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Abstract

Neural ordinary differential equations (neural ODEs) have emerged as a natural tool for supervised learning from a control
perspective, yet a complete understanding of their optimal architecture remains elusive. In this work, we examine the
interplay between their width p and number of layer transitions L (effectively the depth L + 1). Specifically, we assess
the model expressivity in terms of its capacity to interpolate either a finite dataset D comprising N pairs of points or two
probability measures in Rd within a Wasserstein error margin ε > 0. Our findings reveal a balancing trade-off between
p and L, with L scaling as O(1 +N/p) for dataset interpolation, and L = O

(
1 + (pεd)−1

)
for measure interpolation.

In the autonomous case, where L = 0, a separate study is required, which we undertake focusing on dataset interpola-
tion. We address the relaxed problem of ε-approximate controllability and establish an error decay of ε ∼ O(log(p)p−1/d).
This decay rate is a consequence of applying a universal approximation theorem to a custom-built Lipschitz vector field
that interpolates D. In the high-dimensional setting, we further demonstrate that p = O(N) neurons are likely sufficient
to achieve exact control.
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1. Introduction

Residual neural networks (ResNets) are formally de-
fined as the family of discrete systems{

xk+1 = xk +Wkσ (Akxk + bk) ,

x0 ∈ Rd,
(1.1)

where k = 0, . . . , L, Wk ∈ Rd×p, Ak ∈ Rp×d and bk ∈ Rp,
for some d ≥ 1, L ≥ 0 and p ≥ 1. Each time step k
identifies a layer of the network. The number of layers
L + 1 is the depth of (1.1). The parameter p is the width
of (1.1), identifying the number of neurons per layer. The
activation function σ : Rp → Rp is defined as the column
vector σ(y) =

(
σ(y(1)), . . . , σ(y(p))

)⊤
from a chosen non-

linear function σ : R → R. We consider the Rectified
Linear Unit (ReLU), given by σ(z) = max{z, 0}, z ∈ R.

It has been noted [11, 18, 6, 5, 30] that (1.1) can be
identified with the forward Euler discretization scheme for
the class of continuous models known as neural ordinary
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differential equations (neural ODEs),{
ẋ(t) = W (t)σ (A(t)x(t) + b(t)) ,

x(0) = x0 ∈ Rd,
(1.2)

where (W,A,b) ∈ L∞ ((0, T ),Rd×p × Rp×d × Rp
)
for some

T > 0. Here, t ∈ (0, T ) parameterizes the evolution of the
states through a continuous range of layers. As discussed
in [28, 2], it is common to assume that (W,A,b) is a step
function over (0, T ), to align closer with the dynamics of
(1.1). Then, since σ is Lipschitz, existence and uniqueness
of solutions hold for any (W,A,b) and initial condition x0.
Equation (1.2) can be equivalently written as

ẋ =

p∑
i=1

wi(t)σ(ai(t) · x+ bi(t)), (1.3)

where wi and ai are respectively the p columns of W and
the p rows of A, both seen as column vectors in Rd, while
bi is the i-th coordinate of b, for i = 1, . . . , p. In this
work, we use formulation (1.3), although, for simplicity,
we represent (wi,ai, bi)

p
i=1 in their matrix form (W,A,b),

which corresponds to the equivalent system (1.2). Equa-
tion (1.3) can be naturally extended to handle probability
distributions, rather than points in Rd, by interpreting its
right-hand side as the advection field that drives the evolu-
tion of a measure ρ. This extension gives rise to the neural
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(A) Shallow ResNet (B) Narrow ResNet

Figure 1: Qualitative representation of models (1.5) and (1.6) as
discrete systems. Blue circles represent the input x; switches depict
ReLU functions; green circles indicate the result of Wσ(Ax + b);
orange circles represent the output after residual connections.

transport equation [29]:

∂tρ+ divx

( p∑
i=1

wi σ(ai · x+ bi)ρ
)
= 0. (1.4)

Prior research indicates that control theory offers signifi-
cant potential for examining the properties of neural ODEs,
for instance, via optimal control [11, 14, 15] or geometric
control techniques [32, 1, 31]. A fundamental problem still
open is to develop a comprehensive understanding of the
roles played by depth and width with respect to the expres-
sive power of the model, see [19, 24, 16]. This property is
often evaluated by its capacity to interpolate either a finite
set of point pairs or two given probability measures.

The first, commonly referred to as finite-sample expres-
sivity [35], is associated with the approximation power of
the model, see [22]. It essentially amounts to a simulta-
neous control problem, where the aim is to find a control
function (W,A,b) such that the associated input-output
map, given by the flow of (1.3), maps N specified points
to their N corresponding target points in Rd. Throughout
this work, figures represent each input point as a colored
solid circle and its corresponding target point as an empty
circle of the same color.

In the second scenario, we aim to control the trans-
port dynamics described by (1.4) in order to transform a
given initial density ρ0 into another density ρT . This task
is highly relevant for probabilistic modeling or the gener-
ation of synthetic data via normalizing flows [21, 26, 17].
We approach it as an approximate control problem in the
Wasserstein-q metric space for q ≥ 1, extending prior work
focused on W2, see [12], or in W1 with p = 1, see [28].

Our main objective is the development of a compre-
hensive theory of interpolation for the family of models
described by (1.3), linking the error to the specific archi-
tecture given by p and L. Both numerical and theoreti-
cal studies [20, 13, 25] suggest that networks with greater
depth usually achieve better performance. This tendency
is particularly noticeable in training [36, 35], which rein-
forces the intuition that a deeper network should possess
greater expressivity, i.e., an enhanced ability to learn more
complex non-linear functions. Understanding the balance
between width and depth is thus vital for the optimal de-
sign of networks. We tackle this significant question using
the continuous framework of neural ODEs, where depth is

expressed as L + 1, L being the number of time disconti-
nuities of the control (W,A,b). As we vary L and p, two
limiting models emerge.
Shallow neural ODEs. L = 0 is fixed, while the width
p can be as large as required:

ẋ =

p∑
i=1

wiσ (ai · x+ bi) , (1.5)

where {(wi,ai, bi)}pi=1 ⊂ Rd×Rd×R are constant controls,
making the equation autonomous. The field on the right-
hand side of (1.5) corresponds to a one hidden layer neural
network with d components. The approximation capacity
of this class of functions has been extensively studied (see
[7, 27, 8]). The discrete version of (1.5) can be identified
with a one hidden layer ResNet (see fig. 1A).
Narrow neural ODEs. p = 1 is fixed, while the depth
L+ 1 can be as large as required:

ẋ = w(t)σ (a(t) · x+ b(t)) , (1.6)

where (w,a, b) ∈ L∞ ((0, T ),Rd × Rd × R
)
. The ability of

this model to interpolate data and approximate functions
has been explored in [28, 23]. It offers the advantage of
easier construction of explicit controls compared to (1.5),
owing to its simplified dynamics, albeit at the expense
of increased depth, which scales with the cardinal N of
the dataset. The discrete version of (1.6) corresponds to
a deep ResNet with one neuron per hidden layer, so it
alternates layers of dimension 1 and d (see fig. 1A).

Developing a unified theory that bridges shallow and
narrow neural ODEs would combine the vast work done
for (1.5) with the intuitive dynamics of (1.6). Moreover,
it would facilitate the optimal design of a neural ODE
through the strategic choice of depth and width. This
entails optimizing the complexity κ, defined as the total
number of parameters in (1.3):

κ := (L+ 1)× p× (2d+ 1). (1.7)

Indeed, on each of the L + 1 hidden layers, p neurons of
dimension 2d+ 1 need to be determined.

1.1. Roadmap

In section 2, we present the main results of our work in
two parts. First, in section 2.1, we study the problem of
interpolating a finite dataset in (1.3), which is recast as the
property of simultaneous control for neural ODEs. Second,
in section 2.2, we approach approximate controllability of
probability measures using the dynamics provided by the
neural transport equation (1.4). In section 3, we discuss
the main implications of our work and pose some open
questions. In section 4, we prove the main results and
provide the necessary tools as lemmas.
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1.2. Notation

• We use subscripts to identify the particular elements
from a dataset and superscripts for the coordinates of
a vector. In addition, (column) vectors are denoted
with bold letters and matrices with capital letters.

• We denote by x · y the scalar product of x,y ∈ Rd.

• We denote by ⌈z⌉ the lowest integer greater than or
equal to z ∈ R, and by ⌊z⌋ the highest integer lower
than or equal to z.

• We denote by Sd−1 the (d−1)-dimensional sphere in
Rd.

• We denote by Lip
(
Rd,Rd

)
the space of Lipschitz-

continuous vector fields in the usual norm, and by
LV the Lipschitz constant of each V ∈ Lip

(
Rd,Rd

)
.

• Given any Borel measure µ in Rd and any measur-
able function f : Rd → Rd, we denote by f#µ the
pushforward measure, defined for every Borel subset
A ⊂ Rd by

f#µ(A) = µ(f−1(A)).

2. Main results

2.1. Simultaneous control

Let N ≥ 1, d ≥ 2, and consider a dataset

D = {(xn,yn)}Nn=1 ⊂ Rd × Rd (2.1)

with xn ̸= xm and yn ̸= ym for all n ̸= m. First, we study
the finite-sample expressivity of the general model (1.3),
recast as a problem of simultaneous control.

Problem-Definition. For any fixed time horizon T > 0, find
controls

{(wi,ai, bi)}pi=1 ⊂ L∞ ((0, T );Rd × Rd × R
)
,

for some p ≥ 1, such that the flow ΦT (·;W,A,b) of (1.2)
interpolates the dataset D, i.e., it simultaneously drives
each data point from its initial position xn to its target
yn. This is fulfilled when

ΦT (xn;W,A,b) = yn for all n = 1, . . . , N,

where W,A,b are respectively the matrix with columns
wi, the matrix with rows ai and the vector with compo-
nents bi, for i = 1, . . . , p.

Our first result provides a relationship between L and
p that ensures interpolation of D:

Theorem 1. Let N ≥ 1, d ≥ 2 and T > 0 be fixed.
Consider the dataset D as defined in (2.1). For any p ≥ 1,
there exists a piecewise constant control

(W,A,b) ∈ L∞ ((0, T );Rp×d × Rp×d × Rp
)

such that the flow ΦT (·;W,A,b) generated by (1.3) inter-
polates the dataset D, i.e.,

ΦT (xn;W,A,b) = yn, for all n = 1, . . . , N.

Furthermore, the number of discontinuities of (W,A,b) is

L = 2 ⌈N/p⌉ − 1. (2.2)

Remark 1. If the target points {yn}Nn=1 in (2.1) are not
distinct, interpolation is not achievable due to the unique-
ness of solutions in the system (1.3). In such cases, we
relax the statement from exact to approximate controlla-
bility by applying theorem 1 to an ε-perturbation of the
targets, for some ε > 0.

Let us briefly describe the algorithm. First, we pivot
around the x(1)-coordinate and control the remaining d−1
coordinates. Consequently, the trajectory of each data
point xn is confined within the hyperplane defined by the

equation x
(1)
n = x

(1)
n . Then, we pivot using the controlled

coordinates to adjust x(1). This algorithm requires a depth
of 2⌈N/p⌉ layers, which is independent of the dimension
d, since a constant control suffices to simultaneously steer
d− 1 coordinates in the first step, assuming that p > N .

Remark 2. Our approach is broadly applicable to any ac-
tivation function, provided it meets the following three
conditions:

1. σ loc. Lipschitz; 2. σ(z)|z≤0 = 0; 3. σ(z)|z>0 > 0.

This generalization guarantees the extension of theorem 1
to more general activation functions such as the ReLU
powers σk(z) = max{z, 0}k, for z ∈ R and k ≥ 1, whose
approximation properties have been recently studied in [4].

In (2.2) we can see that, as the width p increases, the
number of discontinuities L decreases with the same rate,
meaning that width and depth play a similar role in the
steering. Nevertheless, a result on the optimal design of
our interpolating models can be derived:

Corollary 2. For the family of controls given by theorem 1
that ensure interpolation of D, the minimal complexity is

κmin = (4d+ 2)(N + 1),

obtained when p = 1, i.e., when the neural ODE belongs
to the narrow model (1.6).

The complete transition from the narrow model (1.6)
to the shallow model (1.5), characterized by L = 0 is not
attained in (2.2). Due to the division into two steps in the
proposed algorithm, whenever p > N the selected control
will exhibit a single switch (L = 1), reaching a two-layer
architecture, rather than the autonomous ansatz (1.5).
The restriction naturally raises the question of whether
simultaneous control is possible in shallow neural ODEs
(1.5). For this task, a reconsideration of the algorithm
presented in [28] becomes necessary. In the high dimen-
sional setting, and more precisely, when the dimension ex-
ceeds the number of data points (d > N), we can refine
the statement of theorem 1 to include the case L = 0:
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Corollary 3. Let N ≥ 1, d ≥ 2 with d > N , and T > 0
be fixed. Consider the dataset D as defined in (2.1). For
any p ≥ 1, there exists a piecewise constant control

(W,A,b) ∈ L∞ ((0, T );Rd×p × Rp×d × Rp
)

such that the flow ΦT (·;W,A,b) generated by (1.3) inter-
polates the dataset D. Furthermore, the number of discon-
tinuities of (W,a,b) is

L = 2
(
⌈N/p⌉ − 1

)
.

The key idea is that, when d > N , the first step in
the proof of theorem 1 can be suppressed. This is done by
transforming the x(1)−axis so that each xn shares the same
first coordinate with yn, or, equivalently, by optimally re-
orienting the hyperplanes represented in section 4.2. For
more insights on the proof, see fig. 6 in section 4.

Remark 3. Corollary 3 suggests ideas similar to those in
[14, Theorem 5.1]. In that result, interpolation is es-
tablished for d ≥ N in a simplified neural ODE, when
supn=1,...,N |xn−yn| < ε for a sufficiently small ε > 0, un-
der a geometric assumption on the images of the targets
through σ. Moreover, an estimation of the control cost is
obtained, which is linear with respect to ε. The generation
of new synthetic coordinates until d ≥ N is not typically
a problem, as discussed in [9], where the technique of em-
bedding the dataset in Rd ×{0, . . . , 0} is proposed and its
computational advantages are studied.

In practice, N tends to be larger than d. In that case,
interpolation with constant controls can be obtained for
p = N under a certain separability hypothesis on D:

Assumption 1. Let D = {(xn,yn)}Nn=1 ⊂ Rd × Rd as
defined in (2.1). There exist a vector a ∈ Sd−1, a per-
mutation τ of N elements and a sequence −∞ < bN+1 <
bN < · · · < b1 < ∞ such that, for all n = 1, . . . , N − 1,

−bn < a ·xτ(n) < −bn+1 and − bn < a ·yτ(n) < −bn+1.

Assumption 1 claims that we can diagonally separate
each pair (xn,yn) from the rest, in the sense that we can
define N + 1 parallel hyperplanes Hn = {a · x+ bn = 0}
such that the strip Sn bounded by Hn and Hn+1 contains
only the point xn and its target yn, for n = 1, . . . , N (see
section 2.1). While the hypothesis might seem overly re-
strictive, it is noteworthy that if the points are randomly
sampled from a compact set, the probability that the con-
dition is fulfilled converges to 1 when the dimension grows:

Proposition 4. Let µ ∈ Pc
ac(Rd) such that the random

variables πiX are independent and identically distributed
(i.i.d.) for i = 1, . . . , d, where X ∼ µ and πi is the canon-
ical projection on the i-th coordinate. If every xn and yn

in D is sampled from µ, and N is sufficiently large, then
the probability P that assumption 1 is satisfied is bounded
as

1−
[
1− 1√

2

( e

2N

)N]d
≤ P ≤ 1.

Figure 2: Left: separability condition in assumption 1, for a = e1.
Right: trajectories for exact control in the same example.

The hypothesis of proposition 4 are fulfilled by the
uniform probability measure in any hypercube, or by any
isotropic Gaussian distribution.

Now, under assumption 1, we can build a constant con-
trol such that the flow of (1.5), taking a width p = N ,
interpolates D. Our result is somehow a dynamic version
of [36, Theorem 1], under certain geometric conditions. A
representation of the trajectories can be seen in section 2.1.

Corollary 5. Consider a dataset D ⊂ Rd ×Rd for d ≥ 2,
under assumption 1. For any fixed T > 0, there exists a
control (W,A,b) ∈ Rd×N ×RN×d ×RN such that the flow
ΦT generated by (1.5) interpolates the dataset D.

All in all, new strategies are required to study simulta-
neous control in the autonomous model (1.5) under general
conditions. A natural starting point to assess the prob-
lem’s feasibility is to relax it by admitting an error ε > 0,
and use density tools provided by universal approximation
theorems (UATs); see [7, 27]. In deep learning, UATs es-
tablish the density of neural networks in function spaces
over compact domains. The decay rate of the error in
relation to the number of parameters of the network has
been quantified for certain spaces [3, 8]. Specifically, these
studies bound the uniform error decay rate when the tar-
get function is Lipschitz continuous in a compact domain.

We will approach the UAT, often interpreted in a static
manner, from our dynamic control perspective. In this
regard, shallow neural ODEs provide a vector field that
transitions initial data to final data, with its flow at time
T approximating the target function. First, we establish
the existence of a time-independent field whose integral
curves guide each input point xn in D to its corresponding
target yn within a fixed time T . This field is constructed
based on purely geometric considerations (see fig. 3) and
can be chosen to be Lipschitz continuous.

Proposition 6. Let N ≥ 1, d ≥ 2 and T > 0 be fixed.
Consider the dataset D ⊂ Rd×Rd as defined in (2.1), and
any compact subset Ω ⊂ Rd such that Int(Ω) is connected
and D ⊂ Int(Ω)× Int(Ω). Then, there exists a vector field
V ∈ Lip

(
Rd,Rd

)
such that the flow ΨT,V of the equation

ẋ = V(x)

interpolates the dataset D, and the N curves given by

Cn := {Ψt,V(xn) : t ∈ [0, T ]} (n = 1, . . . , N),

are contained in Int(Ω).
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Figure 3: Construction of the Lipschitz fieldV in proposition 6 which
interpolates D in a compact domain Ω that contains all the points
and curves.

The subset Ω ⊂ Rd, which will serve as our domain of
approximation, can always be established as Ω = [−R,R]d

for a sufficiently large R > 0. Consequently, for any
dataset D ⊂ Rd ×Rd, there exists a field V ∈ Lip(Rd,Rd)
whose integral curves Cn interpolate D, i.e., the space

VD :=
{
V ∈ Lip

(
Rd,Rd

)
: ΨT,V interpolates D

}
is non-empty. Moreover, we can define

L0 := inf
V∈VD

LV ,

so L0 only depends on D and the chosen domain of ap-
proximation Ω. It suffices then to combine the UAT from
[8] (see lemma 12 in section 4) with classical results on the
stability of ODEs to obtain the following theorem:

Theorem 7. Let N ≥ 1, d ≥ 2 and T > 0 be fixed.
Consider the dataset D as defined in (2.1). For each p ≥ 1,
there exists a control (W,A,b) ∈ Rd×p × Rp×d × Rp such
that the flow ΦT generated by (1.5) satisfies

sup
i=1,...,N

|yn − ΦT (xn;W,A,b)| ≤ Cd,L,T
log2(κ)

κ1/d
, (2.3)

where κ = (d+ 2)dp is the complexity of the NODE, and

Cd,L,T = Cd,L0
T exp

(
LT
)
,

being L = min{L0, ∥W∥ · ∥A∥} where ∥ · ∥ is the spectral
norm, and Cd,L0

> 0 a constant depending on d and L0

but independent of κ.

Remark 4. The argument employed in this theorem ex-
tends beyond neural networks. Since we solely rely on a
density result that provides a convergence rate, other dense
families of functions like polynomials, trigonometric, finite
element methods or wavelets could also be considered, with
their corresponding convergence rates.

Remark 5. Given a domain of approximation Ω, for the
bound (2.3) to be optimal, it is natural to pose the problem
of finding the interpolating field V ∈ VD which has the
smallest possible Lipschitz constant LV within Ω.

Remark 6. When d ≥ 3, the construction of a fieldV ∈ VD
is generally very simple. Since, in that case, two arbitrary
curves are unlikely to intersect, we can generally consider
the N segments that connect each pair (xn,yn) ∈ D and
buildV as one of the piecewise constant fields having these
segments as integral curves. Selecting the optimal field
then becomes a combinatorial problem.

2.2. Transport control

So far, we have considered the system (1.3) with a finite
set of points D as initial data. A natural extension of this
setting, particularly pertinent when the data points are
sampled from an underlying distribution, is to consider as
input a probability measure µ0 on Rd. The scenario where
this distribution is a finite combination of Dirac deltas
aligns with the study previously conducted in section 2.1.

Specifically, we consider the space Pc
ac(Rd) of com-

pactly supported and absolutely continuous probability
measures on Rd. Our goal is to transform any given µ0 ∈
Pc
ac(Rd) into a fixed target probability measure µ∗ through

the push-forward map generated by a neural ODE, that is,

ΦT (·;W,A,b)#µ0 = µ∗.

This question can be reformulated as the control problem
of a transport equation. For each t ∈ [0, T ], we consider
the family of measures µ(t) = Φt#µ0, where Φt represents
the flow at time t generated by (1.3). Given that the field

p∑
i=1

wi(t), σ(ai(t) · x+ bi(t))

is Lipschitz continuous with respect to x, if µ0 ∈ Pc
ac(Rd)

then the curve of measures {µ(t)}t∈[0,T ] is contained in

Pc
ac(Rd). For each t, µ(t) is defined by a density function

ρ(t) that satisfies the neural transport equation{
∂tρ+ divx (ρ

∑p
i=1 wi σ(ai · x+ bi)) = 0

ρ(0) = ρ0.
(2.4)

Here, we have assumed that µ0 has density ρ0, and

(wi,ai, bi)
p
i=1 ⊂ L∞ ((0, T );Rd × Rd × R

)
serve again as control functions. The projected character-
istics of (2.4) solve the neural ODE (1.3) in (0, T )×Rd. If
the controls are step functions, and since the ReLU func-
tion is Lipschitz, the continuity equation (2.4) is well-posed
and the total mass is conserved. Therefore, we aim to find
some controls such that the corresponding solution of (2.4)
with initial condition ρ0 satisfies

ρ(T ) = ρ∗.

This task, however, can be very hard to achieve, so we con-
sider a relaxation of the problem to approximate control
of (2.4). For this purpose, first we must choose a function
to quantify the difference between any two measures.

Definition 7. For any q ≥ 1, the Wasserstein-q distance
between µ, ν ∈ Pc

ac(Rd) is defined as

Wq(µ, ν) :=
(

min
γ∈Π(µ,ν)

∫
Rd×Rd

|x− y|qdγ(x, y)
)1/q

, (2.5)

where Π(µ, ν) denotes the set of measures γ on Rd × Rd

that couple µ and ν in the sense that γ(· × Rd) = µ(·)
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and γ(Rd × ·) = ν(·). Note that µ ∈ Pc
ac(Rd) has finite

q-th momentum for every q ≥ 1, hence the Wasserstein−q
distance is well-defined in this space. Moreover, recalling
the Monge formulation of optimal transport, if µ and ν
belong to Pc

ac(Rd) then

Wq(µ, ν) =
(
min
T

{∫
Rd

|x− T (x)|qdµ : T#µ = ν
})1/q

,

(2.6)
where T : Rd → Rd measurable, see [34].

Problem-Definition. Let µ0 and µ∗ be two compactly sup-
ported, absolutely continuous probability measures with
respective densities ρ0 and ρ∗. For any fixed time horizon
T > 0 and ε > 0, find controls

{(wi,ai, bi)}pi=1 ⊂ L∞ ((0, T );Rd × Rd × R
)
,

for some p ≥ 1, such that the solution of (2.4) in time T
approximately interpolates the initial condition ρ0 to the
target density ρ∗. This is achieved when the Wq-error of
the corresponding measures (for some q ≥ 1) satisfies:

Wq(µ(T ), µ∗) < ε.

The following theorem offers a partial solution to this
problem. It assumes that 1 ≤ q < d

d−1 and targets the

uniform measure in [0, 1]d. While this bears resemblance
to achieving null controllability, the nonlinear nature of
the problem prevents from directly extending this result
to arbitrary targets.

Theorem 8. Let d ≥ 1, µ0 ∈ Pc
ac(Rd) with density ρ0, µ∗

the uniform measure in [0, 1]d, and T > 0 be fixed. For
any ε > 0, q ∈ [1, d

d−1 ) and p ≥ 1, there exists a piecewise
constant control

(W,A,b) ∈ L∞ ((0, T );Rd×p × Rp×d × Rp
)

such that the measure µ(t) ∈ Pc
ac(Rd) whose density ρ(t)

solves (1.4) taking ρ0 as initial condition, satisfies

Wq(µ(T ), µ∗) < ε.

Furthermore, the number of discontinuities of (W,A,b) is

L = ⌈2d/p⌉+max{⌈n/p1⌉, . . . , ⌈nd/pd⌉} − 1,

for any p1, . . . , pd ≥ 1 such that p1 + · · ·+ pd = p, and

n :=

(
3d1/2+1/q

ε

) 1
1+d/q−d

.

For a given ε > 0, the behavior of L resembles that
described in theorem 1, as it decreases with an increase
in p, reaching L = 1 when p is large enough. Our proof
is similar to a strategy from [10], and based on the spe-
cific movements that the neural ODE (1.3) allows. We
compress the support of µ0 to [0, 1]d and divide it into hy-
perrectangles, each with a mass of O(εd). These subsets
are then transformed to match a similar partition of [0, 1]d

corresponding to the uniform measure µ∗.

Remark 8. If ε > 0 is sufficiently small, and we choose
p1 = · · · = pd−1 = 1, pd = p− d+ 1, it follows that

L = ⌈2d/p⌉+

 1

p− d+ 1

(
31+d/q

√
d

ε

) d
1+d/q−d

− 1.

For q = 1, this expression simplifies to:

L = ⌈2d/p⌉+

 1

p− d+ 1

(
31+d

√
d

ε

)d
− 1.

3. Discussion

3.1. Conclusions

We have established several results on the capacity of
neural ODEs for interpolation and its relationship with
the chosen architecture, determined by the depth p and
width L. More precisely, we have provided explicit depen-
dencies between these two parameters that are sufficient
to (exactly or approximately) interpolate either two sets
of N different points in Rd or any compactly supported,
absolutely continuous probability measure in Rd with the
uniform measure in [0, 1]d. Our work reveals that p and L
can play similar roles in the algorithms, thereby exhibiting
a degree of exchangeability in the network’s structure.

Specifically, theorem 1 proves that a neural ODE with
p neurons can interpolate any dataset of N pairs of points
using a piecewise constant control with L = 2 ⌈N/p⌉ − 1
discontinuities. Although increasing p reduces the num-
ber of discontinuities, we find a limiting case of a 2-hidden
layer neural ODE when p ≥ N . Explicit controls for in-
terpolation with a shallow neural ODE (L = 0) are ob-
tained in corollary 3 when d > N ; or in corollary 5, with
p = N under assumption 1. More generally, theorem 7
provides an error decay rate with respect to the number of
parameters for shallow neural ODEs. Finally, theorem 8
explores the Wasserstein-q approximate control of the neu-
ral transport equation to a uniform distribution on [0, 1]d

using piecewise constant controls. As in theorem 1, the
number of discontinuities diminishes as p increases.

3.2. Open questions

Some new objectives can be derived from our work:
1. Approaching the autonomous regime. As we
have discussed, both d > N and assumption 1 are only
special cases where we can find controls to interpolate in
the autonomous regime of shallow neural ODE. The ques-
tion of finding such a construction for any d ≥ 1, or at
least under a less restrictive hypothesis on the dataset
than assumption 1, is still open. A first step could in-
volve assuming the relaxed condition that the projections
of points onto a line with direction a ∈ Sd−1 are ordered
as a ·xτ(1) < · · · < a ·xτ(N) and a ·yτ(1) < · · · < a ·yτ(N),
for a certain permutation τ of N elements. The strategy
to be adopted is clear. It entails a combination of the
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Figure 4: Left to right: Compression, parallel motion, expansion.

one-dimensional control delineated in lemma 13 with the
transversal control required to prove corollary 5, followed
by a case-by-case analysis.
2. Universal approximation. In [28], the authors
demonstrate that a narrow neural ODE can approximate
any simple function with compact support. The proof
hinges on three key aspects: interpolation capacity, the
compressive nature of neural ODEs, and a control strategy
that bounds the support of the target function irrespective
of required approximation accuracy. However, minimizing
the number of time discontinuities required for this con-
trol, particularly by increasing p, is a non-trivial task that
may require an entirely different approach.
3. Neural transport equation. The problem of con-
trolling the neural transport equation (2.4) using constant
controls is as yet unresolved. One possible approach in-
volves approximating both the initial and target measures
with atomic measures of the form ρN = 1

N

∑N
n=1 βnδαn ,

with βn > 0 and αn ∈ Rd, and then interpolating those
Dirac deltas by controlling the characteristic curves. How-
ever, a potential issue arises as N → ∞: the distance be-
tween ρ(T ) and ρN (T ), the solutions to the transport equa-
tion with initial conditions ρ0 and ρN0 , respectively, may
diverge significantly. This error can be quantified using
the Grönwall inequality, which suggests that the Lipschitz
constant could increase unboundedly with N , especially as
the number of controlled points grows.
4. Minimizing the number of time jumps. Another
interesting question is how to frame the reduction of dis-
continuities as an optimal control problem. For instance,
one could penalize the frequency of time jumps by target-
ing the total variation seminorm. However, this seminorm
lacks regularity, and moreover the class of piecewise con-
stant functions is not a closed set of admissible controls.
5. Switching dimensions. In our simplified ResNet
(1.1), the dimension remains constant across layers. How-
ever, strategically varying the hidden dimension by defin-
ing p = p(t) could offer advantages, either by reducing
complexity through dimension shrinkage or by creating
space through dimension increase. Exploring effective meth-
ods to implement these transitions, whether by employing
projections or by applying nonlinear transformations to
the data, constitutes a compelling area for research.

4. Proofs

4.1. Basic dynamics

We describe the simplest dynamics that we can gener-
ate via (1.6) by conveniently choosing (w,a, b):

1. For each t > 0, the term a(t) · x + b(t) identifies a
hyperplane in Rd. For instance, taking a = ek and b = −c,
we fix the hyperplane h with the equation x(k) − c = 0.

2. The application of σ and the product with the vec-
tor w(t) yields the field w(t)max{x(k) − c, 0}, which ex-
hibits distinct dynamics in two complementary half-spaces:
H+ ≡ {x(k)−c > 0}, where the field equals w(t)(x(k)−c),
and H− ≡ {x(k) − c ≤ 0}, where the field is zero, meaning
this set remains stationary under the flow.

3. The choice of w(t) specifies the orientation and
magnitude of the field. For example, w(t) = ±ek yields
ẋ(k)(t) = ±max{(x(k)− c), 0}, so the points in H+ can ei-
ther be attracted to or repelled from h, enabling compres-
sion or expansion along the k-th coordinate. Conversely,
w(t) = ei, with i ̸= k, results in ẋ(i)(t) = max{(x(k) −
c), 0}. In this case, we generate in H+ a movement that
is parallel to h, i.e., along the coordinate i.

The three basic operations of compression, expansion
and movement in parallel with the hyperplane (represented
in fig. 4) constitute our toolbox for many subsequent proofs.

4.2. Proof of theorem 1.

We will employ the following lemma, whose proof we
postpone to the end of this subsection:

Lemma 9. Let N ≥ 1, d ≥ 2 and consider the dataset
D = {(xn,yn)}Nn=1 as defined in (2.1). There exists a
change of coordinates in Rd such that

x(1)
n ̸= x(1)

m and y(2)n ̸= y(2)m , if n ̸= m. (4.1)

Under the separability condition (4.1), we achieve the
exact control by building on the methods developed in
[28]. Let p ≥ 1 be fixed. We divide the proof in two steps,
illustrated in section 4.2 and section 4.2.
Step 1: Control of d − 1 coordinates. By (4.1), we
can relabel the data {xn}Nn=1 to impose the ordering

x
(1)
1 < · · · < x

(1)
N .

We define a partition of {xn}Nn=1 in ⌈N/p⌉ subsets by in-
creasing order of the x(1)-coordinate. The j-th subset is

Xj := {x(j−1)·p+1, . . . ,xj·p}, for j = 1, . . . , ⌈N/p⌉ − 1,

and X⌈N/p⌉ contains the remaining N − p⌊N/p⌋ points.
We describe the control of the first subset X1. We take
controls ai = e1 and bi ∈ R, for i = 1, . . . , p, satisfying

−b1 < x
(1)
1 < −b2 < x

(1)
2 < · · · < −bp < x(1)

p .

These controls define a family of parallel hyperplanes, given
by ai · x + bi = x(1) + bi = 0, which separate the points

7



Figure 5: Left: Step 1. Fix x(1) and control x(2), . . . , x(d). Right:
Step 2. Control x(1) while x(2), . . . , x(d) are fixed.

of X. In this way, i − 1 terms of the sum in (1.3) cancel
inside the strip −bi < x(1) < −bi+1 for each i = 1, . . . , p,
so (1.3) simplifies to

ẋ =

i∑
l=1

{
wlx

(1) +wlbl
}
. (4.2)

We consider velocities of the formwi = (0, w
(2)
i , . . . , w

(d)
i ),

where the components w
(k)
i ∈ R have to be defined in order

to achieve the exact control in time T = 1. The first point,
x1, is subject only to one velocity, w1, so

x
(k)
1 (t) = w

(k)
1 (x

(1)
1 + b1)t+ x

(k)
1 ,

while x
(1)
1 remains fixed. Therefore, it is enough to take

w
(k)
1 =

y
(k)
1 − x

(k)
1

x
(1)
1 + b1

.

Similarly, for i = 2, . . . , p, having fixed w1, . . . ,wi−1 it is
enough to take

w
(k)
i =

y
(k)
i − x

(k)
i −

∑i−1
l=1 w

(k)
l (x

(1)
i + bl)

x
(1)
i + bi

,

for k = 1, . . . , d. The described procedure can be simul-
taneously done for each Xj , with j = 2, . . . ⌈N/p⌉, taking
into account that the fields used to control X1, . . . , Xj−1

(all of them orthogonal to e1) will be added as new terms
in (4.2). In the end, we will have, for every n = 1, . . . , N :

Φ1(xn;W,A,b)(k) = y(k)n , for k = 2, . . . , d.

The total number of iterations employed in this step is
⌈N/p⌉, which corresponds to ⌈N/p⌉ − 1 switches.
Step 2: Control of the remaining coordinate. In a
slight abuse of notation, we redefine xn := Φ1(xn), where
Φ1 is the flow resulting from step 1. Once again, we can
relabel the data, now assuming

x
(2)
1 < · · · < x

(2)
N .

Following the increasing order of the x(2)-coordinate, we
define X1, . . . , X⌈N/p⌉−1, each being a subset of {xn}Nn=1

with p points, and X⌈N/p⌉, which contains the remaining
N − p⌊N/p⌋ points.

We follow an analogous methodology to step 1. For
each j, we define controls ai = e2 and bi (for i = 1, . . . , p)

that separate the points ofXj using p parallel hyperplanes,
each described by the equation x(2) = bi. Now, we consider
velocities of the form wi = wie1, where the values wi are
determined, as in step 1, to ensure

Φ1(xn;W,A,b)(1) = y(1)n , for n = 1, . . . , N.

The number of switches employed in step 2 is ⌈N/p⌉ − 1.
Then, by adding one more to transition between steps, the
whole control requires L = 2 ⌈N/p⌉ − 1 switches, hence
proving theorem 1.

Proof of lemma 9. The set of vectors in Rd that are or-
thogonal to any point xn from D, is a finite union of hyper-
planes in Rd. Therefore, one can always choose u1 ∈ Sd−1

inside the complement of this set in Rd.
Consider the orthogonal subspace S = ⟨u1⟩⊥ ⊂ Rd, of

dimension d− 1. With a similar argument, one can select
a vector u2 ∈ Sd−1 ∩ S that has a non-zero scalar product
with all of the vectors yn (n = 1, . . . , N). Completing the
pair (u1,u2) to form a orthonormal basis B = {u1, . . . ,ud}
of Rd, the dataset D will satisfy the separability condition
eq. (4.1) when expressed in B.

4.3. Proof of corollary 3

We aim to eliminate the initial step in the algorithm
defined in the proof of theorem 1. To achieve this, we
seek a new vector basis in Rd where the input-target pairs
inherently share the first coordinate. When d ≤ N , this
condition usually cannot be met. However, when d > N ,
there exists an orthonormal vector basis B ⊂ Rd such that
for all n = 1, . . . , N , the first coordinates of the N pairs

with respect to B satisfy x
(1)
n = y

(1)
n .

To construct such a vector system, without loss of gen-
erality we can assume that d = N+1. Let (x,y) ∈ Rd×Rd

with x ̸= y. We seek a vector u ∈ Sd−1 such that u · x =
u ·y. This condition is equivalent to u · (x−y) = 0, which
is satisfied by any unit vector u contained in the linear
hyperplane orthogonal to x− y.

For d− 1 input-target pairs of points, we consider the
corresponding hyperplanes {Hn}d−1

n=1. Note that some of
these hyperplanes can be repeated. So, the intersection⋂d−1

i=1 Hi yields a linear subspace of dimension at most
d − 1. We choose any unit vector e′1 contained in that
subspace. Any completion to an orthonormal basis B =
{e′1, . . . , ed} ⊂ Rd will satisfy the desired condition for
d− 1 points. The procedure is illustrated in fig. 6.

4.4. Proof of corollary 5

Proof of proposition 4. We carry out a similar analysis to
the one in [2], where the probability of requiring k hyper-
planes to separate two sets of N points for binary classifi-
cation was estimated. We introduce the random variable
Zp
d,2N (D), which assigns to each possible dataset

D = {(xn,yn)}Nn=1 ⊂ supp(µ)× supp(µ)
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Figure 6: For N = 2, d = 3, construction of a new basis of Rd

in which the first coordinates of the pairs (xn,yn) are matched.
theorem 1 is applied afterwards.

the minimum number of parallel hyperplanes needed to
separate in Rd every pair (xn,yn) from the others. Note
that minD Zp

d,2N (D) = N−1. We estimate the probability

Pd,N := P (Zp
d,2N (D) = N − 1) for any d and N .

First, we consider the one-dimensional case. Since all
the points are sampled from the same distribution, every
possible configuration of the 2N points in the real line will
have the same probability, i.e., their distribution is uniform
on the finite space of all possible orderings. Therefore, we
can compute:

P1,N =
favorable configurations

total configurations
=

N ! 2N

(2N)!
.

Now, we apply Stirling’s formula nn
√
2πn

n!en
n→∞−−−−→ 1 to ap-

proximate, for sufficiently large N :

P1,N ≈ NN
√
2πN(2/e)N

(2N)2N
√
4πN/e2N

=
1√
2

( e

2N

)N
.

Let Zp,c
d,2N be similarly defined to Zp

d,2N but restricting the
hyperplanes to be orthogonal to one of the d canonical
axes. Then, for any d ≥ 1, we can bound:

P (Zp,c
d,2N = N − 1) ≤ P (Zp

d,2N = N − 1). (4.3)

By hypothesis, the d random variables defined as Zp
1,2N

over the projection of D on each canonical axis are i.i.d.
to Zp

1,2N , so we can write:

P (Zp,c
d,2N > N − 1) = [1− P (Z1,2N = N − 1)]

d

=
N ! 2N

(2N)!
≈
[
1− 1√

2

( e

2N

)N]d
,

if N ≫ 1. By (4.3), the complementary provides the de-
sired lower bound for Pd,N .

Proof of corollary 5. Let a ∈ Sd−1, {bn}N+1
n=1 ⊂ R and τ be

given by assumption 1. With no loss of generality, we can
assume that a = e1 and τ is the identity permutation. The
argument that we will use is similar to the one employed
in the proof of theorem 1, but now the motion must be
longitudinal as well as transverse. It also hinges on the
fact that, , inside the n-th strip

Sn := {x ∈ Rd : −bn < a · x < −bn+1},

the equation (1.5) simplifies to (4.2). The simultaneous
control of the data points is achieved inductively, in in-
creasing order of the first coordinates, by appropriately
defining the field wn associated with each hyperplane Hn.
Both the base case and the inductive step are established
by the following two lemmas, which will be proven later.

Lemma 10. Consider two points x1,y1 ∈ Rd with x1 ̸=
y1. For any T > 0 and b ∈ R satisfying x

(1)
1 + b > 0 and

y
(1)
1 + b > 0, there exists a unique w ∈ Rd such that the
solution of {

ẋ = wσ(x(1) + b),

x(0) = x1 ∈ Rd
(4.4)

reaches x(T ) = y1.

Having controlled x1, . . . ,xn−1 to y1, . . . ,yn−1 in a
time horizon T > 0, and using parameters {wi}n−1

i=1 ⊂ Rd

and {bi}n−1
i=1 ⊂ R such that bn−1 < · · · < b1 and

x
(1)
i + bi > 0 and y

(1)
i + bi > 0 for i = 1, . . . , N,

steering xn involves overcoming an autonomous drift field

d(x) :=

n−1∑
i=1

wiσ(a · x+ bi) =

n−1∑
i=1

wiσ(x
(1) + bi). (4.5)

The drift field d becomes more intense as the first coor-
dinate increases, owing to the characteristics of the ReLU
function. However, the following lemma shows that the
control is possible:

Lemma 11. Consider xn,yn ∈ Rd with xn ̸= yn. With
the above notation, for any T > 0 there exists a unique
wn ∈ Rd and some bn ∈ R satisfying

bn < bn−1, x(1)
n + bn > 0 and y(1)n + bn > 0

such that the solution of the Cauchy problem{
ẋ = d(x) +wnσ(x

(1) + bn),

x(0) = xn,
(4.6)

where d is given by (4.5), reaches x(T ) = yn.

With lemmas 10 and 11, the inductive argument is al-
most complete. It is left to show that the trajectory of each
initial datum xn will remain in its corresponding strip Sn

for all t ∈ (0, T ).
On one hand, lemma 11 guarantees that the trajec-

tory x(t) originating from xn will reach the endpoint yn.
On the other hand, taking into account that the field is
autonomous and invariant along each hyperplane x(1) =
const, then ẋ(1)(t) cannot change sign at any time, that
is to say, the x(1)(t) does not change its direction. Conse-
quently, the entire trajectory will be contained within the

strip bounded by x = x
(1)
n and x = y

(1)
n , which in turn is

contained in Sn.
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Proof of lemma 10. In the half-space {x(1) + b > 0}, the
equation (4.4) is written as

ẋ = wσ(x(1) + b) = wx(1) +w b. (4.7)

We can assume that b = 0, so the solution of (4.7) is

x(t) =
x
(1)
1

w(1)
w
(
ew

(1)t − 1
)
+ x1,

which can be driven to x(T ) = y1 by taking

w(1) =
1

T
ln

(
y
(1)
1

x
(1)
1

)
and w(k) =

y
(k)
1 − x

(k)
1

y
(1)
1 − x

(1)
1

w(1),

or w(k) = y
(k)
1 − x

(k)
1 if x

(1)
1 = y

(1)
1 , for k = 2, . . . , d. More-

over, x(t) stays in the half-space x(1) > 0 for t ∈ [0, T ]
because x(1)(t) is monotone in that interval.

Proof of lemma 11. First, take any bn ∈ R satisfying

bn < bn−1, x(1)
n + bn > 0 and y(1)n + bn > 0.

For simplicity, we rewrite (4.4) as

ẋ = (sn−1 +wn)x
(1) +wnbn + cn−1,

where sn−1 =
∑n−1

i=1 wi, cn−1 =
∑n−1

i=1 wibi. If we restrict
to the first coordinate, we have:ẋ(1) =

(
s
(1)
n−1 + w

(1)
n

)
x(1) + w

(1)
n bn + c

(1)
n−1,

x(1)(0) = x
(1)
n ,

which has solution

x(1)(t) =
w

(1)
n bn + c

(1)
n−1

s
(1)
n−1 + w

(1)
n

[
e

(
s
(1)
n−1+w(1)

n

)
t − 1

]
+ x(1)

n e

(
s
(1)
n−1+w(1)

n

)
t
.

First, we want to see if there exists ŵ
(1)
n ∈ R such that

x(1)(T ) = y
(1)
n , or, equivalently, if the function

f(z) =
z bn + c

(1)
n−1

s
(1)
n−1 + z

[
e

(
s
(1)
n−1+z

)
T − 1

]
+ x(1)

n e

(
s
(1)
n−1+z

)
T − y(1)n (4.8)

has a real root. For that task, we compute:

lim
z→∞

f(z) = sign
(
bn + x(1)

n

)
· ∞ = +∞,

lim
z→−∞

f(z) = −bn − y(1)n < 0.

On the other hand,

lim
z→−s

(1)
n−1

+
f(z) =

(
c
(1)
n−1 − bns

(1)
n−1

)
T + x(1)

n − y(1)n

= lim
z→−s

(1)
n−1

−
f(z),

so f is continuous. Hence, we can assure that there exists

ŵ
(1)
n ∈ R such that f

(
ŵ

(1)
n

)
= 0. Now, we denote

s(1)n = ŵ(1)
n + s

(1)
n−1 and c(1)n = ŵ(1)

n bn + c
(1)
n−1.

For each component j ∈ {2, . . . , d},
ẋ(j) = c

(1)
n

s
(j)
n−1+w(j)

n

s
(1)
n

[
es

(1)
n t − 1

]
+x

(1)
n

(
s
(j)
n−1 + w

(j)
n

)
es

(1)
n t + w

(j)
n bn + c

(j)
n−1,

x(j)(0) = x
(j)
n ,

which has solution

x(j)(t) = x(j)
n +

[
w(j)

n bn + c
(j)
n−1 − c(1)n

s
(j)
n−1 + w

(j)
n

s
(1)
n

]
t

+

[
c(1)n

s
(j)
n−1 + w

(j)
n

s
(1)2
n

+ x(1)
n

s
(j)
n−1 + w

(j)
n

s
(1)
n

]
es

(1)
n t.

Now, we want to find a solution of g(z) = 0 for

g(z) = x(j)
n +

[
zbn + c

(j)
n−1 − c(1)n

s
(j)
n−1 + z

s
(1)
n

]
T

+

[
c(1)n

s
(j)
n−1 + z

s
(1)2
n

+ x(1)
n

s
(j)
n−1 + z

s
(1)
n

]
es

(1)
n T − y(j)n .

This is an affine function in z, so g(z) = 0 has a unique

solution ŵ
(j)
n ∈ R if and only if the slope is non-zero. Sup-

pose that the bn we have chosen yields a zero slope, i.e.,[
c
(1)
n

s
(1)
n

+ x(1)
n

]
es

(1)
n T + (bns

(1)
n−1 − c

(1)
n−1)T = 0.

Recalling that f(ŵ
(1)
n ) = 0, we can write this equation as

y(1)n +
c
(1)
n

s
(1)
n

+ (bns
(1)
n−1 − c

(1)
n−1)T = 0,

so
c
(1)
n

s
(1)
n

= (c
(1)
n−1 − bns

(1)
n−1)T − y(1)n (4.9)

and we can solve for ŵn in this equation as

ŵ(1)
n =

[
(c

(1)
n−1 − bns

(1)
n−1)T − y

(1)
n

]
s
(1)
n−1 − c

(1)
n−1

bn −
(
c
(1)
n−1 − bns

(1)
n−1

)
T − y

(1)
n

.

Meanwhile, substituting (4.9) in f(ŵ
(1)
n ) = 0, we get:[

x(1)
n − y(1)n

]
es

(1)
n T − T (c

(1)
n−1 + bns

(1)
n−1)[e

s(1)n T − 1] = 0,

which can also be solved for ŵ
(1)
n as

ŵ(1)
n =

1

T
ln

(
(c

(1)
n−1 − bns

(1)
n−1)T

(c
(1)
n−1 − bns

(1)
n−1)T − y

(1)
n + x

(1)
n

)
− s

(1)
n−1.
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Equalizing both expressions of ŵ
(1)
n , we obtain an equation

with different analytic functions of bn and not involving

ŵ
(1)
n . Therefore, changing slightly the chosen value of bn,

these expressions become different, independently of the

corresponding value of ŵ
(1)
n , so there is a perturbation of

bn that satisfies the statement of the lemma while g(z) = 0
has a unique solution.

4.5. Proof of theorem 7

First, we prove proposition 6 with an inductive argu-
ment of topological nature.

Proof of proposition 6. First, we aim to build a family of
N disjoint C∞ curves contained in Int(Ω), each connecting
the two points of a corresponding pair (xn,yn) ∈ D. When
d ≥ 2, any connected open set in Rd is path-connected.
Therefore, we can take a continuous path C that connects
any two given points (x,y) inside U := Int(Ω) \K, where
K represents any finite union of disjoint curves contained
in Int(Ω). Moreover, by a well-known approximation ar-
gument this path can be chosen to be C∞.

Now, we have N disjoint C∞ curves {Cn}Nn=1 con-
tained in Int(Ω), each connecting a corresponding pair of
points (xn,yn). The tangent velocity field of each curve

is also C∞, so the assembled field V′, defined in
⋃N

n=1 Cn,
is smooth too. Since its domain is compact, it is also
Lipschitz-continuous. The required vector field V is pro-
vided by Kirzsbraun’s Theorem (see [33]), which ensures
the existence of a Lipschitz-continuous map V : Rd → Rd

that extends V′ sharing the same Lipschitz constant.

The proof of theorem 7 employs the following lemma
from [8, Section 7.2.2]:

Lemma 12 (Approximation rate for Lipschitz functions).
Let K be the unit ball in Lip(Ω,R), where Ω = [−R,R]d.
We have

1

[κ log2 κ]
1/d

Cd,R ≤ E(K,Σκ)C(Ω) ≤ Cd,R
log2 κ

κ1/d
,

where:

• Σκ :=
{
Sκ : Rd → R

}
is the space of shallow neural

networks with κ = (d + 2)p parameters, p being the
number of neurons in the hidden layer;

• E(K,Σκ)C(Ω) = supf∈K infS∈Σκ ∥f − S∥C(Ω) mea-
sures the capacity of Σκ to approximate any function
in K.

This result was in turn derived from [3, Proposition
6], where the upper bound is obtained for KL, the ball of
radius L in Lip(Ω,R):

E(KL,Σκ)C(Ω) ≤ Cd,R L
log2 κ

κ1/d
. (4.10)

Proof of theorem 7. Proposition 6 ensures that we can find
a Lipschitz-continuous field V : Rd → Rd such that the
flow ΨT of the ODE

ẋ = V(x) (4.11)

interpolates the dataset. The classical UAT result in [7]
guarantees that we can uniformly approximate in Ω with
precision ε/

√
d each of its components V (i) using a cor-

responding shallow neural network Si
κi

: Ω → R, with
κi ≥ 1 for i = 1, . . . , d. Moreover, lemma 12 quantifies
the dependence of the error with respect to the number of
parameters of each Si

κi
, ensuring that

κ1 = κ2 = · · · = κd = (d+ 2)p

parameters suffice to ensure (4.10) on each component.
The assembled field

VNN =
(
S1
κ1
, . . . , Sd

κd

)
: Rd → Rd

is of the form VNN (x) = Wσ(Ax + b) with complexity
κ = (d+ 2)pd, and satisfies supx∈Ω |V(x)−VNN (x)| < ε.
Consider the neural ODE given by

ẋ = VNN (x). (4.12)

Let XV (t;x0) and XNN (t;x0) be the respective trajecto-
ries in time t > 0 that a point x0 ∈ Ω will follow under the
dynamics provided by (4.11) and (4.12). The deviation

z(t) = |XV (t;x0)−XNN (t;x0)|

is bounded as

z(t) ≤
∫ t

0

|V(XV (s;x0))−VNN (XNN (s;x0))|ds

≤
∫ t

0

{
|V(XV (s;x0))−V(XNN (s;x0))|

+ |V(XNN (s;x0))−VNN (XNN (s;x0))|
}
ds

≤ LV

∫ t

0

|XV (s;x0)−XNN (s;x0)|ds + ε t

= LV

∫ t

0

z(s)ds + ε t.

By Grönwall’s inequality, it follows that

z(t) ≤ ε t exp {LV t} .

On the other hand, in the second line, we could alter-
natively add and subtract VNN (XV (s;x0)). Then, if we
denote by LNN the Lipschitz constant of VNN , we have:

z(t) ≤
∫ t

0

{
|V(XV (s;x0))−VNN (XV (s;x0))|

+ |VNN (XV (s;x0))−VNN (XNN (s;x0))|
}
ds

≤ ε t+ LNN

∫ t

0

|XNN (s;x0)−XV (s;x0)|ds

= ε t+ LNN

∫ t

0

z(s)ds.

11



Figure 7: Division of [0, 1]2 into rectangles, each containing a mass
of 1/n2 following the distribution given by ρ0.

By Grönwall’s inequality, it follows that

z(t) ≤ ε t exp {LNN t} .

Taking x0 = xn and t = T , the two bounds for z(t) give:

|yn − ΦT (xn)| ≤ ε T exp
{
min{LV , LNN}T

}
.

Note that LNN ≤ ∥W∥ · ∥A∥ because σ is 1-Lipschitz, so
the approximation rate (2.3) is obtained by direct appli-
cation of (4.10).

4.6. Proof of theorem 8

We seek to find (W,A,b) such that the generated vec-
tor field moves, compresses and stretches the mass dis-
tributed following ρ0, to drive it approximately to the tar-
get density, given by ρ∗. This is achieved in four steps,
illustrated in figs. 7 to 10 for the case d = 2.
1. Preparation. We compress supp(µ0) into [0, 1]d. To
do this, we aim to find a control

(W,A,b) ∈ L∞ ((0, T );Rd×p × Rp×d × Rp
)

such that, in a time T1 > 0, the flow ΦT1 of (1.3) satisfies

ΦT1
(supp(µ0)) ⊂ [0, 1]d

For k = 1, . . . , d, we fix the hyperplane x(k) = 0 and a com-
pressive velocity field by taking (w,a, b) = (−ek, ek, 0).
We choose T1,k > 0 sufficiently large to ensure

ΦT1,k

(
supp(µ0) ∩ {x(k) ≥ 0}

)
⊂ {0 ≤ x(k) ≤ 1}.

We repeat the operation with the hyperplanes x(k) = 1 for
k = 1, . . . , d, taking (w,a, b) = (ek,−ek, 1) and T ′

1,k > 0
such that

ΦT ′
1,k

◦ ΦT1,k

(
supp(µ0) ∩ {x(k) ≤ 0}

)
⊂ {0 ≤ x(k) ≤ 1}.

Both operations are possible in a finite time because µ0 has
compact support. In the end, we will have built piecewise
constant controls (w,a, b) that take 2d values, such that

ΦT1(supp(µ0)) ⊂ [0, 1]d, for T1 :=

d∑
k=1

(
T1,k + T ′

1,k

)
.

Using p neurons, we can simultaneously apply p controls,
because the characteristic curves of (2.4) when (w,a, b) =
(±ek,±ek, 1) are parallel to the hyperplanes {x(l) = 0}

for every l ̸= k. So, the total number of values taken by
(W,A,b) is ⌈2d/p⌉.
2. Partition. We aim to divide [0, 1]d into a collection
of nd hyperrectangles, each containing a mass of 1/nd, as
distributed by µ0. The process can be visualized in fig. 7
for d = 2. For simplicity, we redefine µ0 := ΦT1#µ0 with
density ρ0, now satisfying supp(µ0) ⊂ [0, 1]d. Let n ≥ 1
and consider the function

t 7−→
∫
[0,t)×[0,1]d−1

dµ0 =

∫
[0,t)×[0,1]d−1

ρ0.

This function is continuous, strictly increasing (by abso-
lute continuity), equal to 0 at t = 0 and equal to 1 at t = 1.
Therefore, we can choose n+ 1 numbers

c0 = 0 < c1 < · · · < 1 = cn

such that, for i1 = 0, . . . , n− 1,∫
[ci1 ,ci1+1]×[0,1]d−1

ρ0 =
1

n
.

Similarly, for each i1 = 0, . . . , n−1 we choose n+1 numbers

ci1,0 = 0 < ci1,1 < · · · < 1 = ci1,n

such that, for i2 = 0, . . . , n− 1,∫
[ci1 ,ci1+1]×[ci1,i2 ,ci1,i2+1]×[0,1]d−2

ρ0 =
1

n2
.

Repeating this operation recursively for each coordi-
nate, we end up with nd hyperrectangles

C0
i1,...,id

:= [ci1 , ci1+1]× · · · × [ci1,...,id , ci1,...,id+1] ⊂ Rd,

with ik ∈ {0, . . . , n− 1} for every k = 1, . . . , d, such that∫
C0

i1,...,id

ρ0 =
1

nd
.

The analogous partition for the uniform measure µ∗ is

Gi1,...,id :=

[
i1
n
,
i1 + 1

n

]
× · · · ×

[
id
n
,
id + 1

n

]
.

For the sake of readability, we will denote each multi-index
by I = (i1, . . . , id) ∈ {0, . . . , n− 1}d and write C0

I and GI .
3. Control. We aim to define the controls that ex-
pand and compress the mass until the hyperrectangles
C0

I approximate a corresponding collection of nd hyper-
cubes, each of them containing the same mass 1/nd, as
distributed by µ∗. Ideally, we would build (W,A,b) such
that the flow of the ODE (1.3) satisfied

ΦT (C
0
I ;W,A,b) = GI (4.13)

for each I ∈ {0, . . . , n−1}d. This would be done by trans-
forming each hyperplane {x(k) = ci1,...,ik} into a target
hyperplane {x(k) = ik/n}.
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Figure 8: Representation of the ideal transformation of the rectangles
CI into the corresponding ones GI .

However, this task is not possible in general, since any
{x(k) = ik/n} can be a target for multiple distinct hyper-
planes {x(k) = ci1,...,ik}. We therefore relax the problem
to δ-approximate control by considering δ-displacements
of the target hyperplanes {x(k) = ik/n}. Now we aim
to control each C0

I to a corresponding target Gδ
I that is

δ-close to GI , for a sufficiently small δ > 0.
Let us build the new hyperrectangles Gδ

I , a process
shown in fig. 9. For each k ∈ {2, . . . , d}, (i1, . . . , ik−1) ∈
{0, . . . , n− 1}k−1 and ik ∈ {0, . . . , n}, we define

gδi1,...,ik := ik/n+ δ(ci1,...,ik − c̃ik),

where

c̃ik := min{ci′1,...,i′k−1,ik
: (i′1, . . . , i

′
k−1) ∈ {0, . . . , n−1}k−1}.

Note that gδi1,...,ik = 1 whenever ik = n. By construction,

gδi1,...,ik−1,ik
< gδi′1,...,i′k−1,ik

⇐⇒ ci1,...,ik−1,ik < ci′1,...,i′k−1,ik

and

gδi1,...,ik−1,ik
= gδi′1,...,i′k−1,ik

⇐⇒ ci1,...,ik−1,ik = ci′1,...,i′k−1,ik
.

By recursion, we define a new partition of [0, 1]d into a
collection of rectangles Gδ

I with I ∈ {0, . . . , n− 1}d, where

Gδ
I ⊂ GI + {0} × [−δ, δ]d−1.

Moreover, this partition mimics the structure of the par-
tition defined for µ0, in the sense that there is the same
number of distinct target hyperplanes as initial ones to be
controlled. To sum up, if we take δ < 1/n, we end up with:

{
C0

I : I ∈ {0, . . . , n− 1}d
}

s.t.

∫
C0

I

dµ0 =
1

nd
, (4.14)

{
Gδ

I : I ∈ {0, . . . , n− 1}d
}

s.t.

∫
Gδ

I

dµ∗ ≤ 3d

nd
,

and diam(Gδ
I) ≤ 3

√
d
1

n
.

It is left to map C0
I to Gδ

I for each I. This is based on the
following lemma, whose proof we postpone for readability.

Lemma 13. Let d ≥ 2, µ0 ∈ Pc
ac(Rd) with density ρ0,

ρ∗ the uniform density in [0, 1]d, and T > 0 be fixed. Let
n ≥ 1 and consider a family of hyperrectangles such as

Figure 9: Construction of the partition in rectangles Gδ
I .

(4.14). For any p1, . . . , pd ≥ 1, there exists a piecewise
constant control

(W,A,b) ∈ L∞((0, T );Rp×d × Rd×p × Rp)

with p = p1+ · · ·+pd such that, for each I = (i1, . . . , id) ∈
{0, . . . , n− 1}d, the flow ΦT generated by (1.3) satisfies

ΦT (C
0
I ;W,A,b) = Gδ

I

Furthermore, the number of discontinuities of (W,A,b) is

L = max{⌈n/p1⌉, . . . , ⌈nd/pd⌉} − 1.

4. Estimates. We compute the Wq-distance between
both measures to verify the approximate control. Let ΦT

be the flow given by lemma 13, satisfying

ΦT (CI) = Gδ
I , for I = (i1, . . . , id) ∈ {0, . . . , n− 1}d.

Let us quantify, in the Wasserstein-q distance, the prox-
imity of ΦT#µ0 to µ∗. We have

Wq(µ(T ), µ∗) = Wq(ΦT#µ0, µ∗)

≤
∑

I∈{0,...,n−1}d

Wq(ΦT#µ0|Gδ
I
, µ∗|Gδ

I
), (4.15)

see [34] for the inequality. For each I ∈ {0, . . . , n−1}d, let
γI : Rd → Rd be the measurable function that satisfies

γI#(ΦT#µ0|Gδ
I
) = µ∗|Gδ

I
,

attaining the minimum in Monge formulation (2.6) for Wq.
In particular, γI only redistributes the mass inside Gδ

I , so∫
Rd

|x− γI(x)|qdµ∗|Gδ
I
=

∫
Gδ

I

|x− γI(x)|qdµ∗

≤ diam(Gδ
I)

q

∫
Gδ

I

dµ∗ ≤ 3q+ddq/2

nq+d
.

Plugging this bound into (4.15), we conclude that

Wq(µ(T ), µ∗) ≤ 31+d/q
√
dnd

(
1

nq+d

)1/q

= 31+d/q
√
dn−(1+d/q−d).
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Figure 10: From left to right, by rows: We transform the rectangles
CI to approximate the corresponding ones Gδ

I (in green)

It follows that

Wq(µ(T ), µ∗)
n→∞−−−−→ 0 ⇐⇒ q <

d

d− 1
,

and, in that case, Wq(µ(T ), µ∗) < ε is obtained for

n >

(
31+d/q

√
d

ε

) 1
1+d/q−d

,

hence proving theorem 8.

Proof of lemma 13. We control the rectangles by mapping
each hyperplane to its corresponding target hyperplane.
This strategy is illustrated in fig. 10.

The proof is divided into three steps. First, we achieve
simultaneous control for any p hyperplanes orthogonal to
a fixed direction. Second, for N ≥ p hyperplanes, we itera-
tively control p-subsets. Third, we show that this approach
is applicable to all d canonical directions simultaneously.
Step 1. Let k ∈ {1, . . . , d}, p ≥ 1 and

−∞ < c1 < · · · < cp < ∞,

−∞ < g1 < · · · < gp < ∞.

We aim to find constant controls {(wi,ai, bi)}pi=1 ⊂ Rd ×
Rd × R such that the flow generated by (1.3) satisfies

ΦT ({x(k) = ci}) = {x(k) = gi}, i = 1, . . . , p. (4.16)

In particular, we will take ai = ek for all i, and bi such
that −bi < min{ci, gi}. Since the field

p∑
i=1

wiσ(ai · x+ bi) =

p∑
i=1

wiσ(x
(k) + bi)

only depends on the x(k)-coordinate, it is projectable onto
the x(k)-axis, i.e., the forward evolution of a hyperplane
orthogonal to any coordinate-axis is a hyperplane orthog-
onal to the same coordinate-axis, for any time. Therefore,

we can identify each {x(k) = ci} and {x(k) = gi} with the
point ci ∈ R or gi ∈ R and study their evolution in the
real line, so the problem becomes one-dimensional. Thus,
we identify x(k) ≡ x and fix wi = wiek with wi ∈ R, so
we aim to find (wi)

p
i=1 ⊂ R and (bi)

p
i=1 ⊂ R such that

ΦT (ci) = gi for i = 1, . . . , p. We proceed by induction on
p.
First, we consider p = 1 and let c1, g1 ∈ R. Take any
−b < min{c1, g1}, so {c1, g1} ⊂ {x + b > 0}, and w =
sign(g1 − c1), pointing from c1 to g1. Then,

ΦT̃

(
c1
)
= g1, for T̃ =

∣∣∣∣log(g1 − b

c1 − b

)∣∣∣∣ .
Using a time rescaling argument identical to the one in
the proof of 1, this control can be done in any time T > 0.
Also note that {x+ b ≤ 0} is fixed by the flow Φt.
In the inductive step, we assume that the statement is true
for some p ≥ 1, and consider

−∞ < c1 < · · · < cp+1 < ∞,

−∞ < g1 < · · · < gp+1 < ∞.

Let {(wi, bi)}pi=1 ⊂ R× R with −bi < min{ci, gi} for all i,
such that the flow of the one-dimensional problem satisfies

ΦT (ci) = gi, i = 1, . . . , p.

We want to add a new pair (wp+1, bp+1) ∈ R×R such that

ΦT (ci) = gi, i = 1, . . . , p+ 1.

Case 1: cp < gp. Take bp+1 = −gp, so (1.3) becomes

ẋ =

p∑
i=1

wi(x+ bi)1ci<x(x) + wp+1(x− gp)1gp<x(x).

The added velocity wp+1(x − gp) only acts on the half-
space {x ≥ gp}, so the points {ci}pi=1 are only subject to
the drift field

d(x) :=

p∑
i=1

wi(x+ bi)1ci<x(x).

Therefore, when adding (wp+1, bp+1), we still have

ΦT (ci) = gi, i = 1, . . . , p.

If cp+1 ≤ gp, there is 0 ≤ s < T such that Φs(cp+1) = gp.
Otherwise, if cp+1 > gp, consider s = 0. Note that s only
depends on the p first neurons, on cp+1 and on gp, and it is
thus independent of (wp+1, bp+1). Therefore, cp+1 is only
subject to d(x) for t ∈ (0, s), and to d(x) + wp+1(x − gp)
for t ∈ (s, T ). More precisely:

d

dt
Φt(cp+1) = d(Φt(cp+1))+wp+1(Φt(cp+1)−gp)1s≤t<T (t).
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Then, with a similar computation to that of lemma 11:

ΦT (cp+1) =ΦT−s ◦ Φs(cp+1)

=
(
gp +

∑p
i=1 wibi − wp+1gp∑p

i=1 wi + wp+1

)
e(T−s)

∑p+1
i=1 wi

−
∑p

i=1 wibi − wp+1gp∑p
i=1 wi + wp+1

.

The expression converges to gp when wp+1 → −∞, and
diverges to ∞ when wp+1 → ∞. Therefore, by continuity,
and since gp < gp+1, there exists wp+1 ∈ R such that
ΦT (cp+1) = gp+1.
Case 2: gp ≤ cp < gp+1. Take bp+1 = −cp, so (1.3)
becomes

ẋ =

p∑
i=1

wi(x+ bi)1ci<x(x) + wp+1(x− cp)1cp<x(x),

Again, the points {ci}pi=1 are only subject to d(x) because
the added velocity only acts on {x ≥ cp}, so

ΦT (ci) = gi, i = 1, . . . , p.

The point cp+1 is subject to the total velocity at t = 0. A
similar computation to Case 1 leads to

ΦT (cp+1) =

(
cp +

∑p
i=1 wibi − wp+1cp∑p

i=1 wi + wp+1

)
eT

∑p+1
i=1 wi

−
∑p

i=1 wibi − wp+1cp∑p
i=1 wi + wp+1

.

ΦT (cp+1) tends to cp when wp+1 → −∞, and diverges to
∞ when wp+1 → ∞. By continuity, and since cp < gp+1,
there exists wp+1 ∈ R such that ΦT (cp+1) = gp+1.
Case 3: gp+1 ≤ cp. Take bp+1 = −cp, so (1.3) becomes

ẋ =

p∑
i=1

wi(x+ bi)1ci<x(x) + wp+1(x− cp)1cp<x,

and
ΦT (ci) = gi, i = 1, . . . , p.

Let 0 < s ≤ T be the first time such that Φs(cp+1) = cp.
An analogous computation to the previous cases gives

Φs(cp+1) =

(
cp+1 +

∑p
i=1 wibi − wp+1cp∑p+1

i=1 wi

)
es

∑p+1
i=1 wi

−
∑p

i=1 wibi − wp+1cp∑p+1
i=1 wi

,

so

s =
1

p+1∑
i=1

wi

log


p∑

i=1

wi(cp − bi) + 2wp+1cp

p∑
i=1

wi(cp+1 + bi) + wp+1(cp+1 − cp)

 .

By varying wp+1 in (−
∑p

i=1 wi,+∞), we can ensure that
s can take any value in (0, T ). Then,

ΦT (cp+1) =ΦT−s ◦ Φs(cp+1)

=

(
cp +

∑p
i=1 wibi∑p
i=1 wi

)
e(T−s)

∑p
i=1 wi

−
∑p

i=1 wibi∑p
i=1 wi

.

For s = T , the expression is equal to cp, and for s = 0
it equals ΦT (cp) = gp. By continuity, and also because
gp < gp+1 ≤ cp, an argument like in case 1 ensures the
existence of wp+1 ∈ R such that ΦT (cp+1) = gp+1.
Step 2. Let k ∈ {1, . . . , d}, p ≥ 1, and N ≥ p and

−∞ < c1 < · · · < cN < ∞, −∞ < g1 < · · · < gN < ∞.

We will show that there exist piecewise constant controls
(wi, ai, bi)

p
i=1 such that the flow of (1.3) satisfies

ΦT (ci) = gi, i = 1, . . . , N,

and the number of discontinuities is ⌈N/p⌉ − 1. We use a
similar argument to the one in the proof of theorem 1. We
divide {ci}Ni=1 and {gi}Ni=1 into subsets of p points

Cj := {c(j−1)·p+1, . . . , cj·p}, Gj := {g(j−1)·p+1, . . . , gj·p},

for j = 1, . . . , ⌈N/p⌉ − 1, and C⌈N/p⌉, G⌈N/p⌉ with the
remaining N − p⌊N/p⌋ points.

The piecewise constant controls are obtained by induc-
tion on j. In each iteration, we apply step 1 to define p
constant controls (wj

i , a
j
i , b

j
i )

p
i=1 that map the p points of

Cj to the corresponding ones in Gj in time T
⌈N/p⌉ . Note

that the initialization of induction in step 1 ensures that
the previously controlled subsets C1, . . . , Cj−1 can remain
fixed during the subsequent iterations, which trivializes the
induction. Finally, we have the piecewise constant controls

(wi, ai, bi)
p
i=1 =

⌈N/p⌉∑
j=1

(wj
i , a

j
i , b

j
i )

p
i=11( (j−1)T

⌈N/p⌉ , jT
⌈N/p⌉ )

(t),

which achieve the desired objective.
Step 3. For every k = 1, . . . , d, let pk, Nk ≥ 1, and

−∞ < ck1 < · · · < ckNk
< ∞, −∞ < gk1 < · · · < gkNk

< ∞.

For each fixed direction k ∈ {1, . . . , d}, step 2 is used to
build piecewise constant controls

(wj,k,aj,k, bj,k)
pk

j=1 = (wj,k ek, ek, bj,k)
pk

j=1

with ⌈Nk/pk⌉ − 1 discontinuities, such that

ΦT ({x(k) = cki }) = {x(k) = gki }, i = 1, . . . , N.

Moreover, only the k-th coordinate is varying on each flow,
as argued in steps 1 and 2 when we simplified the problem
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to one dimension. We define each tern of the assembled
control (wj ,aj , bj)

p
j=1, with p =

∑d
k=1 pk, by

(wj ,aj , bj) =
(
wj−

∑k−1
i=1 pi,pk

,aj−
∑k−1

i=1 pi,pk
, bj−

∑k−1
i=1 pi,pk

)
,

for
∑k−1

i=1 pi + 1 ≤ j ≤
∑k

i=1 pi. Therefore, the resulting
neural ODE (1.3) on each coordinate writes

ẋ(k) = w
(k)
1,k(x

(k) + b1,k) + · · ·+ w
(k)
pk,k

(x(k) + bpk,k)

All the equations of the system are independent, so each
movement does not interfere with the other d − 1 move-
ments. Therefore, the corresponding flow of (1.3) satisfies

ΦT ({x(k) = cki }) = {x(k) = gki }

for k = 1, . . . , d and i = 1, . . . , Nk, and moreover, the
number of discontinuities in the controls is

L = max{⌈N1/p1⌉ − 1, . . . , ⌈Nd/pd⌉ − 1}
= max

k=1,...,d
⌈Nk/pk⌉ − 1.

Recalling that Nk = nk for k = 1, . . . , d (by construction
of the rectangles C0

I and Gδ
I), it follows the desired result.
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