) CIATT < otn| < O

2

dt > C > N an]?,
neN

Then the inequality (24) can be written in the equivalent form

T .
/ E anezkn,t
0

neN
and from (25) we get

2

dt > C D N an]? 56| 2.
neN

2
T
(26) / S et dt > 0 SN Janl.
0 |nen neN

If we apply Theorem IL.7 to the inequality (26) we obtain
2

T
(27) / D anetntl dt > CY A an|?
0

neN neN

In view of (25), from (27) it follows

T
(28) / Z 3, ApetHnt
0

neN
Now it suffices to note that, according to Proposition VII.6, the fact that the
inequality (28) is valid for any finite complex sequence (a,,) is equivalent to the fact
that all the initial data 4o € V2"~! are controllable in time 7 > 0 for the system
(13)-(18). O

2

dt > C D N anl* [50]? = C DN a,
neN neN

Theorem VII.2 and Proposition VIL.7 allow to obtain immediate information
for the Schrédinger equation on the star-shaped networks studied in the section 8
of Chapter IV, using the corollaries IV.5, IV.6 and IV.7.

COROLLARY VIL.3. If the lengths {1, ...,4n—_1 of the uncontrolled edges of a
star-shaped network are such that

1) all ratios & with i # j are irrational numbers, then the system (13)-(18)
is spectrally controllable in any time T > 0.

2) all the ratios % with i # j belong to some set B, then the subspace

J

V2n=ate of initial data for the system (13)-(18) is controllable in any
time T > 0.

3) werify the conditions (S), then for every e > 0 the subspace V¢ of initial
data for the system (13)-(18) is controllable in any time T > 0.
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REMARK VIL.3. All the results of this section are valid for the system obtained

by replacing the equation (13) by iuf +uk, = 0. In this case, the corresponding
observability inequality is

T
/ E sy ane Hnt
0

which, clearly, coincides with (22).

2
dt > Z C% |an|2 ,
neN

3. A model of network of beams

Now we will consider the following model of a network of flexible beams con-
trolled from one exterior node.

(29)

uby +ul,,. =0 inRx[0,6], i=1,..,M,
(30)

ut(t,v1) =0, O2ut(t,vi) = h(t) t €R,
(31)

w0 (t,v;) =0 teR, j=2,..,N,
(32)

u'(t,v) = u’(t,v), O2u'(t,v) = 02ul (t,v) tER, vV, i,j€ I,
(33)

D ienOnul(t,v) = > Opui(t,v) =0 teR, v eV,
iely
(34)
u'(0,2) = ug(x),  u(0,z) = uj(x) ze0,6]), i=1,..,M.

Let us observe that in this case the control acts through the normal derivative
O2ul(.,v1) at the node v;.

The system (29)-(34) is well posed for h € L?(0,T) and @p € V, 41 € V'. The
homogeneous version of (29)-(34) is also well posed for @y € V2, 41 € H.

We study the following control problem in time 7 for the system (29)-(34):
determine for which initial states (g, 1) € V x V', there exists h € L*(0,T) such
that the corresponding solution @ of (29)-(34) satisfies

a(T,.) =uw(T,.)=0.
Those initial states (%o, @1) for which such a function h exists will be called con-
trollable in time T. We will say that a subspace of V' x V' is controllable in time
T is so are all of its elements. In particular, if Z x Z is controllable in time T, we
will say that the system (29)-(34) is spectrally controllable in time T.
Let us remark that Z denotes as previously the space of all the finite linear

combinations of the eigenfunctions of the operator D¢ associated to (29)-(34).

This is the operator Dg : H — H defined by
Da(ut, .y uM) = (ul, sy ul )

rxrxxx’ ") TxrxrxT

with the boundary conditions
W'V (v) = 920V (v) = 0,
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at the exterior nodes and

W) =w(v),  Puiv)=Rui(y)  ijel,
Z 0, u'(v) = Z ABu'(v) =0
i€ly i€ly

at the interior ones..

The operator D coincides with the square of the elliptic operator —Ag as-
sociated to the problem (I.11)-(I.16). By this reason, the eigenfunctions of D¢
coincide with the eigenfunctions of (6,,) de —A¢ and the eigenvalues are (u2). In
particular, the space Z for the equation (29)-(34) coincides with that of the equa-
tion (I.11)-(I1.16). Besides, the solution of the homogeneous system (29)-(34) with
initial data

bo = Z ¢0,n9na ¢ = Z ¢1,n9na

neN neN

is expressed by the formula

b(t,x) = Z (gb()m cos pt,t + (il—n sin unt> 0 ().

neN "

PROPOSITION VIL.8. The initial state (tg,41) € 14 XY' is controllable in time
T with control h € L?(0,T) if, and only if, for every (¢y, ;) € Z x Z the following
equality is true

T
(35) (B1, To)vrxy — (@1, o)vixy = / h(t)8, 6" (¢, v1)dt,

where ¢ is the solution of the homogeneous system (29)-(34) with initial state
((bOv(bl)‘

_Clearly, it is sufficient to check the equality (35) for the initial states of the form
(0,6,) and (0,,0), n € N. Then, if we define u,, = —p_,, for n < 0, Proposition
VII.8 gives rise to a problem of moments:

PROPOSITION VIL.9. The initial state (tg,@1) € V x V' is controllable in time
T with control h € L*(0,T) if, and only the equalities

T
(36) / %‘n|h(t)€w”tdt = u17|n| — iunu07|n|,
0

are verified for every n € Z,.

Let us observe that the problem of moments (36) coincides with the problem
of moments for the Schrodinger equation, except by the fact that now the sequence
(i, )nen should be replaced by (i, )nez. = (£, )nen. That is why, proceeding as
in the proof of Theorem VII.2 it is possible to prove

THEOREM VIL.3. The system (29)-(84) is spectrally controllable in any time
T > 0 if, and only if, 3, # 0 for every n € N.

On the other hand, the technique of HUM allows us to obtain from Proposition
VIIL.8
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PROPOSITION VIL.10. There exist T > 0 and a sequence (¢p)nen of positive
numbers such that the following inequality is verified

T
(37) /0 020"t v)|” dt > 3 62 (1203, + 62)

keN

by every solution ¢ of the homogeneous system (29)-(34) with initial state (¢g, ¢1) €
Z X Z, or equivalently, the inequality

T
(38) / Z Ay ApeFnt
0

NEL 4
is valid for every finite sequence of complex numbers (ay) verifying a_, = a, if,
and only if, the space

2
dt > Z 0721 |an|2 ,
neN

1 1
W = {(ﬁo,ﬁ1) cVxV: Z (C_ng’n + Wuin) < OO}

neN
1s controllable in time T'.

Once again, it is possible to identify subspaces of controllable initial states for
system (29)-(34) based on the similar information for the system (I.11)-(1.16).

ProposITION VIL.11. If the subspace W™ is controllable for the system (I.11)-
(I.16) in time T > O then all the initial states (lg,u1) € VT x V2'=1 are con-
trollable in any time T > 0 for the system (29)-(34).

As a consequence of the previous result we obtain for star-shaped networks:

COROLLARY VIL4. If the lengths {1, ...,4n—1 of the uncontrolled edges of a
star-shaped network are such that

1) all the ratios % with i # j are irrational numbers, then the system (29)-

(34) is spectrally controllable in any time T > 0.

2) all the ratios g—; with i # j belong to some set Be, then the subspace
V2n=2te x yIn—dte of initial states for the system (29)-(34) is controllable
i any time T' > 0.

3) werify the conditions (S), then for every ¢ > 0 the subspace V3¢ x V1+€
of initial states for the system (29)-(34) is controllable in any time T > 0.



CHAPTER VIII

Final remarks and open problems

1. Brief description of the main results presented in this book

1.1. Networks of strings. The main result on the spectral controllability of
arbitrary networks from an exterior node is given in Theorem V.1: the network
is spectrally controllable in some finite time if and only if the spectral unique con-
tinuation property from the controlled node is verified. Besides, when the spectral
unique continuation property holds, the network is spectrally controllable in any
time larger than twice the total length of the network; that is the minimal time
allowing the spectral control. From this point of view, the networks of strings be-
have, essentially, as a single string whose length coincides with the total length of
the network. The main reason is that the sequence of eigenvalues of the network
is asymptotically equivalent to the sequence of eigenvalues of a string with that
length (Proposition V.2).

The main difference between those cases consists in that, for a string the spec-
tral unique continuation property is always verified, while for any non-trivial topo-
logical configuration of the network there exists values of the lengths of the strings
such that the spectral unique continuation fails. This leads to the fact that, in spite
of the exact controllability of strings, the exact controllability of networks is never
reached (Theorem 1.2). In this sense, the exterior control of a network is analogous
to the control of a string from an interior point.

The spectral controllability property allows to ensure the controllability of a
subspace of initial states that may be explicitly described in terms of the eigen-
functions of the network and the values of the eigenfunctions at the controlled node
(Remark V.1).

For networks with simple topological configurations it is possible to provide

more precise information:
Tree-shaped networks. When the network graph is a tree it is possible to obtain
a complete characterization of those trees for which the spectral unique continuation
property is verified (Proposition IV.13) and thus, to characterize the trees which are
spectrally controllable in a time equal to twice the total length of the network. The
set of trees with a given topological configuration for which the spectral unique
continuation fails has null Lebesgue measure (Proposition IV.15). Though these
results could be obtained from Theorem V.1, the technique used in Chapter IV,
essentially based on the representation of the solutions of the wave equation by
means of the d’Alembert formula, allows to prove the spectral controllability in
the minimal time (Theorem IV.2). Besides, it provides a weighted observability
inequality with weights that are explicitly computed in terms of the eigenvalues.

Some of the results are of independent interest. That is the case, for instance,
of the compatibility conditions Pu.(.,v) + Quy(.,,v) = 0 at the controlled node
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(Proposition IV.5). From those conditions it is possible to obtain an equation
for the eigenvalues (Proposition IV.11) and the pseudo-periodicity property of the
solutions of the homogeneous system (Remark IV.3), which implies that increasing
the control time does not lead to improving the controllability results (Proposition
IvV.4).

Star-shaped networks. The star-shaped networks are a particular case of trees
and then, the results of Theorem IV.3. In this case, the spectral unique continua-
tion condition means that the ratios of the lengths of the uncontrolled strings are
irrational numbers (Section IV.8.1). Besides, it is possible to identify subspaces
of controllable initial states of the form W” (which are, essentially, Sobolev spaces
on the strings with appropriate boundary and coupling conditions at the multi-
ple node). The existence of such subspaces depends on rational approximation
properties of the ratios of the lengths.

For these networks it is possible to prove that when the observation time is
smaller than twice the total lengths of the network, the unique continuation prop-
erty from the controlled node fails for the solutions of the corresponding homoge-
neous system. This implies not only the lack of spectral controllability, but also of
approximate. In Section II1.9 we have given an example of a smooth solution of the
homogeneous system for which the unique continuation property is not true when
the observation time is small.

1.2. Simultaneous control of strings. Simultaneous control of trees
from one exterior node. The results concerning the simultaneous control from
an exterior node of a finite number of tree-shaped networks (Corollary IV.4) are
similar to those corresponding to a single tree: the networks are simultaneously
spectrally controllable in some finite time, if and only if each of them is spectrally
controllable and the spectra of the networks are pairwise disjoint. The minimal time
to simultaneously control the system is the sum of the minimal control times of all
the networks.

When the networks are simultaneously spectrally controllable it is possible
to indicate subspaces of controllable initial states, which are explicitly defined in
terms of the eigenvalues of the networks (Proposition IV.16). In particular, if
the simultaneously controlled networks are strings, then for certain values of the
lengths of the strings it is possible to indicate Sobolev-type spaces of controllable
initial states (Corollaries IV.8 and IV.9). Besides, it is proved (Corollary II11.3)
that, depending on the lengths of the strings, the space of controllable initial states
may be arbitrarily small, that is, there exist initial states with Fourier coefficients
increasing arbitrarily rapidly, which are not controllable in any finite time.
Control at all the nodes with only four functions. Using the results for
the simultaneous control of strings, it is possible to solve the problem on how
many different controls are necessary to reach the spectral controllability of the
network. A simple application of the Four Colors Theorem allows to ensure that,
under certain irrationality conditions of the lengths of the strings, four colors are
sufficient (besides, one of them may be chosen identically equal to zero) to control
the network in a time T* (and then in any time larger than T*), which is smaller
than twice the total lengths of the network (Proposition V.5).

Simultaneous interior control of strings. The simultaneous control from an
open set of two strings with different densities turns out to be a much more robust
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property: the networks are simultaneously exactly controllable in any time larger
than the characteristic times of both strings (Corollary VI.1). However, when the
string are of the same density, the results are completely analogous to those obtained
for the simultaneous control of two string from one extreme (Corollaries VI.2 and
VL3).

1.3. Other equations on networks. For Shrédinger (Theorem VII.2), heat
(Theorem VII.1) and beam (Theorem VII.3) equations the spectral unique contin-
uation property from the controlled node is necessary and sufficient for the system
to be spectrally controllable in any arbitrarily small time.

When we know spaces of controllable initial states for the wave equation of the
type W" (which is the case, for instance, of the star-shaped networks), then it is pos-
sible to identify subspaces of controllable initial data for the Schrodinger, heat and
beam equations on that network (Propositions VIL.3, VIL.7, VII.11, respectively).
In particular, the heat equation is exactly controllable.

2. Future lines of research and open problems

The context of multi-structures is extremely reach and provides a large number
of problem of quite complex mathematical nature. In most cases, basic issues as the
existence and uniqueness of the solutions remain open. The mathematical study of
these problem will necessarily lead to new, more powerful mathematical tools.

In our opinion, the future development in connection with the problems ad-
dressed in this book should follow three main lines:

1.— Study of more complex models of string of beam networks, which provide a
more realistic description of the motion of these objects and, in particular, take
into account their three-dimensional character. The book [51] provides a valuable
source of models of multi-body structures. We also refer to the article [48] for an
account of the main developments in this field.

2.— Study of equations with variable coefficient on graphs. In view of the results
in [62] and [15], we hope that the techniques used in Chapters V and VII may be
adapted to this case.

3.— Study of systems of coupled multi-dimensional objects. This may be the case
of networks as well as systems coupled through the boundary conditions.

All these problems required both a theoretical and numerical analysis.

To be more precise, we also mention some open problems which are directly
related to the problems considered along this book.

1.— To study the observability properties of the wave equation with a potential
Utt — Ugy — a(x)u =0

on graphs.

This problem has been recently considered in [44] in the case of simultaneous
observation of strings for constant a. In that paper, using the generalized Ingham
theorem II.4, it is proved that, generically in the set of all possible lengths of
the strings, the unique continuation property and the spectral controllability hold.
However, it would be interesting to describe the observed norm in terms of Sobolev



156 VIII. FINAL REMARKS AND OPEN PROBLEMS

spaces as it has been done for the case a = 0. The case of variable « is a completely
open question.

2.— Wave equation with variable coefficients
p(x)uy — (o(x)ug)s = 0.
The results from the Beurling-Malliavin Theorem are expected to be still true, but
the propagation arguments to apply them to the network are much more complex.

We can try the usual trick of performing the change of variable to reduce the
problem to an equation of the form

Vit — Vg + a(z)v = 0.

But then, we return to the difficulty mentioned in problem 1. In any case, we know
that the coeflicients should be at least of class BV. A smaller degree of smoothness
is not sufficient even in the case of one string.

3.— When the equations of the network are of the type
Utt — Ugy — (2, 6)u =0

the situation appears to be much more complex and the results we have presented
here are not expected to be easily extended to that case.
The semilinear equation

utt_uzz_f(u)zo
seems to be a far from the the scope of the existing tools.

4.— To find a decomposition of a general graph allowing to give a description
of the spectral unique continuation property in simpler terms as it was done for
trees. The starting point should be the characterization of the spectral unique
continuation property for a graph formed by a circle to with to strings are coupled.
Even in that quite simple configuration, the property is not well understood.

5.— A quite rich and widely open field is the numerical implementation of the
observability results for networks of strings in the spirit of works [37], [65], [83].
Some effective numerical techniques have been developed in [49] and [50] for ob-
servations from large sets, that is, when the original energy of the solution may
be recovered from the observation. The situation seems to be more complicated
in the case of weak observability considered along this book, since the irrationality
conditions on the lengths is an obstacle to computational implementation.



APPENDIX A

Some consequences of diophantine approximation
theorems

In this appendix we have gathered some results that have been used in the proof
of several theorems in the main text. All of these results have a common feature:
they are obtained as consequences of theorem related to the approximation of real
numbers by rational numbers.

For n € R we denote by |||n||| the distance from 7 to the set Z:

nlll == nrgl;gzlfcl

and by E(n) the closest to 7 integer number:

[n = E(m)| = [llnlll
Let us observe that 0 < |||5]|| < 3 and besides, that n may be expressed as
(1) n=E@m) +Fn),
where
1 1
F@=lllll, -5 <F@) < 3.

For given real numbers /1, ..., £, we define the function

N
a(\) =a(\ 1, ... 0n) =Y []Isin gy

i=1 j#i
This function frequently appears in the problems we have studied. Our aim is to
find conditions on the numbers /1, ...,¢N guaranteeing that for some « € R the
function

a(A)A”
remains bounded from below as A — oo.
For me N, i=1,..., N, we denote

Z’L(m) = Zz(m7£1, agN) = H |||£_]m|||7
g#i "
. . z
mz()\) = mz()\,fl, ...,EN) =E (—)\) .

™

The following proposition allows to reduce the stated problem to one of ap-
proximation by rationals.

T |ml|| = % there are two integer numbers with that property: n + % and 1 — % In this
case E(n) will denote one of these numbers.

157



158 A. SOME CONSEQUENCES OF DIOPHANTINE APPROXIMATION THEOREMS

PROPOSITION A.1. There exists a positive constant C' such that for every A € R
the inequality
a(A)>C IlninNzZ(mZ()\))

is satisfied.

PROOF. Let us remark first that every = € R can be expressed in the form

,T:TFE(E) + 7F (E)
T T
Then it follows

(2) sinz = sin7F (%) .
Taking into account that if |z| < £ then the inequalities
2|z| < |sinmz| < 7|z,
are true, from (2) we obtain for every z € R
x , x
) 2121 < fsinal < 1.

In view of this inequality, we have for every A € R

0 2’ O) 21 < s (') i )

3

If we denote

then

Replacing this expression of m*(\) in the right hand term of (4) it follows

vy
sin (Ej)\ - 'ng—J_ﬂ')

|sin £; | + “yz‘ i—gw

s 0
sinfj)\cos'yzg—]_ﬂ' — cos ;A sin'yzg—]_ﬂ-

i Y
2{[m"(A) 7l

IN

IN

On the other hand, from the inequality (3) we get
: iz 1

=[N < = [sin M) .

] = A < L psimaey

Thus we may conclude that for every ¢ = 1,..., N and every j # i

l; ml;

; j 1 . i
|||m1(/\)€—l||| < 3 [sin £;A] + 10, |sin A .
Multiplying these inequalities we obtain that there exists a constant C' > 0 such

that for every i =1,.., N

S L 1
6)  2m') = [[IZm Ol < Clsin ] + gy [ s,
it J#i
With this, it is now quite simple to prove the assertion of the proposition. We
will prove that if (\,,) is a sequence such that a()\,) — 0 then there exists a value
i of i such that z' (m'(\,)) — 0.
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Indeed, let us observe that if the sequence (\,,) satisfies a(A,,) — 0 then, for
every i
H [sin £;An| — 0.
J#
Then there would exist some ig such that |sin A,,¢;,| — 0. Thus, from the inequality
(5) for i = ig it follows
z"(m™(\,)) — 0.
This proves the proposition. (I

COROLLARY A.1. Leta € R. If for everyi =1, ..., N, the ratio %, j=1,..,N,
has the property that there exists a constant C; > 0 such that, for every m € N,

« [
(6) m® [T mll| > ¢,
I
then
a(M)A* > C,

for every A > 0.

In what follows we will see some rational approximation theorems. which pro-
vide sufficient conditions for an inequality like (6) to be true.

Let us recall that a real number £ is said to be algebraic if £ is the root of
some polynomial with rational coefficients. The set A of all the algebraic numbers
is a sub-fields of R. The Lebesgue measure of A is equal to zero, but A is dense
in R. Besides, so is A\ Q. It is said that the algebraic number ¢ is of order p if
the polynomial with rational coefficients of minimal degree that vanishes at £ is of
degree p.

A classical problem in Number Theory is the following: given &, o € R, deter-
mine whether the inequality

1
ligmlll < —
has solutions m € Z. This is equivalent to the existence of m,n € Z such that
1
e-2< L
m

maJrl :
The relevance of this problem is related to the following theorem due to Liouville:

THEOREM A.1 (Liouville). If € is an algebraic number of order p > 2, then the
inequality
e-al=a
ml— mP
has no solutions n,m € Z.
This fact was used by Liouville to prove that not all the real numbers are alge-

braic; he constructed explicit examples of numbers £ € R, known now as Liouville’s
numbers, one of which is
o0
n2
g=> 107",
n=1

such that the inequality (6) has solutions for every p. Clearly, in view of Theorem
A.1, such numbers are not algebraic. Nowadays, this fact may seem to be rather
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simple, since the set of algebraic numbers has Lebesgue measure equal to zero and
thus, the most of real numbers are not algebraic. However, at its time, this result
had an outstanding scientific relevance.

Later on, Roth proved an stronger result:

THEOREM A.2 (Roth, [72]). If £ is an algebraic number of order p > 2, then
the inequality
n 1
7 e
) et

has at most a finite number of solutions n,m € Z.

The following results provide additional information

PROPOSITION A.2 ([19], p. 120). For every € > 0 there exists a set B C R,
such that the Lebesque measure of R\ B, is equal to zero, and a constant C. > 0
for which, if € € B¢ then

C.
llemlll = ===

On the other hand, when ¢ = 0 a complete answer can be given. Let F be the set
of all those irrational numbers 7 € R such that if [ag, a1, ..., an, ...] is the expansion
of 1 in continuous fraction (see, e.g., [19] for a definition) then the sequence (a,,) is
bounded. The set F is not denumerable and has Lebesgue measure equal to zero.

PROPOSITION A.3 ([52], Theorem 6, p. 24). There exists a positive constant
C such that o
Hgmlll = —,
m
for every m € N, if, and only if, £ € F.
In particular, F is contained in the sets B, for every € > 0.
The following theorem due to W. Schmidt provides information on the simul-

taneous approximation of real numbers by rational numbers with the same denom-
inator n.

THEOREM A.3 (W. Schmidt, [77]). If the numbers &, ...,& 5 are algebraic and
1,&4, ..., &N are linearly independent over the field Q, for every e > 0, the inequality

gl - lling Il [lng pllln'*= < 1

has at most a finite number of solutions n € N.

An immediate consequence of this theorem is that, if the numbers £, ...,&y
are algebraic and 1,&y, ..., &5 are Q-linearly independent then, for each € > 0 there
exists a constant C. > 0 such that

gl - [llngsll] - Iné pllln'** > C,

for every n € N.
As a counterpart, Schmidt proved the following more exact version of the
Dirichlet theorem.
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THEOREM A.4 (W. Schmidt, [77]). If &L ™ are real numbers and & < %
then, for an infinite number of values of p € Z, there exist integer numbers ¢;(n),
i=1,....,M such that

1 .
(8) Ip€; — ai(p)| < o =L M
DEFINITION A.1. We will say that the real numbers €1, ..., ¢ verify the condi-
tions (S) if
o l1,....0N are linearly independent over the field Q of rational numbers;
e the ratios % are algebraic numbers fori,j =1,...,N.
J

Let us observe that if 41, ..., {5 verify the conditions (S), then for every ¢ the
ratios %, j=1,..., N, satisfy the conditions of the Schmidt’s theorem. Actually, if
¢; and ¢; are algebraic numbers, so is their ratio. Besides, if

fl fi—l

a16—i+"'+04i—1 ‘

l; l
Z._l—’—”'—’—aNg_]\_[:O’ aie@,

+oi -1+ aip

then

arly + -+ anly =0, a; € Q,
and then, if ¢4, ..., {5 are linearly independent over Q, it follows o; = 0,2 =1, ..., N,.
Thus, %’ j=1,..., N, are linearly independent over Q, too.

Combining these results with Corollary A.1 we obtain

COROLLARY A.2. Let {1, ...,N be positive numbers. Then
1) If for all valuesi,j = 1,...,N, i # j, the ratios % belong to B. then there
J
exists a constant Cz > 0 such that

C
a(A) > )\Nf&ﬁs

for every A > 0. In particular, if all the ratios belong to &F, this inequality
holds with ¢ = 0.
2) If the numbers 0y, ...,0n satisfy the conditions (S), then, for each ¢ > 0
there exists a constant Ce > 0 such that
C
a(A) > )\1—;5
for every A > 0.

PROPOSITION A 4. Let (w,) an unbounded sequence of positive solutions of the
equation
N
9) cos ljw H sinfjw ] =0
i=0 i

3

and assume that the numbers £y, ...,{n satisfy the conditions (S). Then, for every
€ > 0 there exists a constant C. such that for every n € N and every i = 0,...,N,
the following inequality is true

C:
wite’

|sin £;w,,| >
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PRrROOF. It is similar to the proof of Proposition A.1. We will show that there
exists a constant C' > 0 such that, for every i =0, ..., IV,

(10) H||| Hwn)||] < Clsinwnt;] .
j#i b
This, in account of the Schmidt’s theorem, give the assertion of the proposition.
In order to prove (10), it is sufficient to see that, if [sinw,¥¢;| — 0 then

(11) [T 2w @il —o.

JFi
Indeed, if |sinw,fo| — 0 (we have taken ¢ = 0 to simplify the notations) then
from the equality (9) follows

N
(12) I lsint;wnl — 0.

j=1
On the other hand, the inequality (5) obtained in the proof of Proposition A.1,
allows us to ensure that

H ||| Ywn)ll] € C |sinwplo] + = SN H sin £jw, | .

Jj=1
From this, based on (12) and the fact |sinw,€o| — 0, we obtain the convergence
(11). This proves the assertion. O
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