
BOUNDARY SIDEWISE OBSERVABILITY OF THE WAVE EQUATION

BELHASSEN DEHMAN AND ENRIQUE ZUAZUA

Abstract. The wave equation on a bounded domain of Rn with non homogeneous boundary
Dirichlet data or sources supported on a subset of the boundary is considered. We analyze the
problem of observing the source out of boundary measurements done away from its support.

We first show that observability inequalities may not hold unless an infinite number of
derivatives are lost, due to the existence of solutions that are arbitrarily concentrated near
the source.

We then establish observability inequalities in Sobolev norms, under a suitable microlo-
cal geometric condition on the support of the source and the measurement set, for sources
fulfilling pseudo-differential conditions that exclude these concentration phenomena.

The proof relies on microlocal arguments and is essentially based on the use of microlocal
defect measures.
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1. Introduction

1.1. General setting. Let Ω be a bounded open domain of Rn with boundary ∂Ω of class
C∞. We set

L = R× Ω and ∂L = R× ∂Ω.

We also introduce A = (aij(x)), a n × n matrix of C∞ coefficients, symmetric, uniformly
definite positive on a neighborhood of Ω.

Finally, we take g ∈ H1(∂L) and we assume that g is compactly supported in time in the
interval (0,+∞).

We consider then the following wave system

(1.1)


PAu = ∂2

t u−
∑n

i,j=1 ∂xj (aij(x)∂xiu) = 0 in L

u(t, .) = g(t, .) on ∂L

u(0, .) = ∂tu(0, .) = 0 in Ω.

This system is well posed in the classical energy space C0(R, H1(Ω))∩C1(R, L2(Ω)) equipped
with the energy norm supt∈REu(t), where

Eu(t) = ‖u(t, .)‖2H1(Ω) + ‖∂tu(t, .)‖2L2(Ω),

and

‖u(t, .)‖2H1(Ω) =
n∑

i,j=1

∫
Ω
aij(x)∂xiu∂xjudx,

see [14]. Actually, the solution u vanishes for t ≤ 0.
More precisely, the following energy estimate holds

(1.2) sup
t∈R

Eu(t) ≤ C||g||2H1(∂L),

together with the added hidden regularity property of the trace of the normal derivative

(1.3) ‖∂nu|∂Ω‖L2((0,a)×∂Ω) ≤ Ca‖g‖H1(∂L),

valid for all a > 0.

Remark 1.1. The constant appearing in estimate (1.2) and (1.3) depend on the metric at-
tached to A = (aij(x))ij, on the geometry of the domain Ω and, for (1.3), also on on the
time-horizon a > 0.
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1.2. Geometry of the domain Ω. In this paper, we will deal with a particular class of
domains Ω. This fact is made precise in the following condition.

Assumption A1
We assume that there exists a strictly concave (with respect to the metric attached to the

matrix A = (aij(x))ij) open non empty subset O of the boundary ∂Ω, O 6= ∂Ω.

Geometrically, this guarantees that every geodesic of Ω that is tangent to O at some point
m0, has an order of tangency equal to 1; locally near this point and except for m0, this
geodesic lives in Ω.

For instance, if A = Id , this simply says that there exists a neighborhood V of O in Rn,
such that the set V \ Ω is strictly convex. See Fig.1.

O′

O
Ω

Ω

O′

O

Figure 1. Examples of strictly concave boundary subset O

Remark 1.2. (1) Assumption A1, implicitly, substantially limits the class of domains Ω
under consideration. For example, this condition excludes convex domains Ω. Indeed,
for subsets O of the boundary of Ω to exist, so that they fulfil the assumption A1, the
geometry of Ω needs to allow for some concavity zones of its boundary, as illustrated
in Figure 1, and this excludes many domains Ω.

(2) In the literature, sets O fulfilling assumption A1 are sometimes said to be diffractive
with respect to the metric attached to A = (aij(x))ij.

1.3. Motivation. From now, we will work under assumption A1. Let then O′ be a non empty
open subset of ∂Ω such that O ∩O′ = ∅. We set

Γ = R×O, Γ′ = R×O′,

and for a > 0,

La = (0, a)× Ω, Γa = (0, a)×O and Γ′a = (0, a)×O′.

In addition, we assume throughout the whole paper that the boundary data g is supported
in ΓM = [0,M ]×O for some M > 0.
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The aim of this paper is to analyze whether it is possible to observe the boundary data or
source g in (1.1) from measurements done on the normal derivative ∂nu|Γ′ on the subset Γ′ of
the boundary. In other words, we are seeking for an estimate of the type

(1.4) ‖g‖H1(ΓM ) ≤ C‖∂nu|∂Ω‖L2(Γ′a),

for some a ≥M .

Figure 2. Cylindrical domain where waves evolve. In green the support of
the source g to be identified, and in red the subset of the boundary where
measurements are done.

Estimate (1.4) is the sidewise observability inequality object of analysis in this paper.
According to the Rellich inequality it is well known that the right hand side term of (1.4)

is bounded above by

‖u‖2a =: sup
t∈[0,a]

Eu(t) = sup
t∈[0,M ]

Eu(t) = ‖u‖2M .

More precisely, for every a > 0, there exists Ca > 0 such that every solution u of (1.1) satisfies

(1.5) ‖∂nu|∂Ω‖L2(Γ′a) ≤ Ca‖u‖M .
Therefore, a necessary condition for an estimate of the form (1.4) to hold is that the

boundary data g under consideration needs to be observable out of the total interior energy
‖u‖M , namely, the existence of a constant C > 0 such that

(1.6) ‖g‖H1(ΓM ) ≤ C‖u‖M .
However, as we shall see, this inequality does not hold without additional structural con-

ditions on the source term g under consideration. Indeed, in Theorem 2.5 and Theorem 7.1,
we construct sequences of invisible sources (gk) whose energy is essentially localized on the
elliptic and/or glancing set of the boundary, such that

(1.7) ‖gk‖H1(ΓM ) → 1, gk ⇀ 0 in H1, ‖uk‖M −→ 0,

which, of course, are an impediment for (1.6) to occur.
In fact, as we shall see, even the weaker version

(1.8) ‖g‖Hs(ΓM ) ≤ C‖∂nu|∂Ω‖H1(Γ′a)
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may not for hold for any s ≤ 1.
The lack of such sidewise observability inequalities is genuinely a multi-d phenomenon (see

sections 6 and 7). By the contrary, as shown in [22] and [24] by means of sidewise energy
estimates, in 1-d , inequality (1.6) holds for BV coefficients and under natural conditions on
the length of the time-interval. Counterexamples generated by waves concentrated on the
support of the source may not arise in 1-d since light rays hitting the boundary are only of
hyperbolic type.

Going back to the multi-d case under consideration, the lack of observability inequalities
of the form (1.8) shows that, necessarily, an infinite number of derivatives may be lost on
the measurement of the sources g, and thus, one has to impose some added restrictions on
them to prevent concentration phenomena like (1.7) (see the pseudo-differential condition in
assumption A3 below).

Within this class of sources g, the sidewise observability inequality (1.4) will be proved
under a microlocal geometrical condition (see assumption A2 below), inspired (but different
!) from the Geometric Control Condition introduced in [3]. Roughly, it guarantees that all
rays emanating from the support of the source reach the observation region without earlier
bouncing on the support of the source. This condition is sharp in terms of the geometry of
the support of the sources O and the measurement subset O′ and also in what concerns the
sidewise observability time.

1.4. Extensions and open problems. The methods of this paper could be employed to
handle other related problems such as:

• The simultaneous initial and boundary source sidewise observation. We refer to [24]
for a complete analysis in 1-d.
• The problem treated in [4] where, on an annular domain Ω = A(R1, R2) = {x ∈
Rn, R1 < |x| < R2} of Rn, initial data are observed out of measurements on the
exterior part of the boundary, under suitable conditions on the sources with support
on the interior boundary.

Similar questions on the sidewise boundary observability and source identification are also
of interest for other models such as, for instance Schrödinger, plate and heat equations, the
elasticity system and thermoelasticiy, all of them rather well understood in the control of clas-
sical boundary control. But their analysis would require of significant further developments.

1.5. Structure of the paper. The paper is organized as follows. In Section 2 we state
the main results, and Section 3 is devoted to present some preliminary results. Most of the
tools presented here are classical and we recall them in order to standardize the notations
and make the paper self-contained. We start with the geometrical setting and we present in
particular the generalized bicharacteristic curves and the partition of the cotangent space of
the boundary T ∗∂L. We also introduce the spaces of pseudo-differential symbols that will
play the role of test functions on which we build the microlocal defect measures, of great
importance in the proof. In Section 4, we present a geometric consequence of Assumption
A2 and we perform a pseudo-differential multiplier calculus up to the boundary, in the spirit
of [16], that will play a central role in the proof. Section 5 is mostly devoted to the proof
of the main result namely Theorem 2.3. In Section 6, we present the proof of Theorem 2.5,
essentially based on the microlocal behavior of the solutions to (1.1). Finally, in Section 7, we
present the proof of Theorem 7.1 where we construct an explicit sequence of boundary data
(gk) concentrating on the glancing set.
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2. Statement of the results

2.1. Sidewise observability. Let Ω be a domain of Rn admissible in the sense of assumption
A1, and O a subset of the boundary ∂Ω strictly concave. And consider O′ a subset of ∂Ω such
that O ∩O′ = ∅. We start with the geometric condition we will impose to the pair {O,O′}.

First, we recall that given the cylinder L = R × Ω with Ω of class C∞, we can define the
Melrose-Sjöstrand compressed cotangent bundle of L, T ∗b L = T ∗L ∪ T ∗∂L. In addition, the
matrix A = (aij(x)) being also of class C∞, we have a flow on T ∗b L, constituted of generalized
bicharacteristic curves of the wave operator

PA = ∂2
t −

n∑
i,j=1

∂xj (aij(x)∂xi),

the celebrated Melrose-Sjöstrand flow (see [19]). We refer the reader to Section 3.2 for further
details and precise definitions of these facts.

In particular, we recall the partition of the cotangent bundle of the boundary T ∗∂L into
elliptic, hyperbolic and glancing sets :

(2.1) T ∗∂L = E ∪ H ∪ G.
Now, consider an open subset O of ∂Ω, strictly concave in the sense of assumption A1, such

that O ⊂ O and O ∩ O′ = ∅. One can easily check that this is possible since A1 is an open
condition.

Assumption A2: SGCC
We assume that there exists a time T0 > 0 such that every generalized bicharacteristic curve
issued from the boundary O at t = 0, intersects the boundary O′ at a strictly gliding point ,
without intersecting Γ, and before the time T0.

Remark 2.1. (1) The definition of strictly gliding point of the boundary will be given in
Section 3.2.

(2) The notation (SGCC) stands for sidewise geometric control condition. In what follows,
we provide some precisions.

(3) Set U = R × O. The generalized bicharacteristic curves issued from points of the
boundary U are of two types and can be described through their projection on the basis,
i.e the (t, x)−space. On one hand we have the curves that are transverse to ∂L and in
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O

O′

Ω

Figure 3. Bicharacteristic rays passing throw O

this case we have two hyperbolic fibers issued from the same hyperbolic point m0 ∈ ∂L.
At m0, we have a hyperbolic reflection. On the other hand, the curve is tangent to ∂L
at m0 ( one order tangency ) and lies in L = R×Ω otherwise. In the latter case, the
generalized bicharacteristic curve can be interpreted as a “free bicharacteristic curve”
since it’s an integral curve of the hamiltonian field attached to the wave symbol ( see
Section 3.2).

Condition (SGCC) requires that each one of these curves starting from U at t = 0,
to intersect the boundary Γ′ at a strictly gliding point , without intersecting Γ, and
before the time T0. In this sense, this condition is stronger than the classical (GCC) of
Bardos, Lebeau and Rauch [3] that needs the rays to hit ∂Ω at non diffractive points.

(4) For instance if γ = γ(s) is a ray issued from U , we have γ(0) = ρ ∈ T ∗b L|U , γ(s0) =
ρ1 ∈ T ∗b L|Γ′ for some s0 ∈]0, T0[, where ρ1 is a strictly gliding point, and moreover
γ(s) /∈ T ∗b L|Γ for 0 < s < s0.

In particular we can allow γ(s) to live on the boundary, outside T ∗b L|Γ for some values

of s ∈]0, s0[.
(5) Notice that we don’t make any assumption on the rays that don’t intersect the open

set U of the boundary. From this point of view, (SGCC) is weaker than the classical
condition (GCC).

(6) Remark that if O is strictly convex, then obviously, (SGCC) cannot be satisfied ( see
Fig.4). Therefore, assumption A1 seems to be a well adapted framework to set up the
microlocal condition A2.

Finally, we introduce the last assumption, namely a boundary condition on the data g. For
this purpose, we recall that the lateral boundary ∂L of the cylinder L = R×Ω is a submanifold
of Rn+1, of dimension n and class C∞. We will denote by (t, x′) = (t, x′1, ..., x

′
n−1) a system of

local coordinates on ∂L.

Assumption A3: Boundary condition fulfilled by observable sources
We assume one of the following conditions :
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Figure 4. Convex boundary. In blue, a geodesic ray.

A3.a There exists a polyhomogeneous pseudo-differential operator Bα = bα(t, x′;Dt, Dx′)
on ∂L, of order α > 0, such that CharBα ⊂ H and

(2.2) bα(t, x′;Dt, Dx′)g = 0.

A3.b There exists a family of polyhomogeneous pseudo-differential operators cα(t, x′;Dx′)
in the x′-variable on ∂L, smooth with respect to respect to t, elliptic of order α > 0 such that

(2.3) cα(t, x′;Dx′)g = 0.

A3.c There exists UM an open neighborhood of ΓM in ∂L, there exists α > 0 and a constant
Cα > 0 such that for every u solution of system (1.1), the boundary trace
(∂nu+ ∂tu)|∂L satisfies

(2.4) ‖(∂nu+ ∂tu)|∂L‖Hα(UM ) ≤ Cα‖g‖H1(ΓM ).

Remark 2.2. For the definition of polyhomogeneous pseudo-differential operators on ∂L, see
Section 3.3. In particular, we recall that the characteristic set of Bα = bα(t, x′;Dt, Dx′) is
given by

CharBα = {(t, x′; τ, ξ′) ∈ T ∗∂L, σ(bα)(t, x′; τ, ξ′) = 0}
where σ(bα) is the principal symbol of Bα.

We are now ready to state our main theorem.

Theorem 2.3. Under assumptions A1, A2 and A3, for every T > T0, there exists C > 0
such that every solution of (1.1), satisfies the observability estimate

(2.5) ‖g‖H1(ΓM ) ≤ C‖∂nu|Γ′‖L2(Γ′M+T ).

Remark 2.4. (1) In case assumption A3.a is satisfied, we can relax assumptions A1 and
A 2. Indeed, we may only assume the subset O of the boundary ∂Ω to be concave
and not necessarily strictly concave. In particular, it can be locally a hyperplane. In
addition, we may assume A2 only for transverse ( hyperbolic ) rays.

(2) Condition A3.b ensures some à priori spatial regularity on the data g, yielding mi-
crolocal regularity of g near the elliptic and the glancing sets of the boundary. For
instance, it is fulfilled if g doesn’t depend on the space variable x′, i.e g = g(t). In the
same spirit, if we assume

‖∇x′u|∂L‖Hα(UM ) ≤ Cα‖g‖H1(ΓM ),

for some α > 0, we get the same positive conclusion, as a byproduct of the previous
argument .
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(3) In Assumption A3.c , the open set UM can be taken in the form (−ε,M + ε) × O,
where O is an open neighborhood of O in ∂Ω. This condition can be interpreted as a
conditional stability assumption. See for instance V. Isakov [13].

(4) Obviously, the three conditions a), b) and c) of Assumption A3 are each of them
sufficient and complementary. One could consider other assumptions guaranteeing
the conclusion of Theorem 2.3.

(5) In the setting of assumption A3.a, one can for instance, consider the case where the
boundary data g is subject to a wave equation. With χ = χ(t, x) ∈ C∞0 (ΓM ), consider
the system

(2.6)



PAu = ∂2
t u−

∑n
i,j=1 ∂xjaij(x)∂xiu = 0 in L

u(t, .) = χ(t, x)g(t, .) on ∂L

P ′Ag = ∂2
t g − β

∑n−1
i,j=1 ∂x′jaij(x

′, 0)∂x′ig = 0 on ∂L

u(0, .) = ∂tu(0, .) = 0 on Ω

g(0, .) = g0 ∈ H1(∂L), and ∂tg(0, .) = g1 ∈ L2(∂L)

where β > 0. One can easily check that assumption A3.a is fullfilled as soon as β > 1.
However, if β ≤ 1, the characteristic set of P ′A is contained in the union E ∪ G

of the elliptic set and the glancing set. In this case, one can construct a sequence of
sources (gk) such that the corresponding sequence of solutions (uk) to system (2.6)
violates the observability estimate (2.5), with a loss of compactness located in E or G,
see Theorems 2.5 and 7.1.

(6) To summarize: Even if, thanks to (SGCC), we can microlocally control the source
g near the hyperbolic set of ∂L, it still may develop singularities on the elliptic set,
and/or travelling along some characteristic curves of the glancing set. In fact, as
we will see in the proof of Theorem 2.3 the analysis on these sets requires a special
attention. Assumption A3.a , A3.b or A3.c above are set to insure additional regularity
on g that avoids the rising of such singularities.

2.2. On the lack of sidewise observability. We present now the first theorem concerning
the lack of observability, even in the weaker version (1.8). This negative result ensures a loss
of an infinite number of derivatives for all possible geometric configurations. Here we do not
need any of the geometric conditions A1 or A2, that is, we work on a general bounded and
smooth domain Ω and any partition of its boundary.

The proof of this theorem will be given in Section 6.

Theorem 2.5. For every s < 1, there exists a sequence of soruces (gk)k≥1 ⊂ H1(∂L) sup-

ported in ΓM , such that the solutions (uk) of system (1.1) satisfy

(2.7) lim
k→∞

‖gk‖Hs(ΓM ) = 1 and lim
k→∞

‖∂nuk|∂Ω
‖L2(Γ′M+T ) = 0,

for every T > 0. In particular, the lack of compactness of the sequence (gk) in Hs(ΓM ) is
located in the elliptic set E of the boundary.

Remark 2.6. Actually, as we will see in the proof (cf. Section 6), we choose a sequence (gk)
supported in ΓM = [0,M ]×O such that for some fixed α > 1, ‖gk‖Hα is bounded outside the
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elliptic set E of the boundary. The propagation of the Hα-wave front will then provide the
desired result. In other words, the invisible sources are concentrated on the elliptic set E of
the boundary.

Remark 2.7. In view of Theorem 2.5, we can not expect the sidewise observability estimate
(2.5) to hold, unless an infinite number of derivatives is lost. Therefore, in order to get
sidewise observability estimates in Sobolev norms, structural conditions on the sources need
to be imposed, such as those of assumption A3.

Notice also that if we consider data microlocally concentrated on the glancing set of the
boundary (compare to system (2.6) with β = 1), we may observe a loss of 3 derivatives at
least. Theorem 7.1 in Section 7 is devoted to this result. Notice however that the problem of
proving sidewise observability with a loss of 3 or more derivatives for such sources is open.

Remark 2.8. To close this section and before going into the proofs, let us summarize the
strategy one should follow to obtain sidewise observability for system (1.1).

First, we have to adress the problem only on well designed domains Ω, i.e those satisfying
assumption A1. Secondly, we choose the measurements domain, i.e a subset O′ of the boundary
∂Ω, O ∩O′ = ∅, as sharp as possible, such that (SGCC) is fullfilled. For instance, in the case
of the annular domain ( Fig.1), if O is the interior boundary, then O′ is the exterior boundary.
And finally, we make sure that the boundary source g we aim to observe is admissible, i.e it
satisfies some à priori condition in the spirit of condition A3, that prevents the presence of
invisible solutions.

3. Some Geometric Facts, Operators and Measures

3.1. Geometry. Near a pointm0 of the boundary ∂Ω, taking advantage of the regularity of Ω,
we can define a system of geodesic local coordinates x = (x1, x2, ...., xn) −→ y = (y1, y2, ...., yn)
such that

Ω = {(y1, y2, ...., yn), yn > 0}, ∂Ω = {(y1, y2, ...., yn−1, 0)} = {(y′, 0)}

where the wave operator is given by

PA = −∂2
t +

(
∂2
yn +

∑
1≤i,j≤n−1

∂yjbij(y)∂yi

)
+M0(y)∂yn +M1(y, ∂y′).

Here, the matrix (bij(y))ij is of class C∞, symmetric, uniformly definite positive on a neigh-
borhood of m0, M0(y) is a real valued function of class C∞, and M1(y, ∂y′) is a tangential
differential operator of order 1 with C∞ coefficients.

In the sequel, we will come back to the notation (t, x) = (t, x′, xn) = (t, y′, yn), and we shall
write

PA = ∂2
n +R(xn, x

′, Dx′,t) +M0(x)∂n +M1(x, ∂x′)

Notice that, in this coordinates system, the principal symbol of the wave operator PA is given
by

σ(PA) = −ξ2
n + r(x, τ, ξ′) = −ξ2

n +
(
τ2 −

∑
1≤i,j≤n−1

aij(x)ξiξj

)
.

We shall set r0(x′, τ, ξ′) = r(x′, 0, τ, ξ′) and we denote m1 = m1(x, ξ′) the symbol of the vector
field M1.
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3.2. Generalized bicharacteristic rays. Let us introduce the compressed cotangent bundle
of Melrose-Sjöstrand T ∗b L = T ∗L ∪ T ∗∂L. We recall that we have a natural projection

(3.1) π : T ∗Rn+1 |Ω→ T ∗b L
and we equip T ∗b L with the induced topology.
Given the matrix A(x) = (aij(x)), we denote by pA(x; τ, ξ) = τ2 −t ξA(x)ξ, the principal

symbol of the wave operator, and

Char(PA) = {(t, x; τ, ξ), pA(x, τ, ξ) = τ2 −t ξA(x)ξ = 0},
the characteristic set, and ΣA = π(Char(PA)). In addition, we recall the hamiltonian field
associated to pA

HpA = 2τ∂t − 2tξA(x)∂x +
n∑
k=1

tξ∂xkA(x)ξ∂ξk .

Also, we recall the following partition of T ∗(∂L) into elliptic, hyperbolic and glancing sets:

(3.2) #
{
π−1(ρ) ∩ Char(PA)

}
=

 0 if ρ ∈ E
1 if ρ ∈ G
2 if ρ ∈ H

For the sake of simplicity, we will develop the rest of this section in a system of local geodesic
coordinates as introduced in section 3.1. We recall that we have locally

L = {(t, x) ∈ Rn+1, xn > 0} and ∂L = {(t, x) ∈ Rn+1, xn = 0}.
We also get :

E = {r0 < 0}, H = {r0 > 0}, G = {r0 = 0}.
Notice that using the projection π, one can identify the glancing set G with a subset of

T ∗Rn+1.

Definition 3.1. (1) A point ρ ∈ T ∗∂L\0 is nondiffractive if ρ ∈ H or if ρ ∈ G and the
free bicharacteristic (exp sHpA)ρ̃ passes over the complement of L for arbitrarily small
values of s, where ρ̃ is the unique point in π−1(ρ) ∩ Char(PA).

(2) ρ ∈ T ∗∂L\0 is strictly gliding if ρ ∈ H or if ρ ∈ G and H2
pA

(xn)(ρ) < 0.
In the latter case, the projection on the (t, x)−space of the free bicharacteristic ray

γ issued from ρ leaves the boundary ∂L and enters in T ∗(Rn+1 \ L) at ρ̃ = π−1(ρ).
(3) ρ ∈ T ∗∂L\0 is strictly diffractive if ρ ∈ G and H2

pA
(xn)(ρ) > 0.

This means that there exists ε > 0 such that (exp sHpA)ρ̃ ∈ T ∗L for 0 < |s| < ε.

Definition 3.2. We shall denote by Gd the set of strictly diffractive points and by Gsg the set
of strictly gliding points.

Remark 3.3. (1) Under assumption A1, we notice that over Γ, the glancing set G is
reduced to Gd, i.e

G|Γ ⊂ Gd.
Namely all generalized bicharacteristic curves issued from points of G|Γ have a first
order tangency with the boundary .

(2) In local geodesic coordinates, the sets Gd and Gsg \ H are given by

(3.3) Gd = {ξn = r0 = 0, ∂nr|xn=0 > 0}, and Gsg \ H = {ξn = r0 = 0, ∂nr|xn=0 < 0}.
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Definition 3.4. A generalized bicharacteristic ray is a continuous map

R ⊃ I \B 3 s 7→ γ(s) ∈ T ∗L ∪ G ⊂ T ∗Rn+1

where I is an interval of R, B is a set of isolated points, for every s ∈ I \ B, γ(s) ∈ ΣA and
γ is differentiable as a map with values in T ∗Rn+1, and

(1) If γ(s0) ∈ T ∗L ∪ Gd then γ̇(s) = HpA(γ)(s).
(2) If γ(s0) ∈ G \ Gd then γ̇(s0) = HG

pA
(γ(s0)), where HG

pA
= HpA + (H2

pA
xn/H

2
xnpA)Hxn.

(3) For every s0 ∈ B, the two limits γ(s0± 0) exist and are the two different points of the
same hyperbolic fiber of the projection π.

Remark 3.5. (1) We recall that if Ω has no contact of infinite order with its tangents,
the Melrose-Sjöstrand flow is globally well defined.

(2) In the interior, i.e in T ∗L, a generalized bicharacteristic is simply a classical bichar-
acteristic ray of the wave operator whose projection on the basis is a geodesic of Ω
equipped with the metric (aij) = (aij)

−1 .
(3) Finally, γ can be considered as a continuous map on the interval I with values in T ∗b L.

3.3. Pseudo-differential operators. In this section, we introduce the classes of pseudo-
differential operators we shall use in this paper. We start with the operators on the cylinder
L.

Let A be the set of pseudo-differential operators of the form Q = Qi + Q∂ where Qi
is a classical pseudo-differential operator , compactly supported in L and Q∂ is a classical
tangential pseudo-differential operator, compactly supported near ∂L. More precisely, Qi =
ϕQiϕ for some ϕ ∈ C∞0 (L) and Q∂ = ψQ∂ψ for some ψ(t, xn) ∈ C∞(R×] − α, α[). As will
denote the elements of A of order s.

On the other hand, the boundary ∂L = R × ∂Ω is a smooth manifold of dimension n
without boundary. Following L.Hörmander [12] and using a system of local charts, we can
define for m ∈ R, the space of polyhomogeneous pseudo-differential operators Ψm

phg(∂L) on

∂L, associated with symbols in Smphg(T
∗∂L). These operators enjoy all classical properties of

continuity and composition.

3.4. Microlocal defect measures. Here we use notations of section 3.2. Denote Z = π(CharPA), Ẑ = Z ∪ π(T ∗L|xn=0),

SZ = (Z \ L)/R∗+, SẐ = (Ẑ \ L)/R∗+.

and for Q ∈ A0 with principal symbol σ(Q) = q, set

κ(q)(ρ) = q(π−1(ρ)).

We define also for u ∈ H1(L)

φ(Q, u) = (Qu, u)H1 =

∫
L

(
∇t,xQu.∇t,xu+Qu.u

)
dxdt.

Finally, let (uk) be a sequence of functions weakly converging to 0 in H1
loc(L). In [15] and [8],

the authors prove the following result:
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Theorem 3.6 (Burq-Lebeau [8]). There exists a subsequence of (uk) (still denoted by (uk))

and a positive Radon measure µ on SẐ such that

lim
k→∞

φ(Q, uk) = 〈µ, κ(q)〉, ∀Q ∈ A0.

We will refer to µ as a microlocal defect measure associated to the sequence (uk).
On the other hand, on the boundary ∂L, we can make use of the classical notion of mi-

crolocal defect measure introduced by P. Gérard in [9]. More precisely, for every sequence of
functions (vk) weakly converging to 0 in H1

loc(∂L), there exists a positive Radon measure µ̃
on S∗(∂L) such that we have, up to a subsequence

lim
k→∞

(Qvk, vk)L2(∂L) = 〈µ̃, |η|−2σ(Q)〉, ∀Q ∈ Ψ2
phg(∂L).

Here we have denoted by (y, η) the standard element of T ∗(∂L) \ 0.
We will remind the properties of these measures in some steps of the proof later, see Section

5.3.

4. Preliminary results

4.1. A Geometric Lemma. Let O (resp. O) be the open subset of ∂Ω introduced in the
statement of Assumption A1 (resp. A2 ), and set U = R × O. Consider V a neighborhood
of O in Rn such that V ∩ ∂Ω ⊂ O. R × V is an open neighborhood of Γ = R × O in
Rn+1. In this setting W = R × (V ∩ Ω) = (R × V ) ∩ L is an interior neighborhood of the
boundary Γ ( see Figure 5). On the other hand, consider ρ ∈ T ∗W ∩ Char(PA) and denote
γ = γ(s) the generalized bicharacteristic issued from ρ, i.e γ(0) = ρ. In addition, we define
by γ+ = {γ(s), s > 0} , resp. γ− = {γ(s), s < 0} the outcoming half bicharacteristic and the
incoming half bicharacteristic at ρ, see Figure 5.

O′

Ω

O

W = (R× V ) ∩ L

V

*O

,^J
v

ô

Figure 5. On the left interior neighborhood of Γ.
On the right tangent ( black ) and hyperbolic ( blue ) half bicharacteristic rays

Lemma 4.1. With the notations above and under assumptions A1 and A2, for every T > T0,
there exists V neighborhood of O in Rn, V ∩ ∂Ω ⊂ O, such that for every ρ ∈ T ∗(W ) ∩
Char(PA), one of the two half bicharacteristics issued from ρ, the outcoming one or the



14 BELHASSEN DEHMAN AND ENRIQUE ZUAZUA

incoming one, travelling at speed one, intersects the boundary Γ′ at a strictly gliding point ,
without intersecting the boundary Γ, and before the time T .

We will say that this half bicharacteristic satisfies (SGCC).

Proof. For ρ ∈ T ∗W ∩ Char(PA), denote by γρ = {γρ(s), s ∈ R} the generalized bicharac-
teristic issued from ρ. In particular, γρ(0) = ρ. Assume that γρ intersects U for some value
s1 < 0 at a hyperbolic or at a glancing point. According to assumption A2, we then get that
for some s ∈ R such that s − s1 < T0, γρ(s) is a strictly gliding point of the boundary Γ′

and, in addition {γρ(s′), s1 < s′ < s} ∩ T ∗b L|Γ = ∅. In this case, we see that the statement of

Lemma 4.1 is satisfied by the outcoming half bicharacteristic issued from ρ. Obviously, the
case s1 > 0 can be treated in a similar way. According to this, we may only focus on the points
ρ close to Γ such that γρ = {γρ(s), s ∈ R} doesn’t intersect Γ for s ∈] − T0, T0[. In addition,

due to the compactness of O, it suffices to prove that every glancing point ρ ∈ G|U ⊂ T ∗∂L|U
admits a neighborhood Vρ in T ∗(Rn+1) such that conclusion of Lemma 4.1 is valid for every
ρ′ ∈ Vρ ∩ T ∗L.

Before entering in the details of the proof, we warn the reader that if a generalized bichar-
acteristic γρ hits the boundary transversally for some value s0, that is at a hyperbolic point,
we will denote this point by γρ(s0) , by abuse of notation.

Consider then ρ ∈ G|U ⊂ T ∗∂L|U and let s0 ∈]0, T0[ be a time such that the generalized
bicharacteristic γρ hits the boundary Γ′ at a strictly gliding point. Here we have two possi-
bilities : a) γρ(s0) is a hyperbolic point or b) γρ(s0) a glancing strictly gliding point. We will
discuss each one of these cases, and in order to simplify the argument, we will work in local
geodesic coordinates.

• Case a) : γρ(s0) is a hyperbolic point. With the notations of Definition 3.4, s0 ∈ Bρ
where Bρ is a set of isolated points in R such that the two limits γρ(s0±0) exist and are
the two different points of the same hyperbolic fiber of the projection π. Furthermore,
we have

(4.1) HpAxn(γρ(s0 − 0)) =
dxn
ds

(γρ(s0 − 0)) = −2ξn(γρ(s0 − 0)) < 0.

Consequently, for ε > 0 small enough, γρ(s0− ε) is an interior point, moreover, the
xn and ξn- coordinates satisfy

(4.2) − 2ξn(γρ(s)) =
dxn
ds

(γρ(s)) ≤ −c, ∀s ∈ [s0 − ε, s0[, for some c > 0.

This yields

(4.3) ξn(γρ(s)) ≥ c/2, ∀s ∈ [s0 − ε, s0[.

In addition, we may assume that 0 < xn(γρ(s0−ε)) < η for some η > 0 to be chosen
later. Now we fix ε > 0. Taking into account the continuity of the Melrose-Sjöstrand
flow, it’s clear that for 0 < α < 1

4xn(γρ(s0 − ε)), one can find Vρ a small enough

neighborhood of ρ in T ∗Rn+1, such that for all ρ′ ∈ Vρ ∩ T ∗L ∩ Char(PA),

(4.4) |xn(γρ(s0 − ε))− xn(γρ′(s0 − ε))| ≤ α,
and

(4.5) ξn(γρ′(s)) ≥ c′, ∀s ∈ [s0 − ε, s0[,
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for some c′ > 0. In particular, this means that γρ′(s0 − ε) is an interior point since

(4.6) xn(γρ′(s0 − ε)) ≥
3

4
xn(γρ(s0 − ε)) > 0.

In addition, notice that estimate (4.5) is valid as long as xn(γρ′(s)) > 0, so possibly
for s ∈]s0 − ε, s0 + β[, β > 0 small . Finally,

(4.7)


xn(γρ′(s)) ≤ xn(γρ′(s0 − ε))− 2c′(s− s0 + ε)

≤ 5
4xn(γρ(s0 − ε))− 2c′(s− s0 + ε) ≤ 5

4η − 2c′(s− s0 + ε)

Consequently, we obtain that xn(γρ′(s)) vanishes for some s ≥ s0 + 5
8c′ η − ε, which

means that the bicharacteristic ray γρ′ leaves L at a hyperbolic point before the time

T > T0, as soon as 5
8c′ η − ε < T − T0 .

• Case b) : γρ(s0) is a glancing strictly gliding point. According to Definition 3.1, we
know in this case that

(4.8) xn(γρ(s0)) = r(γρ(s0)) = 0 and
∂r

∂xn
(γρ(s0)) < 0.

Let then B(γρ(s0), ε) be the open ball of T ∗Rn+1 with center γρ(s0) and radius ε. It’s
clear that for ε and c > 0 suitable, one has

(4.9)
∂r

∂xn
(ζ) ≤ −c, ∀ζ ∈ B(γρ(s0), ε).

Moreover, for η ∈]0, ε[ small enough, using again the continuity of the Melrose-
Sjöstrand flow, we may find Vρ, a neighborhood of ρ in T ∗Rn+1 such that for all
ρ′ ∈ Vρ ∩ T ∗L ∩ Char(PA),

(4.10) γρ′(s0) ∈ B(γρ(s0), η).

In this setting, two cases may occur :
i) γρ′(s0) is a boundary point and necessarily r(γρ′(s0)) ≥ 0. If r(γρ′(s0)) > 0 then

γρ′(s0) is a hyperbolic point. Otherwise, r(γρ′(s0)) = 0 and then it’s a glancing strictly
gliding point thanks to (4.9).

ii) γρ′(s0) is an interior point (see Figure 6 below ).

Figure 6. Strictly gliding points
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In this case, using the Hamiltonian field HpA , we get :

(4.11)
dxn
ds

(γρ′(s0)) = −2ξn(γρ′(s0)) ≤ 2η.

Thus, if we denote in short xn(s) = xn(γρ′(s)), we can perform a Taylor expansion
and get in vue of (4.9) :

(4.12)

 xn(s) = xn(s0) + dxn
ds (s0)(s− s0) + 1

2
d2xn
ds2

(s0)(s− s0)2 + o(s− s0)2

≤ η + 2η(s− s0)− c(s− s0)2 + o(s− s0)2.

Similarly, we obtain for the ξn - component of γρ′(s) :

(4.13)

 ξn(s) = ξn(s0) + dξn
ds (s0)(s− s0) + o(s− s0)

≥ −η + c(s− s0) + o(s− s0)

From (4.12) we deduce that γρ′(s) intersects the boundary before the time s1 such

that s1 − s0 ≈ 1√
c
η1/2. Furthermore, we conclude from (4.13) that ξn(s) ≥

√
c

2 η
1/2

for s close to s1, which means that γρ′(s1) is a hyperbolic point of the boundary Γ′.
Finally, we finish the argument by taking η > 0 such that 1√

c
η1/2 < T − T0.

The proof of Lemma 4.1 is now complete. �

4.2. First computations. We consider a family of pseudo-differential symbols in the class
A0 introduced in section 3.3 above, tangential and classical. Since the result we seek is of
local nature, we work in a system of geodesic coordinates near the boundary ∂L and choose
these symbols in the form q = q(xn, x

′, t, ξ′, τ), and of class C∞ with respect to xn, real
valued, compactly supported in (t, x′, xn), and independent of xn in a strip {|xn| < β}, β > 0
small enough. For instance, one may take q in the form q(xn, x

′, t, ξ′, τ) = ϕ(xn)q̃(x′, t, ξ′, τ),
with ϕ ∈ C∞0 (R), equal to 1 near xn = 0. We shall denote by Q = Q(xn, x

′, t,Dx′,t) the
corresponding tangential pseudo-differential operators .

In the proofs of theorem 2.3, we will make successive choices of symbols q.
We recall that in the system of local geodesic coordinates, the wave equation takes the form

(4.14) ∂2
nu+R(xn, x

′, Dx′,t)u+M0(x)∂nu+M1(x, ∂x′)u = 0.

We multiply the equation by Q2∂nu and we integrate over L.
(4.15)

I1 =
∫
L ∂

2
nuQ

2∂nu = −
∫
∂L ∂nuQ

2∂nu dσ −
∫
L ∂nu∂nQ

2∂nu

= −
∫
∂L ∂nuQ

2∂nu dσ −
∫
L ∂nu[∂n, Q

2]∂nu−
∫
L ∂nuQ

2∂2
nu

= −
∫
∂L ∂nuQ

2∂nu dσ −
∫
L ∂nu[∂n, Q

2]∂nu−
∫
LQ

2∂nu∂
2
nu+

∫
L(Q2 −Q∗2)∂nu∂

2
nu

= −
∫
∂L ∂nuQ

2∂nu dσ −
∫
L ∂nu[∂n, Q

2]∂nu−
∫
LQ

2∂nu∂
2
nu

−
∫
L(Q2 −Q∗2)∂nuRu−

∫
LM0(Q2 −Q∗2)∂nu∂nu−

∫
L(Q2 −Q∗2)∂nuM1u
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I2 =
∫
LRuQ

2∂nu =
∫
LRu [Q2, ∂n]u+

∫
LRu∂nQ

2u

= −
∫
∂LRuQ

2udσ −
∫
L(∂nR)uQ2u−

∫
L ∂nuR

∗Q2u−
∫
LRu [∂n, Q

2]u

= −
∫
∂LRuQ

2udσ −
∫
L(∂nR)uQ2u−

∫
L ∂nu [R∗, Q2]u−

∫
L ∂nuQ

2R∗u−
∫
LRu [∂n, Q

2]u

= −
∫
∂LRuQ

2udσ −
∫
L(∂nR)uQ2u−

∫
L ∂nu [R∗, Q2]u−

∫
LQ

2∂nuRu

−
∫
L(Q∗2 −Q2)∂nuRu−

∫
L ∂nuQ

2(R∗ −R)u−
∫
LRu [∂n, Q

2]u.r

(4.16)

Setting f = M0(x)∂nu+M1(x, ∂x′)u and summarizing all the computations above, we obtain

(4.17)

∫
∂L
∂nuQ

2∂nu dσ +

∫
∂L
RuQ2 u dσ +

∫
L

(∂nR)uQ2 u = 2 Re

∫
L
fQ2∂nu−

8∑
j=1

Aj .

We have
∫
L fQ

2∂nu =
∫
LM0∂nuQ

2∂nu+
∫
LM1uQ

2∂nu. The first term of the sum reads

∫
LM0∂nuQ

2∂nu = −
∫
∂LM0uQ

2∂nu ∂σ −
∫
L(∂nM0)uQ2∂nu−

∫
LM0u[∂n, Q

2]∂nu−
∫
LM0uQ

2∂2
nu

= −
∫
∂LM0uQ

2∂nu dσ −
∫
L(∂nM0)uQ2∂nu−

∫
LM0u[∂n, Q

2]∂nu+
∫
LM0uQ

2Ru+
∫
LM0uQ

2f.

(4.18)

Finally we obtain

(4.19)

∫
∂L
∂nuQ

2∂nu dσ +

∫
∂L
RuQ2 u dσ +

∫
L
uQ2 (∂nR)u =

14∑
j=1

Aj

Remark 4.2. In fact, we will see later that the remaining terms Aj for j = 1, ..., 14, as
described below, do not play a role in our arguments, see Corollary 5.7 and Lemma 5.12.

(4.20)

A1 =
∫
L ∂nu[∂n, Q

2]∂nu, A2 = −
∫
L ∂nu(Q∗2 −Q2)Ru, A3 =

∫
L(Q2 −Q∗2)∂nuM0∂nu,

A4 =
∫
L(Q2 −Q∗2)∂nuM1u, A5 =

∫
L ∂nu [R∗, Q2]u, A6 =

∫
L(Q∗2 −Q2)∂nuRu

A7 =
∫
L ∂nuQ

2(R∗ −R)u, A8 = 2 Re
∫
L(∂nM0)uQ2∂nu, A9 = 2 Re

∫
∂LM0uQ

2∂nu dσ,

A10 = 2 Re
∫
LM0u[∂n, Q

2]∂nu, A11 = −2 Re
∫
LM0uQ

2Ru, A12 = −2 Re
∫
LM0uQ

2f,

A13 = −2 Re
∫
LM1uQ

2∂nu, A14 =
∫
LRu [∂n, Q

2]u

5. Proof of Theorem 2.3

The proof relies on a classical strategy. We first establish a relaxed observability estimate,
then we drop the compact term with the help of a unique continuation argument.
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5.1. Relaxed observation and unique continuation.

Proposition 5.1. Under assumptions A1, A2 and A3, for every T > T0, there exists c >
0 such that for every g ∈ H1(∂L), supp(g) ⊂ ΓM , the solution u of (1.1), satisfies the
observability estimate

(5.1) ‖g‖H1(ΓM ) ≤ c‖∂nu|∂Ω‖L2(Γ′M+T ) + c‖g‖L2(ΓM ).

Also, we will need the following uniqueness result.

Lemma 5.2. Assume that estimate (5.1) holds true for all T > T0. Then for g ∈ H1(∂L)
with supp(g) ⊂ ΓM , if the solution u to system (1.1) satisfies ∂nu|∂Ω ≡ 0 on Γ′M+T , then u
vanishes identically. In particular, g ≡ 0.

The proof of Lemma 5.2 is given at the end of this section and the proof of Proposition
5.1 will be the purpose of Section 5.2. Here, we first show how we can conclude the proof of
Theorem 2.3 using these results.

For this , we use a contradiction argument. Assume that estimate (2.5) is false and consider
a sequence of boundary data (gk) ∈ H1(∂L), supp(gk) ⊂ ΓM , and (uk) the sequence of
associated solutions, with

(5.2) ‖∂nuk|∂Ω‖L2(Γ′M+T ) <
1

k
‖gk‖H1(Γ).

The sequence vk = ‖gk‖−1
H1(Γ)

uk then satisfies

(5.3)
{
PAvk = 0, vk|Γ′ = 0, ‖vk|∂Ω‖H1(Γ) = 1, and ‖∂nvk|∂Ω‖L2(Γ′M+T ) <

1
k .

The sequence (vk) is bounded in the energy space C0((0,M + T ), H1(Ω)) ∩ C1((0,M +
T ), L2(Ω)) accordingly to (1.2), thus we may assume that it converges weakly in the cylinder
LM+T to some function v ∈ H1(LM+T ).

In the same way, we assume that the sequence g̃k = vk|∂Ω weakly converges to some g̃ in

H1(Γ), with supp(g̃) ⊂ ΓM . Passing then to the limit k →∞ in (5.3), we obtain

(5.4) PAv = 0, v|∂Ω = g̃, and ∂nv|∂Ω = 0 on Γ′M+T .

The unique continuation result of lemma 5.2 then gives that the weak limits v and g̃ vanish
identically. Coming back then to Proposition 5.1 and plugging vk and g̃k in estimate (5.1),
we get the contradiction

1 ≤ c‖g̃k‖L2(ΓM ) −→ 0 as k →∞

thanks to the compact imbedding of H1(ΓM ) into L2(ΓM ).

Proof of the unique continuation. The proof is based on a classical argument of func-
tional analysis. For a ≥ 0 and g ∈ H1(∂L) with supp(g) ⊂ Γ

a
M =: [−a,M ]× O, consider the

system

(5.5)


PAu = ∂2

t u−
∑n

i,j=1 ∂xj (aij(x)∂xiu) = 0 in L
u(t, .) = g(t, .) on ∂L

u(−a, .) = ∂tu(−a, .) = 0 in Ω.

Clearly, the solutions of (5.5) satisfy a relaxed observability estimate similar to (5.1), namely

(5.6) ‖g‖H1(ΓaM ) ≤ c‖∂nu|∂Ω‖L2(Γ′aM+T ) + c‖g‖L2(ΓaM ).
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for any T > T0 and some c > 0. Here we have denoted ΓaM = (−a,M) × O and Γ′aM+T =
(−a,M + T )×O′.

Let us introduce the set

(5.7) Na(T ) =
{
g ∈ H1(∂L), supp(g) ⊂ Γ

a
M , u = u(g) solves (5.5) and ∂nu|Γ′aM+T

≡ 0
}

First we notice that thanks to (1.3), Na(T ) is a closed subset of H1(ΓaM ). In addition, applying
the relaxed observability (5.6) to an element of Na(T ) gives

‖g‖H1(ΓaM ) ≤ c‖g‖L2(ΓaM ).

Using the compact imbedding H1(ΓaM ) ↪→ L2(ΓaM ), this implies that Na(T ) has a finite
dimension, and thus is complete for any norm.

Now we come back to the initial problem. We pick g ∈ N0(T ), i.e g ∈ H1(∂L) with support
in ΓM , and we consider u, the associated solution of (1.1). Notice first that g ∈ Na(T ) for
all a > 0. In what follows, we fix a > 0. In addition, for δ = 1

2(T − T0), we remark that
estimate (5.6) is also satisfied by all functions h ∈ Na(T − δ). Moreover, for all ε < min(δ, a),
the function g(t+ ε, .) lies in Na(T − δ). We also have

hε =
1

ε
(g(t+ ε, .)− g(t, .)) →

ε→0+

∂g

∂t
in L2(ΓaM ).

As a consequence, the sequence (hε)ε>0 is a Cauchy sequence in Na(T − δ) endowed with the
norm ‖.‖L2(ΓaM ). As all norms are equivalent , the sequence (hε)ε>0 is thus also a Cauchy

sequence in Na(T − δ) endowed with the norm ‖.‖H1(ΓaM ), which yields ∂g
∂t ∈ Na(T − δ).

In particular, ∂g
∂t ∈ H1(ΓaM ). This distribution is supported in ΓM , we get therefore ∂g

∂t ∈
N0(T − δ). Finally if u(∂g∂t ) denotes the solution of system (5.5) with boundary data ∂g

∂t , we
write

∂n
(
u(
∂g

∂t
)
)

= ∂n
(∂u(g)

∂t

)
= ∂t

(∂u(g)

∂n

)
= 0 on (0,M + T )×O′.

Therefore we obtain that ∂g
∂t ∈ N0(T ).

To summarize, we have proved that the time derivative ∂
∂t defines a linear operator on the

finite dimensional space N0(T ). But we notice that this operator has no eigenvalue. Indeed,
for g ∈ N0(T ), we have supp(g) ⊂ ΓM ; therefore for all λ ∈ C, the only solution of system

∂g

∂t
= λg, g(0, .) = 0

is the trivial one g ≡ 0. This concludes the proof of Lemma 5.2.
This also concludes the proof of Theorem 2.3 assuming the relaxed observation estimate

(5.1). Accordingly, the next section is dedicated to the proof of Proposition 5.1. �

5.2. Proof of the relaxed observation. In order to establish estimate 5.1, we use a contra-
diction argument. Assume that inequality (5.1) is false and consider a sequence of boundary
data (gk) ∈ H1(∂L), supp(gk) ⊂ ΓM , and (uk) the sequence of associated solutions, with

(5.8) ‖∂nuk|∂Ω‖L2(Γ′M+T ) + ‖gk‖L2(ΓM ) <
1

k
‖gk‖H1(ΓM ).

The sequence vk = ‖gk‖−1
H1(Γ)

uk then satisfies

(5.9) PAvk = 0, vk|∂Ω = ‖gk‖−1
H1(ΓM )

gk, and ‖∂nvk|∂Ω‖L2(Γ′M+T ) → 0.
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(vk) is bounded in H1(LT ) and (vk|∂Ω) is bounded in H1(ΓM ). Therefore we may assume

that (vk) weakly converges to some v in H1(LT ) and (vk|∂Ω) weakly converges to some g̃ in

H1(ΓM ). Equations (5.9) then provides

(5.10) PAv = 0, v|∂Ω = g̃, and ∂nv|∂Ω = 0,

and Lemma 5.2 implies that v and v|∂Ω = g̃ vanish identically. Thus, the weak limits are both
equal to 0.

Our goal, will be to prove that in the contradiction setting assumed above, the sequence
(vk|∂Ω) strongly converges to 0 in H1(Γ), which is a impossible since ‖vk|∂Ω‖H1(ΓM ) = 1
accordingly to (5.9).

For this purpose, we make use of a classical strategy. Following Burq-Lebeau [8], and
coming back to the notation uk instead of vk, we attach to (uk) a microlocal defect measure
in H1(LM+T ) denoted by µ.

Also, we attach to (gk) a microlocal defect measure on the boundary, in H1(∂L), denoted
by µ̃. Finally, the sequence ∂nuk|∂Ω weakly converges to 0 in L2

loc(∂L). So we attach to it a

microlocal defect measure in L2
loc(∂L) denoted by ν.

Notice, that in the contradiction setting of (5.9), the measure ν vanishes identically over
Γ′M+T .

Finally, we will prove in several steps, that in the contradiction setting assumed above, the
measure µ̃ vanishes identically on ΓM . Notice that in the different intermediate results we
will prove below, we use this contradiction setting, without explicitly referring to it.

5.3. Properties of the measures. In the sequel we consider W an interior neighborhood of
the boundary Γ as introduced in Section 4.1. We recall that W = R× (V ∩Ω) = (R× V )∩L
where V is an open subset of Rn, neighborhood of the spatial boundary O ⊂ ∂Ω. We set

(5.11) W ∂ = (R× V ) ∩ ∂L.

In addition, for J an open interval of R such that [0,M ] ⊂ J , we denote

(5.12) WJ = {(t, x) ∈W, t ∈ J} and W ∂
J = {(t, x) ∈W ∂ , t ∈ J}.

The neighborhood W and the interval J will be fixed in the next Proposition.

Proposition 5.3. Under assumptions A1 and A2, for every T > T0, there exist W and J as
above such that the measure µ vanishes identically near any interior point of WJ .

Proof. Consider T > T0. We take the interior neighborhood W of Γ satisfying the conclusion
of Lemma 4.1 with T+T0

2 . In addition, we chose J =]− α,M + α[, where 0 < α < T−T0
2 . And

we prove that ρ /∈ supp(µ) for all ρ ∈ T ∗WJ . This fact is obvious if ρ is an elliptic point,
thanks to the classical property of microlocal elliptic regularity. If ρ ∈ Char(PA), let γ = γ(s)
be the generalized half bicharacteristic starting at ρ and satisfying (SGCC). We know that

for some s0 ( say 0 < s0 <
T+T0

2 ), γ(s0) = (t0, x0, τ0, ξ0) is a strictly gliding point of the

boundary Γ′M+T . Consider U0 a small neighborhood of (t0, x0) in Rn+1 and denote by uk the

canonical extension of uk to Rn+1, i.e uk = uk in L and uk = 0 elsewhere. We have

(5.13)

 uk ⇀ 0 in H1(U0) weakly

uk|∂Ω = 0 on U0 ∩ ∂L and ∂nuk|∂Ω −→ 0 on U0 ∩ ∂L strongly .
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Accordingly to the lifting lemma of Bardos, Lebeau and Rauch [3, Theorem 2.2] or Burq [5,
Lemme 2.2], we know that uk strongly converges to 0 in H1 microlocally at γ(s0). Therefore we
deduce that γ(s0) /∈ supp(µ) thanks to the work of Aloui [2, Lemme 3.1]. Now, accordingly
to (SGCC), for 0 ≤ s ≤ s0, the bicharacteristic γ(s) doesn’t intersect the boundary Γ. It
may only intersect ∂L \ Γ, on which we have homogeneous Dirichlet condition uk|∂Ω = 0.

Consequently, the measure propagation result of Lebeau [15] or Burq-Lebeau [8] is valid.
Starting then backward from γ(s0), and using the propagation of the measure µ, we obtain

that ρ /∈ supp(µ). Finally, the case s0 < 0, 0 < |s0| < T+T0
2 , can be treated in a similar

way. �

Remark 5.4. In the rest of the proof, the neighborhood W and the interval J are fixed as in
the proof of Proposition 5.3 above.

Proposition 5.5. Under assumptions A1 and A2, the measures µ, ν and µ̃ vanish on the
hyperbolic set of the boundary W ∂

J .

Proof. The fact that µ1H = 0 is proved in Burq-Lebeau paper ( see [8, Lemma 2.6] ) and is
independent of the boundary condition. It only needs the weak convergence of the sequence
(uk) to 0 in H1

loc(L). On the other hand, since µ = 0 in the interior of WJ thanks to
Proposition 5.3, the two hyperbolic fibers incoming to and outcoming from any hyperbolic
point ρ0 of the boundary W ∂

J are not charged, i.e they don’t intersect supp(µ). Therefore,
the Taylor pseudo-differential factorization ( see for instance Burq-Lebeau [8, Appendix] ),
shows that microlocally near ρ0, gk = uk|∂Ω → 0 in H1 and ∂nuk|∂Ω → 0 in L2 strongly. So
as a by-product, we get that ρ0 is not in supp µ̃ neither in supp ν. �

At this step, we can already conclude the proof of Theorem 2.3 under assumption A3.a.

Corollary 5.6. Under assumptions A1, A2 and A3.a, the measure µ̃ identically vanishes on
the boundary W ∂

J .

Proof. This result is a byproduct of Proposition 5.5 and we develop it for the convenience
of the reader. First we recall a classical property of micolocal defect measures, namely the
microlocal elliptic regularity. Let χ = χ(t, x′, τ, ξ′) and ψ = ψ(t, x′, τ, ξ′) two 0-order pseudo-
differential symbols supported in T ∗(∂L)|W∂

J
\ CharBα, such that χ ≡ 1 on supp(ψ). It’s

classical that one can find a pseudo-differential operator B−α, of order (−α) on ∂L such that

(5.14) B−αBαχ(t, x′, Dt, Dx′) = ψ(t, x′, Dt, Dx′) +R−∞

where R−∞ is infinitely smoothing. Consequently, can write the elliptic estimate

(5.15) ‖ψ(t, x′, Dt, Dx′)gk‖H1(∂L) ≤ c0‖Bαχ(t, x′, Dt, Dx′)gk‖H1−α(∂L) + c1‖gk‖L2(∂L)

for some constants c0, c1 > 0. Therefore
(5.16)
‖ψ(t, x′, Dt, Dx′)gk‖H1(∂L) ≤ c0‖[Bα, χ(t, x′, Dt, Dx′)]gk‖H1−α(∂L)+c1‖gk‖L2(∂L) ≤ c2‖gk‖L2(∂L)

for some c2 > 0. We then deduce that ψ(t, x′, Dt, Dx′)gk → 0 strongly in H1(∂L), which
expresses that supp(µ̃) ⊂ CharBα. Now , CharBα ⊂ H thanks to assumption A3.a, and
µ̃ ≡ 0 on H accordingly to Proposition 5.5. Therefore, µ̃ vanishes identically.

�
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The proof of Theorem 2.3 under assumption A3.a is complete.
Let us now continue the proof of Theorem 2.3 under assumption A3.b.
Denote by Akj the terms of (4.20) where we set uk instead of u, and consider a pseudo-

differential symbol q = σ(Q) ∈ A0 ( see Section 3.3), chosen as in Section 4.2.

Corollary 5.7. Under assumptions A1 and A2, if q = σ(Q) is compactly supported in WJ ,
we have

(5.17) lim
k→∞

Akj = 0, ∀j ∈ {1, 8, 9, 10, 12, 14}.

Proof. We recall that the symbol q = σ(Q) is independent of xn in a strip {|xn| < β},
β > 0 small. More precisely, we take q in the form q(xn, x

′, t, ξ′, τ) = ϕ(xn)q̃(x′, t, ξ′, τ), with
ϕ ∈ C∞0 (R), equal to 1 near xn = 0. Therefore, if we choose β small enough, and assume
that q̃ is supported in time in the interval J , the symbol of the bracket operator [∂n, Q

2] is of
order 0 and compactly supported in the interior of WJ . Thus, limk→∞Akj = 0 for j ∈ {1, 10}
thanks to Proposition 5.3. The terms Akj , j = 8, 9, 12 are trivial. �

Remark 5.8. In the rest of the proof, we will work henceforth, with this choice of symbol q,
and we will choose successively, the localization of its support.

Now, for the convenience of the reader, we recall the following result due to Burq-Lebeau
[8].

In the system of geodesic coordinates introduced above, consider the function θ defined
µ-almost everywhere on SẐ

(5.18) θ =
ξn

|(τ, ξ′)|
in xn > 0, θ = i

√
−r0

|(τ, ξ′)|
in E ∪ G.

Lemma 5.9. [8, Lemma 2.7] Let Qj ∈ Aj , j = 1, 2 be tangential pseudo-differential operators
with principal symbols σ(Qj) = qj. Then we have with λ2 = |(τ, ξ′)|2(1 + |θ|2)

(5.19) limk→∞
(

(Q2 − iQ1∂n)uk |uk
)
L2(L)

=
〈
µ, λ−2(q2 + q1θ|(τ, ξ′)|)

〉
Proposition 5.10. The measure µ vanishes on the elliptic set of the boundary W ∂

J .

Proof. The elliptic microlocal regularity for measures or wave fronts is classical for elliptic
interior points ρ ∈ T ∗WJ . In what concerns the elliptic set of the boundary, we will invoke a
result of Burq-Lebeau ([15, Lemma 2.6] ), and we have to introduce some additional notations.
In the framework above, they define a boundary measure µ0

∂ given by

(5.20) ∀Q ∈ A0, limk

∫
∂L
Quk ∂nukdσ =

〈
µ0
∂ , σ(Q)|xn=0

〉
Moreover, they provide the following link between the two measures µ and µ0

∂ :

(5.21) µ0
∂ = −2

|θ|2

1 + |θ|2
µ1|xn=0

.

Therefore, we get

µ0
∂ =

2r0(x′; τ, ξ′)
|(τ, ξ′)|2 − r0(x′; τ, ξ′)

µ1|xn=0
on E ∪ G
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But, since uk|∂L = gk → 0 in L2
loc(∂L) strongly and ∂nuk|∂L is bounded in L2

loc(∂L), we easily

get that µ0
∂ ≡ 0. Consequently, we obtain µ ≡ 0 on E , since r0 < 0 on this set. �

.

Remark 5.11. (1) Notice that for this proposition, we have used none of the assumptions
Aj, j = 1, 2, 3. We have only used the weak convergence gk ⇀ 0 in H1(∂L) and
subsequently uk ⇀ 0 in H1(L).

(2) One should be carefull that this proposition does not give any information about the
behavior of the boundary data gk on E ∪ G. In other words, we have not yet any
information about µ̃1|E∪G.

(3) Up to now, we have proved that the measure µ vanishes in T ∗(WJ) , i.e on interior
points, and on the subset H∪E of T ∗(W ∂

J ) . Therefore, µ is supported in the glancing
set , that is µ = µ1G.

Lemma 5.12. Under assumptions A1 and A2, and with a suitable choice of the pseudo-
differential symbol q = σ(Q), we have

(5.22) lim
k→∞

Akj = 0, ∀j ∈ {2, 3, 4, 5, 6, 7, 11, 13}.

Together with (5.7), this implies that the right hand side of (4.19) tends to 0 as k →∞.

Proof. The proof essentially relies on the calculus Lemma 5.9 . If we detail the limit (5.23),
we can write accordingly to Propositions 5.3, 5.5 and 5.28
(5.23)

limk→∞
(
Q2u |u

)
L2(L)

=
〈
µ1G , λ−2q2

〉
limk→∞

(
− iQ1∂nu |u

)
L2(L)

=
〈
µ1G , λ−2q1θ|(τ, ξ′)|

〉
=
〈
µ1G , iλ−2q1

√
−r0

〉
= 0

since r0 ≡ 0 on the glancing set G.
First, we take the pseudo-differential symbol q = σ(Q) as in the proof of Corollary 5.7.

With this choice, the terms Ak2, A
k
4, A

k
5, A

k
6, A

k
7, A

k
11 and Ak13 can be treated with the second

limit of (5.23) since the pseudo-differential operator (Q2 − Q∗2), resp. (R − R∗) is of order
≤ (−1), resp. 1.

On the other hand, the term Ak11 tends to 0 thanks to the first limit of (5.23). Finally, for
the term Ak3, we have just to notice that ∂nuk is bounded in L2

xn(L2
t,x′) and converges weakly

to 0 in this space, and use again the fact that (Q2 −Q∗2) is of order ≤ (−1). �

As a by-product, we have obtained the following lemma. We denote by q = σ(Q) the
symbol of the pseudo-differential operator Q ∈ A0.

Corollary 5.13. Under assumptions A1 and A2, the measures µ, µ̃ and ν satisfy the following
identity

(5.24)
〈
ν, q2

〉
+
〈
µ̃, |(τ, ξ′)|−2q2r0

〉
= −

〈
µ1G , |(τ, ξ′)|−2 q2(∂nr)

〉
,

for all 0-order symbol q, supported in WJ .

Now, we can conclude the study for the measure µ.
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Proposition 5.14. The measure µ vanishes identically over T ∗(W ∂
J ).

In particular, uk → 0 strongly in H1(WJ) up to the boundary.

Proof. The proof relies on a specific choice of the symbol q. First, we recall the notation
r0(x′, τ, ξ′) = τ2 −

∑
1≤i,j≤n−1 aij(x

′, 0)ξiξj , see Section 3.1. In addition, it’s clear that in

formula (5.24), q = q|xn=0. Let us then consider a function q0 ∈ C∞0 (R) , supported in [−1, 1],
such that q0(s) = 1 for s ∈ [−1/2, 1/2]. We set for ε > 0

(5.25) qε(t, x
′, τ, ξ) = q0

( r0(x′, τ, ξ)
ε
∑

1≤i,j≤n−1 aij(x
′, 0)ξiξj

)
Plugging qε into (5.24) and letting ε→ 0+, we get by Lebesgue dominated convergence

(5.26)
〈
ν,1G

〉
= −

〈
µ1G , |(τ, ξ′)|−2 (∂nr)

〉
All points of the glancing set G = Gd are strictly diffractive ( see (3.3)) which gives ∂nr|G > 0.
Therefore the two members of this identity are of opposite sign and thus both are equal to
zero. Consequently, the measure µ vanishes identically. �

Remark 5.15. (1) Finally, summarizing previous results, we obtain that the measures
equation (5.24) reads as follows :

(5.27)
〈
ν1E∪G , q2

〉
+
〈
µ̃1E∪G , |(τ, ξ′)|−2q2r0

〉
= 0

for all 0-order symbol q , supported in WJ .
(2) Roughly speaking, this formula tells us that we have two ways to prove that µ̃ ≡

0. Either, we set a condition on the data g itself, in other words, we make use of
assumption A3.a or A3.b, or we we use a condition linking the two boundary data
∂nu|∂L and u|∂L = g, which is assumption A3.c.

5.4. End of the proof of Theorem 2.3. Here we have reached the point where, for the
first time, we make use of assumptions A3.b or A3.c .

Proposition 5.16. Under assumptions A1, A2 and A3.b, the measures µ̃ and ν vanish iden-
tically on the set E ∪ G and hence on the boundary ∂L.

Proof. In the setting of assumption A3.b, for every t ∈ J we can write the classical elliptic
estimate
(5.28)
‖gk(t, .)‖H1(∂Ω) ≤ c0‖c(t, x′, Dx′)gk(t, .)‖H1−α(∂Ω) + c1‖gk(t, .)‖L2(∂Ω) = c1‖gk(t, .)‖L2(∂Ω)

for some constants c0, c1 > 0 independent of t ∈ J . We deduce that uniformly with respect
to t ∈ J ,

‖Dx′j
gk(t, .)‖L2(∂Ω) → 0 for k →∞

Therefore, integrating on t and taking the limit k →∞, we can write

(5.29)
〈
µ̃, |(τ, ξ′)|−2|ξ′|2

〉
= 0

and this yields

(5.30)
〈
µ̃, |(τ, ξ′)|−2q2τ2

〉
=
〈
µ̃1E∪G , |(τ, ξ′)|−2q2τ2

〉
= 0
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since τ2 ≤ c|ξ′|2 in E ∪ G. Together with the result of Proposition 5.5, this gives µ̃ ≡ 0 and
ν ≡ 0 accordingly to (5.27).

This completes the proof of Theorem 2.3 under assumption A3.b. �

Proposition 5.17. Under assumptions A1, A2 and A3.c, the measures µ̃ and ν vanish iden-
tically on the set E ∪ G and hence on the boundary ∂L.

Proof. All identities we will handle in this proof take place on the boundary ∂L. Therefore,
we will simply write ∂nuk (resp. uk) instead of ∂nuk|∂L (resp. uk|∂L). In addition, without
loss of generality, we may assume that UM ⊂WJ . Denote Fk = ∂nuk + ∂tuk. Clearly, Fk ⇀ 0
weakly in L2(∂L). In addition, thanks to condition A3.c, Fk is bounded in Hα(UM ), with
α > 0. Therefore we may assume that

(5.31) ∂nuk + ∂tuk = Fk → 0 strongly in L2(UM ).

Consider an elliptic point ρ0 ∈ T ∗(UM ). A classical analysis at elliptic points of the bound-
ary , see for instance [8, Appendix], shows that microlocally near ρ0, we have

(5.32) ∂nuk −Op(
√
−r0(x′, t, τ, ξ′))uk = o(1) in H1/2, for k →∞

Together with (5.31), this yields

(5.33) ∂tuk +Op(
√
−r0(x′, t, τ, ξ′))uk = o(1) in L2, for k →∞

Therefore uk|∂L = gk → 0 strongly in H1 near ρ0 since the symbol iτ +
√
−r0(x′, t, τ, ξ′) is

elliptic near this point. Consequently ρ0 /∈ supp(µ̃) and using again (5.27), ρ0 /∈ supp(ν)
On the other hand, if Q is a 0-order polyhomogeneous pseudo-differential operator on ∂L,

with symbol q, real valued and supported in UM , we have
(5.34)(
Q2∂nuk | ∂nuk

)
L2(UM )

=
(
Q2∂tuk | ∂tuk

)
L2(UM )

+
(
Q2Fk |Fk

)
L2(UM )

−2Re
(
Q2Fk | ∂tuk

)
L2(UM )

Passing to the limit in k and taking into account (5.31), we obtain

(5.35)
〈
ν1E∪G , q2

〉
=
〈
µ̃1E∪G , |(τ, ξ′)|−2q2τ2

〉
Using then the fact that µ̃ = µ̃1G and plugging into (5.27), we get

(5.36)
〈
µ̃1G , |(τ, ξ′)|−2q2(r0 + τ2)

〉
=
〈
µ̃1G , |(τ, ξ′)|−2q2τ2

〉
= 0

for all symbol q. And this gives µ̃ ≡ 0 since τ 6= 0 near G.
This completes the proof of Theorem 2.3 under assumption A3.c. �

6. Proof of Theorem 2.5

The proof is based on the wave front propagation theorem of Melrose-Sjöstrand , see [19].
We start with a general remark about solutions of system (1.1). Consider g ∈ H1(∂L), with
support in ΓM = [0,M ] × O and assume in addition that WF (g), the C∞-wave front of g,
is contained in the elliptic set E . First, we recall that the corresponding solution u vanishes
identically for t ≤ 0. Therefore u is of class C∞ up to the boundary ∂L, outside ΓM . Indeed,
consider ρ ∈ T ∗b (L), ρ /∈ T ∗(ΓM ), and denote γρ the generalized bicharacteristic curve issued
from ρ. Following this curve backward in time, one enters in the region {t < 0}, say at some
point γρ(−t0), t0 > 0, where u is smooth. Accordingly to the description of a generalized
bicharacteristic curve given in Section 3.2, we have for s0 ∈ [−t0, 0]
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• γρ(s0) is an interior point, i.e lies in the characteristic set Char(PA) ∩ T ∗(L) ,
• γρ hits the boundary at a hyperbolic point for s = s0 ,
• γρ(s0) is a glancing point, i.e γρ ∈ G .

In all cases, γρ(s) never intersects the closed set WF (g) ⊂ E . Hence by regularity propa-
gation (see [19]), ρ /∈ WF (u). Moreover, this propagation property yields that the Hα norm
of u is microlocally bounded near ρ, for every α ≥ 1.

In the sequel we use this property to prove that estimate (2.5) fails in general.
Take s < 0, α ∈]1, 2[, and F a closed conical subset of T ∗(ΓM ), F ⊂ E . Also, consider

a symbol a(t, x′, τ, ξ′) of order 0, supported in T ∗(ΓM ) ∩ E and equal to 1 on F . Denoting
A = a(t, x′, Dt, Dx′) the corresponding pseudo-differential operator, it’s classical that one
can construct a sequence of smooth functions (fk) ⊂ Hs(∂L), compactly supported in ΓM ,
satisfying

(6.1) ‖fk‖Hs = 1 and fk ⇀ 0 weakly in Hs(ΓM ),

and

(6.2) ‖Afk‖Hs → 1 for k →∞.

This simply means that the lack of compactness of (fk) is located in supp(a) ⊂ E .
Finally consider a pseudo-differential operator on ∂L , Bs−α = bs−α(t, x′, Dt, Dx′) of order

s − α, with bs−α supported in T ∗(ΓM ). The following sequence gk will be the key of our
counter-example.

(6.3) gk = Afk +Bs−α(Id−A)fk.

First, the second term of the Rhs of (6.3) is clearly bounded in Hα(ΓM ). Precisely, we
have for some c > 0, ‖Bs−α(Id−A)fk‖Hα ≤ c‖fk‖Hs = c. Therefore, accordingly to (6.1), we
deduce that ‖Bs−α(Id−A)fk‖Hs → 0 . And this yields ‖gk‖Hs → 1 for k →∞.

Secondly, it’s classical that ‖q(t, x′, Dt, Dx′)gk‖Hα is uniformly bounded by ‖fk‖Hs , for
any pseudo-differential symbol q of order 0 supported in (H∪G)|ΓM . Indeed, in this case, the
symbols q and a have disjoint supports and the composition Op(q)A is infinitely smoothing.
Using then (6.3), we get for some constant c > 0

(6.4) ‖q(t, x′, Dt, Dx′)gk‖Hα ≤ c‖fk‖Hs = c

Moreover, accordingly to (6.1), we obtain that q(t, x′, Dt, Dx′)gk → 0 strongly in Hα′(ΓM ) for
all α′ < α.

Let us now analyze the sequence (uk) of solutions to the wave system (1.1) with (gk) as
boundary data . We split it in the following form uk = vk + wk where

(6.5)


PAvk = 0 in L, vk|∂L = Afk

PAwk = 0 in L, wk|∂L = Bs−α(Id−A)fk

vk(0) = ∂tvk(0) = wk(0) = ∂twk(0) = 0.

First, as a consequence of the well posedness of system (1.1) ( see [14] ), it’s clear that the

sequence wk is bounded in Hα(LM+T ) and thus wk → 0 strongly in Hα′(LM+T ) for all α′ < α.
In particular,

(6.6) ‖∂nwk|∂Ω‖L2(Γ′M+T ) → 0 strongly.
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Next, to study the sequence (vk), we need the following Lemma.

Lemma 6.1. Consider s < 0 and for c > 0 denote Ec = {(t, x; τ, ξ) ∈ T ∗(Rn), |τ | ≤ c|ξ|}.
Then on the space {h ∈ Hs(Rn), supp(ĥ) ⊂ Ec}, ‖.‖L2(R;Hs(Rn−1)) is a norm, equivalent to its
natural norm ‖.‖Hs(Rn).

As a consequence, we deduce that on the space {h ∈ Hs(ΓM ), supp(ĥ) ⊂ E}, ‖.‖L2(0,M ;Hs(O))

is a norm, equivalent to its natural norm ‖.‖Hs(ΓM ).

The proof is straightforward and left to the reader.
The sequence (Afk) is bounded in L2(0,M + T ;Hs(O)) . Therefore (vk) is bounded in

L2(0,M + T ;Hs(Ω)) (see [14, Th.2.7]), and thus in Hs(LM+T ). Using the propagation argu-
ment developed in the beginning of this section, we see that (vk) and thus (uk) is bounded
in Hα(LM+T ) up to the boundary, except on the closed subset F ⊂ E . In particular, this
sequence is bounded in Hα(U) for any U interior neighborhood of the boundary observation
region Γ′M+T = (0,M + T )×O′, ie :

(6.7) ‖uk‖Hα(U) ≤ c for some c > 0.

Finally, since uk ⇀ 0 weakly in Hs(L) thanks to (6.1), we obtain that uk → 0 strongly in

Hα′(U) for any α′ ∈ [1, α[, and this gives

‖∂nuk|∂Ω‖L2(Γ′M+T ) → 0

This concludes the proof of Theorem 2.5.

7. Appendix

This section is devoted to our second negative result where we analyze the wave system
(1.1)with data microlocally concentrated near a glancing point of T ∗(∂L)|ΓM . In this case we
show that, at least 3 derivatives are lost in the sidewise observation.

With the notations of Section 1.1, the following holds.

Theorem 7.1. There exists a sequence of functions (gk)k ⊂ H1(∂L) supported in ΓM , and
microlocally concentrated in the glancing set, such that

(7.1)
‖∂nuk|∂Ω

‖L2(Γ′M+T )

‖gk‖Hs(ΓM )
−→ 0 for k −→∞,

for every T > 0 and every s > −2.

In this section we present the proof of Theorem 7.1, and we start with a short description
of the general strategy. First, for an elliptic point ω ∈ T ∗(ΓM ), we construct a family of
solutions uε of the wave system (1.1) with smooth traces gε microlocally concentrated at ω,
and for s ≤ 1, we compare the norms ‖∂nuε|∂Ω

‖L2(Γ′M+T ) and ‖uε|∂Ω
‖Hs(ΓM ). The idea is then

to use a suitable sequence of elliptic points ων of T ∗(ΓM ) converging to a glancing point ω0 ,
and to perform the same task near each ων with a rigorous control of the ellipticity constant.
Letting then ν → 0 provides the result.
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7.1. Microlocal preparation. The key point is a microlocal factorization of the wave symbol
near elliptic points and the smoothing property of some parabolic operator (see M.Taylor [23]
).

We recall that in the setting of Section 1.1, Ω is a bounded open and connected subset of
Rn with boundary ∂Ω of class C∞, and O , O′ are two non empty open subsets of ∂Ω such that
O ∩O′ = ∅. We denote m0 = (t0, x0), t0 > 0 a point of Γ = R×O, and using a local geodesic
coordinates system, we assume that near m0, Ω = {(x′, xn), xn > 0} and ∂Ω = {(x′, 0)}.

We recall also that in this special system of coordinates, near m0, the principal symbol of
the wave operator takes the particular form stated in Section 3.1

(7.2) σ(PA) = −ξ2
n +

(
τ2 −

∑
1≤i,j≤n−1

aij(x)ξiξj

)
= −ξ2

n + r(x, τ, ξ′),

and we set r0(x′, τ, ξ′) = r(x′, 0, τ, ξ′). Extending the metric (aij(x))i,j near m0, in a smooth
way outside the domain Ω, we may assume that the symbol representation (7.2) holds for
|xn| ≤ b where b > 0 is small enough. Assume now that ω0 = (t0, x

′
0, τ0, ξ

′
0), t0 > 0, is

an elliptic point of T ∗(∂L), that is r0(x′0, τ0, ξ
′
0) < 0, and consider in addition Vω0 a conical

neighborhood of ω0 in Rn × Rn and 0 < a < b such that

(7.3) − r(x, τ, ξ′) = −r(x′, xn, τ, ξ′) ≥ C2
ω0

(τ2 + |ξ′|2), ∀xn ∈ [−a, a], ∀(t, x′; τ, ξ′) ∈ Vω0 .

Also, consider V ′ω0
another conical neighborhood of ω0 in R2n, V ′ω0 ⊂ Vω0 and a symbol

Λ = Λ(t, x′; τ, ξ′) ∈ S0
1,0(Rn ×Rn), homogeneous of order 0, 0 ≤ Λ ≤ 1, equal to 1 on V ′ω0

and

supported in Vω0 . Finally, we take a function m ∈ C∞(R,R+), m(s) = 1 for |s| ≤ a/2 and
m(s) = 0 for |s| ≥ 3a/4 and we define the symbol

(7.4) χ(xn, t, x
′; τ, ξ′) = m(xn)Λ(t, x′; τ, ξ′)

In vue of this , it’s clear that for some C > 0 large enough, the tangential pseudo-differential
symbol of order 2

(7.5) K(xn, t, x
′, τ, ξ′) = −r(x, τ, ξ′)χ(xn, t, x

′; τ, ξ′) + C(τ2 + |ξ′|2)(1− χ(xn, t, x
′; τ, ξ′))

is globally elliptic in the half-space (xn, t, x
′) ∈ [−a,+∞[×Rn, uniformly with respect to

xn ≥ −a .

Remark 7.2. (1) In the sequel, we will set (y, η) = (t, x′, τ, ξ′) ∈ R2n.
(2) Actually, one can see that K(xn, y, η) is a global tangential symbol, homogeneous of

order 2, and lies in the class C∞([−a,+∞[;S2
1,0(R2n). More precisely, one has

(7.6) K(xn, y, η) ≥ C2
ω0
|η|2 ∀(xn, y, η) ∈ [−a,+∞[×R2n.

We devote the next section to the study of a global pseudo-differential system.

7.2. A global pseudo-differential system.

Proposition 7.3. There exists a family of elliptic symbols R(xn, y, η) ∈ C∞([−a,+∞[;S1
1,0(R2n))

satisfying in the sense of operators

(7.7) ∂2
xn −K = (∂xn −R)(∂xn +R) +R−∞

with

(7.8) R(xn, y, η) & Cω0 |η|, (xn, y, η) ∈ [−a,+∞[×R2n

for |η| ≥ A, A large enough.
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In addition, R−∞ is a tangential pseudo-differential operator infinitely smoothing, with
symbol r−∞ ∈ C∞([−a,+∞[;S−∞1,0 ).

Proof. (∂xn −R)(∂xn +R) = ∂2
xn −R ◦R+ [∂xn , R], therefore we have to solve

R ◦R− [∂xn , R] = K mod Op(S−∞).

A classical symbolic calculus then gives

(7.9) R#R− ∂R/∂xn = K mod S−∞.

The symbol K introduced in 7.5 is homogeneous of order 2. Therefore we will seek for a
classical symbol R , i.e as an asymptotic sum R ∼

∑
j≥0 r(1−j) where r(1−j) = r(1−j)(xn, y, η)

is homogeneous of order 1− j and smooth with respect to xn.
We recall that if a1, a2 are two symbols belonging respectively to Sm1

1,0 and Sm2
1,0 , then one

has

a1#a2 ∼
∑
α

1

α!
∂αη a1D

α
y a2.

Consequently, equation 7.9 yields at order 2, 1 and 0 , respectively
r2

1 = K

2r0r1 +
∑
|α|=1 ∂

α
η r1D

α
y r1 − ∂r1/∂xn = 0

2r−1r1 +
∑
|α|=2

1
α!∂

α
η r1D

α
y r1 +

∑
|α|=1 ∂

α
η r1D

α
y r0 − ∂r0/∂xn = 0,

and more generally, for j ≥ 1

2r1−jr1 − Fj(r1, r0, ...., r1−(j−1)) = 0,

where Fj is an homogeneous symbol of order 2− j, depending on rk, k ∈ {2− j, ..., 0, 1}.
We choose

r1 = K1/2 for |η| ≥ 1

and for j ≥ 1

r1−j =
1

2
r−1

1 Fj(r1, r0, ...., r1−(j−1)) for |η| ≥ 1

It’s classical that the asymptotic sum
∑

j≥0 r(1−j) provides the answer (see Alinhac-Gérard

[1, Chapter 1]). In addition, one can check that R(xn, y, η) ∈ C∞([−a,+∞[;S1
1,0(R2n)). In

particular, notice that R(xn, y, η) ≈ |η| for xn ≥ a and |η| ≥ 1. �

We study now a pseudo-differential initial value system generated by this symbol R.
We recall that the symbol R(xn, y, η) is uniformly elliptic of order one , see (7.8).

Proposition 7.4. Assume that R(xn, y, η) & Cω0 |η|, |η| > A. Then there exists a tangential
pseudo-differential operator R−∞ ∈ Op(S−∞(Rn)) such that for every v0 ∈ L2(Rn), the system

(7.10)


∂v
∂xn

+Rv = R−∞v in {xn > 0}

v(0, y) = v0

admits a unique solution v(xn, .) ∈ C0(R+, L2(Rn)) In addition, for every B > 0 we have :
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(7.11) Cω0

∫ B

0
‖v(xn, .)‖2H1/2(Rn)

dxn . ‖v0‖2L2(Rn).

Proof. The existence of a solution in L2 is classical. Choose R−∞ = R−∞(Dy) with positive
symbol r−∞(η) ∈ C∞0 (Rn), equal to 1 on {|η| ≤ A}. The operator R+R−∞ is then uniformly
elliptic and one can use for instance classical results of [20]. To prove the smoothing property
of (7.11), it suffice to work with functions of S (Rn+1). Pick ϕ ∈ C∞(R+,R+) a decreasing
function such that ϕ(0) = 1. Multiplying the equation by ϕ(xn)v and integrating, we get for
B > 0

ϕ(B)‖v(B, .)‖2L2 +

∫ B

0
Re
(

(2ϕR− ϕ′ +R−∞)v, v
)
L2
dxn = ‖v0‖2L2 .

This yields the desired result thanks to Gärding inequality ( see [1, Chapter I] ), by taking
(−ϕ′) large enough. �

Proposition 7.5. For every s ∈ R and v0 ∈ Hs(Rn), system (7.10) admits a unique solution
v(xn, .) ∈ C0(R+, Hs(Rn)). In addition, for B > 0 we have :

(7.12) Cω0

∫ B

0
‖v(xn, .)‖2Hs+1/2(Rn)

dxn . ‖v0‖2Hs(Rn).

Proof. Consider the symbol Ks(η) = (1 + |η|2)s/2 and denote by Ks(Dy) the corresponding
tangential pseudo-differential operator . One has

∂xnKsv +RKsv = [Ks, R]v +R−∞v = Msv,

where Ms is a tangential pseudo-differential of order ≤ s. Multiplying this equation by
ϕ(xn)Ksv and integrating, we get

ϕ(B)‖Ksv(B, .)‖2L2 +

∫ B

0
Re
(

(2ϕR− ϕ′ − 2ϕMsK−s)Ksv,Ksv
)
L2
dxn = ‖Ksv0‖2L2 .

The end of the proof is then similar to the previous one . �

In the following lemma, we study the behavior of solutions to system 7.10 under the action
of a 0-order tangential pseudo-differential operator .

Lemma 7.6. Consider a smooth family of tangential pseudo-differential operators M(xn, y,Dy),
of order 0. Then for every v0 ∈ Hs(Rn), the solution v of system (7.10) satisfies for B > 0

(7.13) C3
ω0

∫ B

0
‖Mv(xn, .)‖2Hs+1/2(Rn)

dxn . C
2
ω0
‖M0v0‖2Hs(Rn) + ‖v0‖2Hs−1(Rn).

Here we denoted M0 = M(0, y,Dy).

Proof. If v is a solution of system (7.10), M(xn, y,Dy)v then satisfies

∂xn(Mv) +RMv = [R,M ]v − [∂xn ,M ]v +MR−∞v = M̃v in {xn > 0}
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where M̃ is a tangential pseudo-differential operator of order 0. Arguing then as in the proof
of Proposition 7.4, we obtain
(7.14)

Cω0

∫ B
0 ‖Mv(xn, .)‖2Hs+1/2(Rn)

dxn . ‖M0v0‖2Hs(Rn)

+
∫ B

0 ‖M̃v(xn, .)‖Hs−1/2(Rn)‖Mv(xn, .)‖Hs+1/2(Rn)dxn

. ‖M0v0‖2Hs(Rn) + 2C−1
ω0

∫ B
0 ‖M̃v(xn, .)‖2Hs−1/2(Rn)

dxn + 1/2Cω0

∫ B
0 ‖Mv(xn, .)‖2Hs+1/2(Rn)

dxn

Therefore
(7.15)

Cω0

∫ B
0 ‖Mv(xn, .)‖2Hs+1/2(Rn)

dxn . ‖M0v0‖2Hs(Rn) + C−1
ω0

∫ B
0 ‖v(xn, .)‖2Hs−1/2(Rn)

dxn

. ‖M0v0‖2Hs(Rn) + C−2
ω0
‖v0‖2Hs−1(Rn).

accordingly to (7.12) . This completes the proof of Lemma 7.13 . �

At the end of this section, we apply these results to our initial problem, making the link
between the solutions of the global pseudo-differential system (7.4) and those of the wave
system (1.1).

Remind that ω0 = (y0, η0) = (t0, x
′
0, τ0, ξ

′
0), t0 > 0, is an elliptic point of T ∗(∂L). First, we

consider a family of tangential symbols

(7.16) ψ(xn, y, η) = ψ0(xn)λ0(y, η) ∈ C∞(R+;S0
1,0(R2n)

such that ψ0 = 1 near 0, λ0 ≡ 1 microlocally near ω0, and supp(ψ) ⊂ {χ = 1} where χ is the
symbol introduced in (7.4).

Lemma 7.7. For v0 ∈ L2(Rn), let v(xn, .) be the associated solution of system (7.10). Then
the function w = ψ(xn, y;Dy)v satisfies the wave equation

(7.17) PAw = [∂2
xn −K,ψ]v +R−∞v in {xn > 0}

where R−∞ is a smooth family of tangential pseudo-differential operators, infinitely smoothing.

Proof. Accordingly to the factorization of Proposition 7.3 and (7.10), we have

(7.18) (∂2
xn −K)w = [∂2

xn −K,ψ]v + ψ(∂2
xn −K)v = [∂2

xn −K,ψ]v +R−∞v.

Moreover, thanks to the design of the symbols χ and ψ, the symbolic calculus gives

χ(xn, y;Dy) ◦ ψ(xn, y;Dy) = ψ(xn, y;Dy) +R−∞,

hence (
1− χ(xn, y;Dy)

)
◦ ψ(xn, y;Dy) = R−∞.

We then deduce that,

(7.19) (∂2
xn −K)w =

(
∂2
xn + rχ− C(D2

t +D2
x′)(1− χ)

)
ψv = PAψv +R−∞v.

Therefore

(7.20) PAw = [∂2
xn −K,ψ]v +R−∞v in {xn > 0}.

�
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7.3. A family of concentrated data. Consider ω0 = (y0, η0) = (t0, x
′
0, τ0, ξ

′
0) an elliptic

point of T ∗(Rn). And for ε > 0, take a solution v of system 7.10 with a boundary data v0ε

given by

(7.21) v0ε(y) = ε−n/4exp
( i
ε

[
(y − y0).η0

])
exp
(
− |y − y0|2

ε

)
Lemma 7.8. For v0ε given above, we have

(7.22) ‖v0ε‖Hs ∼ ε−s, for ε→ 0+ and s ∈ R.

In addition, if λ = λ(y; η) ∈ Sk1,0(R2n), k ∈ R, is a tangential pseudo-differential symbol such

that ω0 = (y0, η0) /∈ supp(λ), we have for every 0 ≤ s ≤ s′

(7.23) ‖λ(y;Dy)v0ε‖Hs = o(εs
′
) for ε→ 0+.

Remark 7.9. Actually, the sequence (v0ε)ε weakly converges to 0 in L2(Rn). Moreover, we
can see that it admits a microlocal defect measure given by µ(v0ε) = δ(y0,η0/|η0|).

Proof. For the seek of simplicity, we will work in Rn equipped with its usual euclidian coor-
dinate system, and assume that y0 = 0 . More precisely, for given ξ0 ∈ Rn \ 0, we set

fε(x) = ε−n/4exp
( i
ε
x.ξ0

)
exp
(
− |x|

2

ε

)
.

Estimate (7.22) is obvious by direct computation. In what concerns (7.23), it’s a classical
fact of basic microlocal analysis, and we detail this point for the convenience of the reader.
First, we notice that it’s enough to prove the result for k = 0. Also, without loss of generality,
we may assume the pseudo-differential symbol in the form λ(x, ξ) = ψ(ξ)ϕ(x) where ψ(ξ)
is homgeneous of order 0 for |ξ| ≥ 1 supported outside a small conical neighborhood of ξ0.
Moreover, we take ϕ ∈ C∞0 (Rn), supported near the origin. In this setting, the Fourier
transform of gε = ψ(D)ϕfε reads as follows

(7.24)



Fgε(ξ) = ε−n/4ψ(ξ)
∫
exp
(
− ix.(ξ − ε−1ξ0)

)
ϕ(x)exp

(
− ε−1|x|2

)
dx

= ε−n/4ψ(ξ)
(
F(ϕ) ∗ F(exp(−ε−1| . |2)

)
(ξ − ε−1ξ0)

= πn/2εn/4ψ(ξ)
(
F(ϕ) ∗ (exp(− ε

4 | . |
2)
)

(ξ − ε−1ξ0) = πn/2εn/4ψ(ξ)(I1 + I2)(z)

where we denoted z = ξ − ε−1ξ0, and

I1 =

∫
|η|≤|z|/2

F(ϕ)(η)exp(−ε
4
|z − η|2)dη, I2 =

∫
|η|≥|z|/2

F(ϕ)(η)exp(−ε
4
|z − η|2)dη.

In I1, |z − η| ≥ |z|/2 ≥ c(|ξ|+ ε−1|ξ0|) accordingly to the support condition of the symbol ψ.

Therefore |z − η| ≥ c|ξ|1/4ε−3/4|ξ0|3/4 , which yields to

(7.25) |I1| ≤ c exp
(
− c ε−1/2|ξ0|3/2|ξ|1/2

)∫
|F(ϕ)(η)|dη ≤ Csεs〈ξ〉−s

for every s > 0, |ξ| ≥ 1.
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For I2, we write

(7.26)


|I2| ≤

∫
|η|≥|z|/2 |F(ϕ)(η)|dη

≤ ck(1 + |z|)−k
∫
|η|≥|z|/2 |F(ϕ)(η)|(1 + |η|)kdη ≤ ck(1 + |z|)−k

since F(ϕ) lies in S(Rn). Arguing then as above, we obtain for I2 an estimate similar to
(7.25), which yields in turn

(7.27) |Fgε(ξ)| ≤ C ′s |ψ(ξ) |εs+n/4〈ξ〉−s

for every s > 0, |ξ| ≥ 1.
Finally, we replace in this last estimate s by s′ + n with s′ ≥ s . We then get

〈ξ〉s|Fgε(ξ)| ≤ Cs′ |ψ(ξ)| εs′+5n/4 〈ξ〉s−s′−n,

and this gives the desired estimate.
�

In the sequel, without loss of generality, we assume that the ellipticity constant Cω0 of the
pseudo-differential operator R introduced in Proposition 7.4 satisfies Cω0 ≤ 1.

Corollary 7.10. The function Fε = [∂2
xn −K,ψ]vε + R−∞vε , i.e the RHS of 7.20, satisfies

for B > 0 and ε small enough

(7.28)

∫ B

0
‖Fε(xn, .)‖2L2(Rn)dxn . C

−3
ω0
ε for ε→ 0+.

Proof. We compute

(7.29)



Fε(xn, .) = (∂2
xnψ)vε + 2(∂xnψ)∂xnvε − [K,ψ]vε +R−∞vε

=
(

(∂2
xnψ)vε − 2(∂xnψ)R

)
vε − ψ0(xn)[K,λ0]vε +R−∞vε

= M1vε +M2vε +R−∞vε

Notice that M1 is a tangential pseudo-differential operator of order 1 whose symbol vanishes
near xn = 0, and in M2, the symbol σ([K,λ0]) is of order one and vanishes near ω0.

First , accordingly to (7.8), (7.12) and (7.22), we can write

(7.30)

∫ B

0
‖R−∞vε(xn, .)‖2L2dxn .

∫ B

0
‖vε(xn, .)‖2L2dxn . C

−1
ω0
‖v0ε‖2H−1/2 . C

−1
ω0
ε

Secondly, M1 = (1 + |Dy|)
(

(1 + |Dy|)−1M1

)
. Applying then (7.13) to (1 + |Dy|)−1M1 with

s = 1/2, we get

(7.31)

∫ B

0
‖M1vε(xn, .)‖2L2dxn =

∫ B

0
‖(1 + |Dy|)−1M1vε(xn, .)‖2H1dxn . C

−3
ω0
‖v0‖2H−1/2

since M1 vanishes near {xn = 0}. Therefore , taking into account (7.22), we get

(7.32)

∫ B

0
‖M1vε(xn, .)‖2L2dxn . C

−3
ω0
ε
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Finally, we use the same argument with the last term M2vε.

(7.33)

∫ B

0
‖M2vε(xn, .)‖2L2dxn =

∫ B

0
‖(1 + |Dy|)−1M2vε(xn, .)‖2H1dxn

(7.34) . C−1
ω0
‖(1 + |Dy|)−1M2v0ε‖2H1/2 + C−3

ω0
‖v0‖2H−1/2

Reminding that M2 vanishes near ω0, estimate (7.23) yields for all s′ > 0

(7.35)

∫ B

0
‖M2vε(xn, .)‖2L2dxn . C

−1
ω0
εs
′
+ C−3

ω0
ε

Taking then s′ = 1 and using (7.30), (7.32) and (7.35), and the fact that Cω0 ≤ 1, we get the
result.

�

7.4. Application to the lack of observability. We recall the notation ΓM = (0,M)× O
and Γ′M+T = (0,M + T ) × O′ where O and O′ are two non empty open subsets of ∂Ω such

that O ∩O′ = ∅. Let m0 ∈ ΓM and ω0 ∈ T ∗m0
∂L be an elliptic point in the sense of (3.2). Let

us take a family of tangential pseudo-differential symbols ψ, as introduced for Lemma 7.7,
supported near ω0, and with small space-time compact support near m0. More precisely, if
m0 = (t0 > 0, x0), we assume supp(t,x)(ψ) ⊂]t0 − ρ, t0 + ρ[×Ux0 , with ρ > 0 small and Ux0 a
small neighborhood of x0 in Rn.

Now, in a local system of geodesic coordinates near m0 , we have Ω ∩ Ux0 = {x, xn > 0},
and in addition, the support property of ψ can be interpreted in the following sense

(7.36) supp(t,x)(ψ) ⊂ {(t, x′, xn), xn ≤ α} := Uαm0

for some α small enough. In particular, if v is a solution of system (7.4), it is defined on
the whole half-space {(t, x) = (t, x′, xn), xn ≥ 0} and, in geodesic coordinates, the function
w = ψv satisfies

(7.37) supp(w) ∩ L ⊂ Uαm0
∩ L.

In addition, we notice that Γ′M+T ⊂ LM+T \ Uαm0

Finally, we consider the family of data v0ε introduced in (7.21), vε the associated solution,
and we set the wave system

(7.38)


PAhε = PAwε = Fε in L,

hε(t, .) = 0 on ∂L,

hε(0, .) = ∂thε(0, .) = 0 in Ω,

where wε = ψvε is the function introduced in Lemma 7.7. And we set uε = hε−wε = hε−ψvε.
Recalling that the symbol of the pseudo-differential operator ψ is supported in space-time,
near m0 = (t0 > 0, x0), we have

(7.39)

 PAuε = 0 in L,
uε(t, .) = −ψv0ε(t, .) on ∂L,
uε(0, .) = ∂tuε(0, .) = 0 in Ω.
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Notice in particular that uε|Γ = −ψvε|Γ and uε|(∂L\Γ) = 0. Using now the classical multiplier
method of J.L.Lions for system (7.39) and hyperbolic energy estimate for system (7.38), we
derive
(7.40){

‖∂nuε‖2L2(Γ′M+T
) ≤ C

∫
LM+T \Uαm0

|∇t,xuε|2dxdt
≤ C

∫
LM+T \Uαm0

|∇t,xhε|2dxdt+ C
∫
LM+T \Uαm0

|∇t,xvε|2dxdt ≤ C
∫
LM+T

|∇t,xhε|2dxdt

thanks to the support condition (7.36). Therefore, accordingly to hyperbolic energy estimate,

‖∂nuε‖2L2(Γ′M+T
) ≤ C‖Fε‖

2
L2((0,M+T )×Ω).

Thus, using (7.28) with B = M + T , we obtain

(7.41) ‖∂nuε‖2L2(Γ′M+T
) . C

−3
ω0
ε.

7.5. End of the proof of Theorem 7.1. Here we continue with the notations of Section
7.1. Let ω0 = (t0, x

′
0, τ0, ξ

′
0), t0 > 0, be a glancing point of T ∗(∂L), that is r0(x′0, τ0, ξ

′
0) = 0 .

And for ν ∈]0, 1/2[ , consider the sequence ων = (t0, x
′
0, τν , ξ

′
ν) = (t0, x

′
0, (1− ν)τ0, (1 + ν)ξ′0) .

We have

(7.42) − r0(ων) = 2ν
(
τ2

0 +
∑

1≤i,j≤n−1

aij(x
′
0, 0)ξ′0iξ

′
0j

)
≥ cν(τ2

ν + |ξ′ν |2)

where the constant c > 0 depends only on ω0 and the metric (aij(x)). In particular if ν → 0,
(ων) is a sequence of elliptic points in T ∗(∂L) converging to the glancing point ω0. Now,
for fixed ν ∈]0, 1/2[, we follow all the arguments developed in sections 7.1 to 7.4 above :
factorization of the wave symbol in a microlocal neighborhood of ων , resolution of a global
pseudo-differential system of order 1,....We can then construct a sequence of solutions uνε to
the wave equation

(7.43)


PAu

ν
ε = 0 in L,

uνε(t, .) = −ψvν0ε(t, .) on ∂L,

uνε(0, .) = ∂tu
ν
ε(0, .) = 0 in Ω.

Obviously, Lemma 7.8 still reads

(7.44) ‖vν0ε‖Hs ∼ ε−s, for ε→ 0+, and s ∈ R,
uniformly with respect to ν, and the ellipticity constant Cων is now given by

(7.45) Cων ≈ ν1/2,

thanks to (7.42) . Let us chose ν = εs. Thus we get a sequence of data (vε
s

0ε) weakly converging
to 0 in L2(Rn), of norm 1, and with a microlocal defect measure given by µ(vε

s

0ε) = δ(y0,η0/|η0|),
which is precisely the Dirac mass at the limit glancing point .

Furthermore, estimate (7.41) takes now the following form

(7.46) ‖∂n(uε
s

ε )‖2L2(Γ′M+T
) . C

−3
ων ε . ε

1−3s/2.

Comparing then with ‖vεs0ε‖Hs ∼ ε−s, we obtain a contradiction for s > −2.
The proof of Theorem 7.1 is complete.
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InterEditions/Editions du CNRS , 1991.

[2] L. Aloui. Stabilisation Neumann pour l’équation des ondes dans un domaine extêrieur. J. Math. Pures
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