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Motivation

Malaria is a disease caused by parasites of the genus Plasmodium. According to the WHO, this disease
causes approximately one million victims per year worldwide.

Africa accounts

and

malaria deaths .
are among children

cases of malaria
occurred worldwide

World Malaria Report 2021



Motivation

(a) Anophel Gambiae
of malaria, all belong to the genus Anopheles.

The parasite is transmitted to humans through the bite of an infected mosquito. These mosquitoes, "vectors"
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@ We have in west Africa "Target Malaria" project underway and which aims to drive the density of wild
female mosquitoes to zero in long time horizon.

@ In the coming months more than 2 million genetically modified mosquitoes will be released in Florida.
The mosquitoes, created by biotech firm Oxitec, will be non-biting Aedes aegypti males engineered to
only produce viable male offspring, per the company. Oxitec says the plan will reduce numbers of the
invasive Aedes aegypti, which can carry diseases like Zika, yellow fever and dengue.
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@ In this talk we give mathematically some ideas on the possibility of controlling of mosquitoes population
dynamics. For reasons like as the difference in lifespan between male mosquitoes (14 days) and female
(30 days) and the difference in mortality functions, we preferred to work with the two-sex model which
seems the best fit.

@ In the strategies cited, the control methods used seem to be birth control or the combination of birth
control and distributed control, in this first work, we will focus on distributed controls.
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Description of two sex structured population dynamics model

We denote by Z = x (a1,a2) x (0,T) C Qand E' = ®’ x (by,b2) x (0, T) C Q where
Q=Qx(0,A)x(0,T). We denote also £ =dQ x (0,A) x (0,T), Qr =Q x (0,T) and Q4 = Q x (0,A).
Let (m, f) solution of the following system :

om om

o, T 57 — KmAm+pmm=Yzvp in Q,
S
E+$*KfAf+fo:X5/Vf in Q,
(cat)ff(c a,t)=0 onZx, (1)
m(x,a,0) f(x,a,0) =fy in Qa,
m(x O t)= y)N(x t), f(x,0,t) :yN(x t)  inQr,
N(x, fo a,M)fda; M = fo a)mad. in Qr.

where mg € L?(Qa), fy € L2(Qa), vin € L2(Q), v; € L2(Q) and Y € (0,1). The functions, m(x, a,t) and
f(x,a, t) represent the density of males and females of age a at time t in position x, respectively. We assume
that the fertility functions 3, A and mortality u, and u; satisfy the following demographic properties:
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(i) pm >0, wr>0a.e.in[0,A],
(H1): (if) pm € Ly (10,A)), w1 € Ly, (10,A)),
(iif) fé,um(a)da:Jroo, fé#[(a)da:+00.

The functions

*fﬂm(s)ds *,?.Uf(s]ds
,(a)=e © andIl;(a)=e ©

denote the probability of survival of male individuals of age a and female individuals of age a, respectively.
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() BeC(0,AxR),
(Ho): (i) B(a,p) > 0 for all (a,p) € [0,A] xR,
(iii) B(a,0) = 0in (0,A).

. rec'(0,A),
(Hs) { A>0forallae[0,A.

Moreover, we suppose that:

(i) there exists b € (0, A) such that B(a,p) =0,V(a,p) € [0,b) x R,
(ii) there exists L > 0 such that |B(a,p) —B(a,q)| < Llp—q|
forallp,g e R, a€ [0,A],

(iii) there exists Bo > 0 such that 0 < B(a,p) < Bo, V(a,p) € [0,A] X R.

(Ha):

(Hs): { hum € L'((0,4)).
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Null controllability: Main result

We have the following

Theorem 1

Suppose that the assumptions (H; ) — (H2) — (H3) — (Ha) — (Hs) hold. If (0,b) N (a1, a2) N (b1, b2) # 0, for
every time T > max{ay, by} +max{A—ap, A— by} and for every (mo, f) € (LZ(QA))z7 there exists

(Vim, v¢) € L?(E) x [2(Z') such the solution (m, f) of the system (1) verifies:

m(x,a,T)=0ae. xc€Q, ac (0,A), (3)

f(x,a,T)=0ae. x€Q, ac (0,A). (4)

Remark: Notice that @ ®’ can be empty.
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Null controllability of auxiliary system

Let p be a function in L?(Qr), we define the auxilliary system given by:

aa—T + %—m KnAm+umm=yxzv inQ,

3—:+§—;—K,Af+y,f:x5/u inQ,

m(c,a,t) = f(cs7 a,t)=0 onx, ()
m(x,a,0) = f(x a,0)="f in Qa,
m(x,0,t) = 1— fo (a,p)fda,
f(x,0,t) yj'o a,p)fda in Qr.

The system (5) admits a unique solution (m, f) € (L2((0,A) x (0, T); H}(€2)))? and the system (5) is null
controllable for every T > max{ay, by} + max{A— a>, A— bo}. Moreover the null controllability of the system
(5) is equivalent of the Observability inequality.
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Observability Inequality: adjoint system

Let (n,/) be the solution of the following adjoint system to the auxilliary system (5)

on on )
—?——a—KmAn—&-,umnfO in Q,
fa—;féfoAlﬁu,/:(1fy)B(a,p)n(x,O,t)+y[3(a,p)l(x,0,t) in Q, "
n(c,a,t) =1(c,a,t)=0 onX,
n(x,a,T)=nr I(x,aT)= in Qa,
n(x,At) =0, I(x,At) 70 in Qr.

Under the assumptions on the time T, we have the following:
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Observability Inequality

Theorem 2

Under the assumptions of Theorem 1, for every T > max{ay, by} + max{A— a», A— by}, there exists a
constant Cr > 0 independent of p such that the solution (n, /) of the system (6) verifies:

A

JA L} (x,a, O)dxda-i—J

J (x,a,0)dxda
0 0lJe

<cr (J n?(x,a, t)dxdadt—i—J (x,a, t)dxdadt).

o
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Representation of the solution of adjoint system

The idea to establish the observability inequality is the estimation of the non local terms of the adjoint system.
For this reason, we first begun to formulating a representation of the solution of cascade adjoint system by
caractheristics method and semigroup.

For (n7,I7) € (L2(Qa))?, under the assumptions (H;) and (Hz), the cascade system (6) admits a unique
solution (n, /). Moreover, integrating along the characteristics line the solution (n, /) of (6) is given by:

Me[T’”KMAnT(X,a+ T—0ifT—t<A—a
n(t) = 7 (a) @)
0if A—a< T—t,

and
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mp (a+-T—t) _(T—t)KeA
Tmp(a) © e(T=OKA L (x,a+t—T)

1(8) =+ ] e oo OK8B (ats—t.p(x,5)) (1—1)n(x0,8)+¥1(x.0.5) ) dsn Dy, (8)

JiATa T2 (e tet) o(sm0KiAp (ats—tp(x,s)) (1-1)n(x.0,5) +YI(x,0,5))os n Dy,

where Ty (a) = e*fg“’"(’)d’, To(a) = e*fg“f(’)d’, e'mA s the semigroup of —K;,A with the Dirichlet
boundary condition and

Dy ={(a,t) € (0,A) x (0,T) such that T—t < A— a},

D> ={(a,t) € (0,A) x (0, T) suchthat T—t > A—a}.

Using the fact that B(a,p) = 0 for all a € [0, b). We establish the following:
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Estimation of the non local terms

Proposition 2

Under the assumptions of Theorem 1, for every m satisfying a; < < T, there exists C > 0 such that the

following inequality

T T ra
J J n?(x,0,t)dxdt < CJ J J n?(x, a, t)dxdadt 9)
0 Q 0 Ja Jo
holds. For every m verifying by <1 < T, there exists C > 0 such that the following inequality
T
J J 12(x,0,t)dxdt < CJ 12(x, a, t)dxdadt (10)
0 Q ol
holds. )

17/29
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First we recall the observability inequality for the parabolics equations:

Proposition 3

Let T>0, fy and t; such that 0 < ty < t; < T. Therefore, for all wy € L?(L), the solution w of the system:

e) A
% —KnAw(x,A) =0 in(t, T)xQ,
w=0 on (fy, T) x 0Q, (1)
w(x, 1) = wo(x) inQ,
verifies the following estimates
Co .
1
J w2 (T, x)dx SJ w?(x, 4 )dx < ciefi —ho J J w?(x,\)dxdA, (12)
Q Q o Jo
where the constants ¢y and ¢, depend of T and Q.
Deusto CCMSeminar June 20, 2022 18/29
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An idea of the proof of the Proposition 2

Let A(x,a,t) = n(x, a, t)effg“(“]d“. Then 7 satisfies

%+S€+KmAﬁ:0 in Qx(0,a2) x (0,T),
A=0 on 0Q x (0,a2) x (0, T), 13

A, T) = nre—Joum@dein 0 5 (0, A).

Proving the inequality (9) leads also to show that, there exits a constant C > 0 such that the solution 7 of (13)
satisfies

T— T raz
J J hz(x,O,t)ddeSCJ J J f(x, a, t)dxdadt. (14)
Q ®

0 0 Jag
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Let:

w(A) =n(x,T—A,T+t—A);(Ae(T—ap, T)and x € Q).
Then, w verifies the following system:

%—kmAw(k) =0 inQx(T—an,T),
w=0 onoQ x (T—ap, T),

w(0) =n(x,T,T+1) in Q.

(15)

Using the Proposition 2.3 with T—ay < fp < t; < T we obtain:

Co
J WZ(T)dXSJ wz(t1)dx§c1et1_t0J
Q Q

t
J w? (A) dxdA.
Q

[}

That is equivalent to

Co
- [1
J ﬁz(x,o7t)dx§c1et1_f0J J P2 (x, T—At+ T —A)dxdA
Q to JQ

T—ty
CJ J 72 (x,a,t+ a)dxda.
T—t JQ
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Illustration of the estimations of non local terms

ai ao A

Figure: Estimation of n(x,0,t) and /(x,0,t).
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Estimations of /(x,a,0) and n(x,a,0) in Q x (0, ap)

We state these two propositions necessary for the proof of the inequality:

Proposition 4

Under the assumptions (H;) — (H3), for all T > max{as, A— ap}, there exists Ct > 0 such that the solution
(n, 1) of the system (6) verifies the following inequality:

A
J J m?(x,a,0)dxda < CTJ P (x, a, t)dxdadt. (16)
0Ja =

Note that here we first show that n(x,a,0) =0 in (ap,A) and we use the same technique as in the Proposition
2 to estimate n(x, a,0) in (0,ap)
Proposition 5

Under the assumptions (H;) — (H2) and the hypothesis by < ag < b. and T > by. There exists Cr > 0 such
that the solution (n, /) of the system (6) verifies the following inequality:

ao
J le(x,a,o)dxdag CTJ P(x, a, t)dxdadt. (17)
Q

0 oy
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An idea of the proof of the observability inequality

Lemma

Suppose that (0,b) N (ar,az) N (b, b2) # 0. For all time T > max{ay, by} + max{A— a»,A— by} there exists
ap € (ay,a) N (by,bo) and x > 0 such that

T > T—(max{ay,b1}+x) >A—ay >A—aforall ac (a,A). (18)

Moreover,
A
I(x,a0)= [ : % (e%2B(a+s.p(x,5))1(x,0,5)+e%B(a+s.p(x.5))n(x.0,s) )ds (19)
0

in (x,a) € Qx (ag,A). )

According to the Lemma, on (&g, A), /(x, a,0) depends mainly on the non-local terms. Moreover if we consider
1 = max{ay, by} + K as in the Proposition 2, and as max{ay, b1} < max{as,bi}+ K < T, we have the
estimation of non local term between 0 and T — (max{ay, b1} + k).



Proof of the Observability inequality

We already have the estimate of n(x,a,0) on (0, A) and the estimate of /(x,a,0) on (0,ap). So we split
Ja [ (x,a,0)dxda as the following

A ag A
J J Iz(x,a,O)dxda:J J Iz(x,a,o)dxda+J J 12(x,a,0)dxda. (20)
0Jo o Jo ag JQ

Using the assumptions of Theorem 1 and the result of Lemma, we show the existence Kr > 0 independent of
p such that:
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A
J J 12(x,a,0)dxda
Q

ao

<Ky (J.gf(max{m PR 12 (0 a4 (M B ) g /2(x,o,t)dxdt).
L;'f(max{a \by } %) .rg 2 (x,0,t) dxdt (21)

By combining (20) and the results of Propositions 2, 4 and 5

I8 o P (x,a0)dxdat [§ [ o P (x.a0)dxda<Cr( [z n? (xa,t)dxdadt+[zs P (x.a,t) dxdadt).
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lllustration of the observability inequality and estimation of the non local terms

{theline A—a=T—t}

T — (max{ay, by} + x¥

0 b1 a ap b2 A

Figure: The backward characteristics starting from (a,0) with a € (ag,A) (green lines) hits the boundary (a = A), gets
renewed by the renewal condition (1 —7y)B(a,p)n(x,0,t) +vB(a,p)/(x,0,t) and then enters the observation domain (green
lines). So, with the conditions T > max{a, b } + max{A— a,, A— by } all the characteristics starting at (a,0) with

ac (ap,A) get renewed by the renewal condition (1 —Y)B(a,p)n(x,0,t) +vB(a,p)/(x,0,t) with t < T —max{ay, by }.
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Proof of Theorem 1

Let A be a operator define as follow:
A
ASLE(Qr) — 15(Qr) pr—s | Maim(p)aa (22)
0
where the couple (m(p),f(p)) is the solution of the following auxilliary system verifying
m(x,a,T)=0ae x€Qac (0,A), (23)
f(x,a,T)=0ae. xcQac (0,A). (24)

Under the assumptions of Theorem 1.1, we can show that the operator A is continuous, and the set
A(L2(Qr)) is relatively compact in L?(Qr). By Schauder’s fixed point theorem A admits a fixed point and we
get the reult of the Theorem 1.
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