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E. ZUAZUA
Exact boundary controllability for the
semilinear wave equation

Résumé. Nous étudions la contrdlabilité exacte fronridre de 1'&quation des
ondes semilinéaire avec des conditions aux limites de Dirichler. Nous
démontrons la contrdlabilité exacte lorsque la nonlinéaritd est globalement
Lipschitzienne, le temps de contrdlabilité érant celui qui correspond au
probleme linéaire. La méthode de démonstration combine HUM (Nilbert
unigueness method) et un argument de point fixe. Par ailleurs, en utilisant
une méthode de pénalisation, on prouve 1'existence d'un ensemble de controles
optimaux vérifiant un svstéme d’optimalité constitud par deux équations
des ondes semilinfaires couplées.

Abstract. The exact boundary controllability for the semilinear wave
equation with Dirichlet boundary conditions is studied. The exact
controllability is proven when the nonlinearity is globally Lipschitz
continuous. The contrellability time is the one of the linear wave
equation. The method of proof combines HUM (Hilbert uniqueness methed) and
a fixed point arpument. On the other hand, by using a penalization method,
we prove the existence of a set of oprimal controls thatrsa_isfy an
optimality svstem. This optimality svstem consists of twa coupled
semilinear wave equations.

o

ntroduction

Tive aim of this paper is to studv the exacr boundary controlliability for
the wive equation perturbed by a ploballvy Lipschitz continuous nonlinear
tern. For the sake of brevity and simplicity we shall focus our attention

on the particular case where the control enters in the Dirichiet boundar
condition, since it is complex enouph ro penerate interesting technigues
and results. However, must of the ideas and results of this paper may be
be easily adapted and gensralized to different boundary conditions, e.g.
leumann or mixsd houndary conditions.

: N b S HE B
Ler U be a bounded domzin of ¥ with smooth boundary T = 30, f : R + R



a (globally) Lipschitz continuous function, that is, such that f' € L (R),
T> 0 and FO C TI' a non-empty open subset of T. Let us consider the

fellowing semilinear wave equation with Dirichlet boundary control:

y" - ay + f{y) =0 inQ=Q x (0,T) (1.1)
) v on EO = FO x (0,T) b5

y 0 on NE,
E g (1.3)

y(0) = yo, y'(0) =y in Q.

In (1.1)-(1.3) we denote by ' = 3-/¢t the derivative with respect to
the time variable and y(0) (resp. y'(0)) represents the function x - v(x,0)
(resp., x -~ 2y(x,0)/3at). On the other hand, we denote by I the lateral
boundary of @ that is, I =T x (0,T).

The exact controllability problem for (1.1)=(1.3) states as follows:

given T > 0 large enough, to find, for every initial and final data

60,50, 1z
"li at time T; i.e. such

0,21} (given in a suitable Hilbert space), a control function v
o ; ; .0
driving the system (1.1)-(1.3) to the state {z ,=z

that the solution y = vi(x,t) of (1.1)-(1.3) satisfies

y(m) = 2% 3y (1) = 2. (1.4)

Concerning the linear case where f(s) = us for some a € K, research in

this problem and other related questions (observability, stabilizability)
has been very active during the last years and there is an extensive
literature on these topics (see e.p. Lagnese and Licns [ B8], Lions [ 10,11 1,

Russell [ i3] and the references therein). Alwavs in the linsar framswork,

we may say that the exact controllability problem is by now well understood.

However, concerning the semilipear problem (1.1)-(1.3) or, mere generally,
in tie nonlinear context, very little is known.

To our knowledge, the [irst work on exact controllability of nonlinear
distributed sysrems was done by Markus [ 13]. In this paper, an implicit
function theorem approach was introduced for the study of the exact
controllability preblem of nonlinear finite dimensicnal distributed

systems. Subseguently, this approach was adapted and generalized to the

nonlinear wave equation by Chewning [ 2], Fattorini [ 3], Russell [ 15] and
other authors. In this way, local controllability results were proven.
That is, it was proven that "small" initial data lying in some neighbourhood
of {0,0) may be driven to the rest {0,0} (when £(0) = 0) for T large enough.
It is importan; to note that this approach does not provide exact
controllability results in the sense formulated above.

Hore recently [ 17,1B], we have proven the exact controllability of
(1.1)-(1.3) for Lipschitz continuous perturbations f satisfying the

additional condition

f(s) (1.5)

s

3 lim
[s]+s=m

i.e. for asymptotically linear perturbations. The exact controllabilicty
was proven in the space Lz(h) x H—E(ﬂ) (the largest Hilbert space where
the nonlinear problem (1.1) has some sense) with controls in LZ(EO) and
for T and g "large enough™ (this will be made precise in Remark 2.1).
The method of proof was based on HUM (Hilberrc uniqueness method), recently
introduced by Lions [ 9,10,11 ] in the linear framework, and on a fixed
polnt argument,

The main purpose of the present paper is to improve this result
showing that the restriction (1.5) is unnecessary. Therefore, we shall
prove the exact controllability of (1.1)={1.3) for every {globally}
Lipschitz continuous perturbations. The method of proof is once again
based on HUM and Schauder's fixed point theorem, but the scheme of the
proof is different and sliphtly more involved. The exact controllabilicty
will be proven in Uﬁ)ﬁ fHB(ﬂ) > H}-Efﬁ)e but not in Lz(ﬁ) x H—I(ﬁ) (as
was the case when (1.5) was assumed) because of the lack of compactness.
Concerning tne pair ifD.Ti we shall only assume that the exact
controllability of the linear svstem with f = 0 holds in LQFE} x H"i(ﬂ)
with controls LB(ZD] at time T as well as a unique-continuation property for
the wave equationwith a zero order potential. Therefore, we shall generalize tc
the semilinear contert (under the assumption £'€L (R )} most of the resulcs
that are by now well known in the linear Framework.

The plan of the paper is as follows. Section 2 is devoted to the linear

wave equation perturbed by a bounded potential



y' - Ay + U(x,t)y = 0 in (1.6)
with WE Lm(Q). In section 2.1 we shall prove its exact contrellabilicy.
In section 2.2 we shall prove an "uniform exact controllabilicy" result,
In other words, we shall establish that the control function v {associated
to some fixed initial and final data) remains bounded {(in some norm that
will be made precise below) when the potential W is bounded in Lm(Q).

This result will be crucial for che study of the semilinear problem
(.n=(.3.

In section 3 we shall prove the exact controllability of (1.1)=(1.3).
The initial and final data [yo.yll,{zo,zl} being fixed in HS(E) x HY-l(ﬂ)

with y > D, we shall construct a nonlinear operator.
2 2
N L@ » L7
- > .
mapping 5 € L7(Q) into y = N(&), the solurion of the problem

EEIEO) L ey in g

{ v on :0 (1.7

¥y o= Ay +

£ 1
v =+ vy =y oy = 2%y = 2

the function v being the control constructed in section 2 for the potential

W= (f(3) - £(0))/z.

We shall prove the compactness of the operator N (at this level the fact
that v > 0 will be crucial). On the other hand, the uniform controllabili
result of secrion 2.2 will show that N maps LZ(Q) into a2 bounded set of
L?(Q). We shall coaclude the exact controlliability of (1.1)-(1.3) applying
Schauder's fized poirt theorem. Concerning the regularity of the control
function we will prove that v € HEJ(O,T;L?'{I'U)) if Y€ (0,1).

Section 4 is devoted to the study of the existence of optimal controls

as well as to their characterizztion by means of an optimality system. This
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will be done using a penalty method inspired by | 11], The aptimalicy
system consists of two coupled semilinear wave equations. This type of
sSystem seems to be new, and, te our knowledge, it has not been treated in
the literature. In section 4.2 some comments are given on the existence and
uniqueness of solutions of this system.

The techniques of this paper are general and may be applied in other
situations. In section 5 we give some remarks concerning some possible

extensions of our results. We also pay attention to a model of plates
. 3
¥+ ATy + f(y) = 0.

This problem presents an additional difficulty concerning the unique
continuation of weak solutions and leads us to a question that seems to

be open,

Some of the results of this paper were briefly announced in{ 19],

?. Linear wave equation perturbed bv a bounded potential

4

The aim of this section is to study the exact controllability of the

following wave equation perturbed by a bounded potential

¥ - a4y + Wy =0 in 0

vonlI_ =7T_+(0,T)
¥ o= { @ ¢ (2.1)
n N E
on 0
0 1
v{0) = x75 ¥y (0) = ¥
where W < L“[Q), TD CTrand T > 0.
Our main assumptions concern the pair ‘Tn,T- and are as {ollows:
the pair ‘7p» Tt is such that the linear wave equation (2.2)
(2.1} is exactly controllable for W = 0 ar time T, in
2. - . ; o
the space L7(2) » I (%) and with controls in L (LO)
the pair fTG,Tj Is such that the following unique
continuation property holds: if WE L () and
p e wod il
&% I (Q) satisfies
161




3 0,2 P2 Ml
" - A% + W3 =0 in Q i g + [le Il-l = Clh;n <7 2 (2.5)
L) o (0, TiL7(ry))
a =20 on I (2.3)
%% =0 on :0 and then, by interpolation, it follows that
then A = 0,
It is now well known (it is a consequence of HUM, see [ 11]) that the 0,2 ol iFE . B -
. . 5, 1A I Ll ) vl | S e
hypothesis (2.2) is equivalent to the following one: there exists a positive ”é () 07 vy }(O.T;LZ(FO))
constant ¢ = c(FU.T) > 0 such that for every smooth solution v = ¢(x,t) of
for every y € 0,11, v # % ‘
¢" = a0 =0 inQ -
¢ =0 on I A Pt ; ; I .
REMARK 2.2. The estimate corresponding to the case y = 5 is
1. -
¢ =¢%, et =¢' inn
?
0 042 b2 P
AV A P N | ol 5 . (2.7)
the following estimate holds: H (. (Hyg (%)) {HOD (0,T;L (;0)))
2 b ¢ 2 . ~ 0 ; . .
Hcoill + e ! < C!!f& I, . (2.4) In that which follows we shall skip this case for the sake of simplicity,
H. (52) L% L_(:O) . _ . ’ : - o
0 since all the results of this paper mav be adapted, with trivial
modifications, to this case. It suffices to replace Hg-}hy ”Ué- and H "
. - LY [
(In (2.4) v denotes the unit gutward pointing normal te 3i and %:/2v the by (HSé-JI'
normal derivative with respesct to v.) On the other hand, in order to simplifv the notation, we shall denote

by r-f; the norm in HS("\ and by |17 the norm in HS(U,T:L_(TQ?). The

a0 = . i v 5,1
REMARK 2.1. There are several sufficient ceonditions on the pair !.G.T: in ] b 2 ) 0 . o
S . norms in L7{.) and L ('UJ will be respectively denoted by [-! and it S
erder for (2.2) to be satisfied: £
0. N .., o TR a— 00 iy > 00
) . . ” R L P 0 e sy ol ; ; . S — . g
{a) Given any x € R, (2.2) holds true for p TME k= x ) REMARK 2.3. From Ruiz | 14] we know that hypothesis {2.7) holds true if
| 0, . . s n . S
and T > 20k - x| - (we denote by - the scalar product in R ). This can ru = ¥ and § B dfamerss wp o,
L ¢2) ; .
be proven hy using a multipiier technigue (see Hol 4| and Lions [ 10,11] ). Hypothesis (2.9) is very probabls redundant since (2.2) should imoly
(b) The property is alsc satisfied when the pair 'Tu,T is such that (2.3). However, this unique-continuazion problem seems to be open.
- P - - L5 =
every ray of geometric optics intersects the ser f“ = T“ - (0, T) 1n a Once (I.h) is proven, from HUM, the following statement holds concerning

nendiffractive point. This condition turns out te be also necessary, the relationsh:p between the repularicy properties of the controlled states

except for some very special cases. These results have been recently proven and the control functions:
by Bardos, Lebeau and Rauch { 1] by using micrelocal analysis techniques.
) . when W 0l and the initial and final data belong
From | 11, chapter }, Theorem 6.4] we know that (2.4) implies the ' i )

to HyC) » HY (1) for some ¢ £ 10,1], v # 1/2, then i2.8)
. il
¥ 2
i {r 3
#.—,T,L { D);.

estimate - : ;
the contrel function may be chosen in B
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In section 2.1, we shall generalize these results to the general case
of an arbitrary bounded potential W€ LW(Q) under the assumptions (2.2
and (2.3). That is, we shall prove that when (2.2) (or equivalently,
estimate (2.4)) holds for W ° 0 and €2.3) holds, then (2.2) and (2.8) hold
for every bounded potential W. In section 2.2 we shall prove the uniform
exact controllability for v > 0. This cancept, mentioned in the introduction,

will be made more precise below.

2.1. Exact controllability

We have the following result.

THEOREM 2.1. Assume that the pair fFD,Tl is such that (2.2) and (2.3) hold
true. Then:

(a) For every bounded potenrial W€ Lm{Q), the svstem (2.1} is exactly
controllable in LE(H) x H-'(L) with controls in L:(ZO) at time T.
I , 0o

{b) Moreover, if iyo,y I, 'z ,z 1 € Ha(ﬂ) x HT_l(J) for some

. el
— 20,1, v # 1/2, then the control may be chosan in Hé(Q,T;L‘(TO}).
Procf. We proceed in three steps.

Step |, From HUM, in order to prove the statement (a) of our theorem it

suffices to establish the estimate (2.4) for solutions af

8" - 23 + UWs = 0 in Q
2 =0 on L (2.9)

That is, it is enough to prove the existence of & positive constant

C=20C(r ,I,¥) > 0 such that for every solutions = = “(x,t) of (2.9) we

(2.10)

We write % as & =¢ + 1, where ¢ is the solution of (2.9) with W = 0,

[
i

¢ - Ay = 0 in Q

¥ =0 on & 2.11)
0 ' .
¥(0) =07, v'(0) = @
and n = n(x,t) satisfies
n'" - An + W o= -We in Q
n=20 on (2.12)
n{0} = n*(0) = 0.
Applying (2.4) we deduce
LIk Sly2 [28,2 an, 2 )
ol + e’ i7" =l + =21 T} 2.13
| [ av EU ov _’DJ ( )
On the other hand, from [ 11, chapter I, Theorem 4.1.] we know that
r-*ﬁ; 1 A
I35l < clud] 2 <cllell, .
0 L (C,T;L7() L7(0)
Combining this last inequality and (2.13) it follows that
02 food 2 38,2 T4
lie '!fl M CR R e L P (2.14)
"0 L7(m
Therefore, it suffices to prove the following estimate:
: 35
Hell ol P (2.15)
L7(qQ) 0
We argue by contradiction. If (2.13) is not satisfied, there exists a
o i ; 1
sequence of initizl darta -rf,vkr such that the cerresponding sequences of

solutions ick » 17,1 sarisfy

Combining (2.157-(2.17) we deduce that :HE,&;j is beunded in

e 2
hU(“) * L7() and thus
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; - i il g o 2

wk',wkl are bounded in L (D,T;I!é(u)) COWT (D, TLTE) . (2.18)
Therefore (see | 16])

. 2
{ik},{ﬁk] are relatively compact in L(Q). (2.19)
By extracting some subsequences (which we still denote by ka}, {Qk})
it Follows that
. e
;k'?k - ¢ ,8 in H () weak
o )
¥ ¥ in L7((}) strongly (2.20)

The limit functions v,P are respectively solutions of (2.12), (2.9) with

i tnbeda) axea 806’1 € Bo() * L(@). Tn addition, from (2.16), (2.17)

and (2.20) we deduce that

Let us prove that (2.21) and (2.22) are in contradiction. Obviously,

it suffices to prove that (2.22) implies & = 0 since then ¢ 0 which

(2.21), But thanks to hypethesis {2.3), (2.9) and (2.22)

Step 2. In order ro prove the second statement (b) of the theorem we
may applvy HUM. Then, it suifices to prove the estimate (2.6) for solutions

of (2.9), ‘that is5,

for every ¢ © (0,1, 1 # % -
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Applying the method of step | we may easily prove

12 132 - aBy,2 anp2
9 (Bl 120} L
TlL”l'Y S H'Y < CT {La“iLT.?D +!'ﬁv|—1_rn }. (2.24)

We note that the-constant CY on (2.24) does not depend on the potential W.

Indeed, CY = ECT' where €y is the one of (2.6) which corresponds to the

potential W = O.
Therefore, we have reduced the problem to the proof of the following

estimate:

-~
]
r3
wn
~—

nanyg |38,
2L, . <=
=y LY':O J ﬁVd_Y,ro

As in step 1, we may argue by contradiction proving that, if (2.25) does

not hold, then there exists a pair of initial data

1 &% =Y e ; ;
[50.? P E Hi Y(4) x B () such that the corresponding solutions ¢,8,n

{
of (2.12),(2.9), (2.11) satisfy
el . ¢ = (2.28)
v sl
and
(2:2%)

— " 0 on’
)

On order te reach the contradiction between (2.26) and (2.27) we must

appiv a unique continuation result to . However, (2.32) only applies for
I ) y
seolutions 0 5 H (G) and we note tuat - = “(x,t) 1s a priori in the weaker
'

class (, > 0)

= f'UnT;Hé_}L_H RGN AN T

in order to solve this technical problem we need the following lemma.



]
LEMMA 2.1. Every weak solution 8 € L7(N) of (2.9) such that

a\e: T
E-ODH:.O

belongs te the class HI(Q).

a9
Proof of Lemma 2.!. From the fact that 8 € L7(Q) it follows that its

2 = 2
initial data satisfy[ﬂo,ﬁll € L°(2) x H P(n). Then, ¥ € L7(Q) and hence

n € HI(Q). On the other hand, from {11} ,Chapter |, Theorem 4.} we deduce

that

?n,_. ‘2(?' )
— = u b .
2y 0

Since A /3v = -An/#v on EO it follows that

Combining the estimate (2.4} and (2.28) we deduce that

)
6%e' e nl » @) ana 2 € vl B

The proof of (2.25) is now completed. Indeed, from Lemma 2.1, the
3 . 2 P I
weak sclution @ satisfying (2.27) is in the class H (Q) and from (2.2)
we deduce that # = 0. Hence rn = O, which contradicts (2.26),
Step 3. For the sake of completeness we briefly describe how HUM is
applied and the exacr controllability results of Theorem 2.1 are obrained
from the estimates (2.10), (Z2.23).
In that which follows we denote by L rhe canonical isomorphism
- 2 v 5 v 1
¥ - o i - H
between H " (0,T:L lh)) and ADfO,T;L (h)) for every v =1 0,1] , v # 5 -
1t is defined as follows.

o 2 5
For every v € 1l !(O,T:Lb(}J) we define L!v =y € Hé{O,T;L'(Qﬂ) by

{2.29)

We have

2 i 12
'L]v,v‘ = fﬁ (Ix'|” + x]7)drde = PVELI,FD'
£y
5 |
We then set, for every vy € [0,11, v # 5,
Y =¥ 2
LTU = (Ll) v Yv € H "(0,T;L (IU)) (2.30)
and it follows that LTV = HB(D,T;L‘(h)) with
o2
<L v,v> =||v|” . (2.31)
T '-'YNO

We now remark that, thanks to the linearity of system (2.1), it is

4 3 - 0 i
enough to prove the reachability of the rest peint {z ,z } = {0,0}

(see Remark 2.4 below). Following [ 11 ] we construct the operator

AT < W) - e < 0T (2.32)
given by

nY{eO,e’= = {y'(0), -y(0)} (2.33)
wvhere y = v(x,t) satisiies

y' -y s Wy = 0 in 0

L I L“(:thsj on Iﬂ (2.34)

.
¥ !
L' 0 on AP

y(T) = ' (T) = Q.

In (2.34),6 = 6(x,t) is the solution of 72.2) with initial data {ﬁO,El}.

The solution y = y{x,c) of (2.34) 1s unique and it is defined by the
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e % ) 1 { 2 . .
transposition method (sce | i1, chapter [, Theorem 4.2] for this particular where h & L7(Q). Defining z by
case and Lions and Magenes [i2] for a general description of the method).

L]

4 2.5 vopd i 2 SEAY :
In Remark 2.5 we pive some details on the regularity of y. e L in 0

On the other hand, it is easy to check that

, z =0 on I (2.40)
0,1 A8, 3 CENT c ’
a1 at 6% s e &8, B a2y (2.35) 0 )
YRR v V=YL Ty z2(T) = 2z ,2'(T) = = in U
and considering the new dependent variable v - z, one reduces the praoblem

Combining the estimates (2.10), (2.23) with (2.35) we conclude that
of driving the system (2.39) from 1\'0,};1! to ?zo.z[}, to the problem of

- - - ] 0o . P,
.".T defines an isomorphism from i Yy » 0V () to driving the system (2.1) from {y - z{0), vy - 2'(0)) rco (0,0}.

-
i HY‘f(r} (2.36) From (2.38) we deduce that the control associated to (2.39) for initial
o) a2).

0 and final data {yo,yl.‘,(:o,zli satisfies

”
. y € (0. T L () aed ; 2. o2 0,2 y Iy 2 0,2 T 2
g et TR () S SRS ST §5.4 S ol e 0T 2 T e I i, L
v .,vy ! € H,f](?-') » I (1) ve 10,0} at time T is then given by o i Y L2
r l:‘D‘.i‘. ._{.] n'.
iy » =NY . 7Y (2.37) REMARK 2.5. 1n order to study the regularicy of sclutions to (2.39) we
- (:fi may write v = Yyt ¥, where
v Au 2
y'!' - hy, = 0 in0
Obvicusly, we have the estimate
= v on [
: B . bl W %1 b (2.42)
Hoit  w oo tIME e PR 9 {2.38) =1 1 0 on I\.".D
i hl. n '. - -\.,. ~ - I“'I
¥y, (0) = ¥100) = 0
The proof of Theorem 2.1 Iz now campleted.
and
REMARE 2... We may easily extend Theorem 2.1 to the svstem
¥ho- Sy, - Wy, = “Wy, o+ b inQ
y"' -y + Wy = n in Q
v, = 0 on D (2.43)
(v oon I n s 0
y = JL ’ —(._ (2.39) v, (0) = v, yh(0) = :‘.I‘
O on ZNZ, - <
1

2
From | 11, chapter 1, Thecrem 4.2) we know that when v € L_(ZO) then
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y, € 1700, 1.2 @) nu' o, (@),

2
It is then easy to prove that if v € HE(O,T;L“G}'D then

2.2. Uniform exact cont

roliability

In the semilinear cont

information on the depe

ext of sections 3 and 4 we will need some

ndence of the control function constructed in

y, € ¥R, @) w0, @), (2.48)
On the other hand
n T_!im =1
_‘53"1 = ---J,vI e W (O,T;H (Q))
v, EHY(DTL("))
and then
v, € 00, m5u' 2 (ay) (2.45)

On the other hand, we deche by standard arguments that when

(ﬂ) * L (@

Y x
{)' ,y .h} € HO(“) H

:,_., Fois L
¥p € 1760, T;Hl @) 2 w0, 10 @),

This implies

" the solurion y, of (2.43) satisfies

- H &
v, € H' I(D.T;Hé{ﬂ)) n 0,1 0)). (2.46)
Combining (2.44}-(2.46) it follows that

2 , 43
it 5 + ll¥l” "

5 (0,T;H )) H'(0,T;L ()

] 2 1 th 2 2
<c i vlf ¥ O+ I::-'i;:_] + Inlf", 1367
¥ a ¥ T L (ﬂ)

for every solution of

(2.39) aad for every

TE[O0,

ll

P} —

THEOREM 2.2,

Theorem 2.1 with respect to the potential W when the initial and final

data are fixed.

Concerning this question, we have the following result.

Let us assume that the pair (Fn

,T}

Let us fix some initial and final data {yo,yl}.

with y €[0,1), ¥ #

satisfies (2.2) and (2.3).

tefogly e ) « 1 (ay

Then, the control v given by Theorem 2.1 remains

bounded in HD(G T; L (r )) when the potential V varies in a bounded set

of L~ Q).

tep 3 of the proof of Theorem 2.

Proof. Taking into account the construction of the control v made in

1, we deduce that the proof of Theorem

2.2 reduces to prove the following statement (note that the constant C

of (2.24) does not depend on the potential W):

the censtant CY = CT(W) of the estimate (2.25) remains

bounded when W varies in a bounded set of Lm(Q).

(2.48)

We argue by contradiction. If (2. 48 ) is not satisfied there exists a

Iy

sequence of potentials (V } and a sequence of inirial data [rL Eky in

) o« "(!) such tha:

Hw | <€ VYkEWN

L (qQ)
i,

' ki .
Ry =1 Vk &N
4 -

=¥y
H'k

| ;~—? =~ 0 as k - =,

||v‘,:-\,

Combining {Z.24), (2,

50) #nd (2.5%) we dedues pHas !eg,oi

} is bounded



in }{[')_T(ﬁ) x H Y(2). Hence

fe,1,(8,] are bounded in L"(o,r;ué"“(n)) AnwbToo,mETY @) (2.52)

and
= ™ 2 ‘
(n,) is bounded in L (O,T;Hé(ﬁ)) n w70, 1L% @), (2.53)

From (2.52), (2.53) we deduce that (the fact that y < | is essential at

this level!)

2
{wk}' {Bk], {nk] are relatively compact in L7(Q) (2.54)

an —y B
{33— } is relatively compact in H (O,T;Lh(Tﬂ)). (2.55)

0
By extracting subsequences {which we shall still denote by wk‘;b""J we
deduce that
Vv Woin LT(0) weak ® 2.56)
. el
l"k’ L‘ + {¢,%,n} in L7(Q) strongly 2.57)
,cnk _”- . o
o 2L i Y0 TL(T.)) stre ; 2.
= Jr Bu!x in H "(C,T:L {‘OJ’ strongly. (2.58)
0 “0

Obvieusly {(2.56), (2.57) suifice to pass to the limit in the equations

rorresponding to fwk» . At the limit we find that for come initial data

b N N . .
5,5 v H () = H (1) (corresponding to the limit scluticen # in

)
€2.57)) and the potential W& L (Q) (given by (2.5A)} the corresponding
sclutions %, n satisfy (2.26), (2.27), The arpument of the proci of

Theorem 2.1 allows us ze prove that (2.26), (2.27) are in contradiction.

This concludes the proof of Theorem 2.2. |

REHARK 2., When y = | we may only prove that {v } and m } are bounded
in L (Q) and this does not suffice to pass to the limit in equations
(2.9), (2.11). In this case we may prove that the control v remains

bounded in Hé(O,T;Lz(TO)) when the potential pgoes over a bounded subset of

- 2
L (€) that is relatively compact in L"(Q).

3. Exact controllability for the semilinear problem

In this section we present and prove the main result of this paper which

concerns the exact controllabilicy of the semilinear problem (1.1)-(1.3).

THEOREM 3.1. Assume that the pair [FO,T] is such that the statements (2.2

(2.3) hold true. Then, for every f such that f' € LQ(R) and vy € (0 l),

Yy # % the system (1.01)=(1.3) is exactl) controllable in H () x H (ﬁ)

at time T with controls in H' (0,T; L (F\))}. In other words, for every
initial and fimnal data iyo,y?} lzn. l}, € H () x Hw_lfﬂ) there exists a
control v € h (0,T; L (r 0)) such that the solut1on y = y(x,t) of (1.1)=-(1.3)

satisfies (l.~

Proof. let us fixe v € (0,1}, v # 5 and the initial and final data

. 0 1 . : =
!YU.? } ‘ZO.ZIF € HB(J) x g1 ()). Let us assume first that £ € C (R).

As mentioned in the introduction we construct a nonlinear operator
2 2
LEEN A IR AN ()] (3.

as follows.
o
We set gis} = [f(s)-£(D)] /s and we note that g € L (R). Then, given

4
£ % L7(Q) we consider the problem

5

o= Ay + g{iy = —f(D) in O

’ 1” on -0 (3.2 !
0 '

¥(0) =57, y (o) =y’
0 ¥ ; 1

v(T) =z, v'(T) = z




Applying Theorem 2.! and Remark 2.4 (with the patential W = p(f) and

2
h = -f(0)) we deduce the existence of a control v = v({) € H&(U,T,L (FO))
(uniquely defined by HUM) such that there exiscs a unigque solution

y = y(£) to (3.2). We then set
NE = y(£) (3.3)
Taking inte account that

sl . <lle ve € 1% (q)

L (Q) L (R)

and from the uniform exact controllability result of Theorem 2.2 (we use

at this level the fact that v < 1) we deduce

i 02 . 04,2 P2 a2 5 2
vl i < Cyihv !i « lz [% + by !L—l + iz ey + FEC0y |7}
YaTg
vi € L7(Q). (3.5)
Estimate (3.4) combined with (2.47) yields
! 2 | -2
Iyl _, - «llva |, 5 . RE
7 0, Ton o)) E'(0,T;L°(2))
by 3
¥E S LT(Q). {3.5)
Since v > 0, the embedding {zf. | 16])

-1 If’j T 2 o .-.‘
HY (0,138 7@y 0 R0, TIL)) © LT

is compact. Therefore, from (3.5) we deduce that
. 2 ’ 2
(i} the nonlinear operator N is compact from L1} into 1.700);
2 2
(ii) the operator N maps L7(Q) into a2 bounded set of L Q).

On the other hand, taking isto account that g is continuous (since f

; by e » 5 . ’
its £') it is easy to prove thar ¥ is continuous. Thus, we may apply

(%]
i
T

Schauder's fixed point theorem and cenclude that
2
there exists some § € L°(Q) such that y(£) = ¢ (3.6)

which means that y = y(&) satisfies (}.1)=(1.4).

Therefore, the centrol v = v() corresponding to the fixed point £ of
(to the potential W = g(5)) answers to the question. That is, it drives the
system (1.1) from (yo,y!} to {zo.zi] at time T. Obviously, by construction,
v € HS(D,T;LE("O)). |

In the general case where [ € Lm(m) (but f is not necessarily € ) we

introduce a regularizing sequence {fn} C CI(R) such that

fo+f inlT(@R), asn- e (3.7)
Hellb o <letfl vn € W, (3.8)
L (R) L (R)

The system (1.1)-{1.3) is exactly controllable for each nonlinear term fn.
On the other kand, from (3.8) we deduce rhat the sequence of controls fvni
corresponding to ffn: {and to the fixed initial! and final data fyo,y 1,
[zo,:ll) is bounded in HB(D,T;LZ{'O)J. Thus, we also deduce a uniform
bound of type (3.5) on the sequence of solutions {yn}. These uniform
estimates and (3.7) allow us to pass to the limit in the equations

corresponding o {fn,vn,y } . At the limit we find a control v driving the

n
; N . : . .01 0 1.
system (1.1)={1.3) for the nonlinearity f from {y ,y !} to {z ,z } at
time T.
The proof of Theorem 3.1 is now completed. ]

REMARK 3.1. Tne solution v = v(x,t) of the system {1.1)~(1.3) belongs,

by censtruction, to the class

i /2

- - 7
B (0, T:m ' T(n)) noEY(0,TiL7 (). (1.9)

We may also study the regularity of y as follows. Ve write y = 3, + y,
g ) b ) ¥y y

where v, satisfies (2.42) and y, is solution of



y; - Ay, + f(y2 + yl) =0 in Q

yg = 0 ont (3.10)

o .,
yz(ﬂ) =y, yz(O) = 5

From Remark 2.4 we know that ¥y belongs to the class (3.9). On the
other hand, it is easy to prove by standard techniques that

y, € 17,1 @) 0w T, 1Y @) (zn)

Finally, as in Remark 2.5, (3.11) combined with the fact that ¥y is in

(3.9) allows us to prove that v belongs to the class (3.9).

REMARK 3.2, Theorem 3.| proves the exact contrellabilicy of (1.1)-{1.3}

in the class

U {Hg(u) « W Nay)
y=>0

but not in LE(QJ * H-I(A)- This is because of the lack of compactness of
the operater N when y = 0.

When f is asymptotically linear the exact controlliability in
LEKQI * H_‘(i} has been proven [ 17,18].

On the other hand, when the initial and final data belong to
?;(a} 4 Lgfli we have not been able to prove that the control lies in
Hé(G,T;Lz{TDB), since the unifcrm exact controllability of (2.1) has not

(0,T;L f.O}\ regulari

|
Q
may be proven when { is asymptatically linear by using the methods of |17

and | 18].

been established in this case, The K

4, Existence and characterization of optimal controls

hz

In Theorem 3.| above the exact controllability of problem (1.13-(1.3) has

been proven. It is well known that, when the system is exactly controllable

TTTOT every T > TO’ there exist infinitely many controls driving the systom

from any initial state to any final state at any time T > Tﬂ. 1t is then

natural to look for optimal controls (controls minimizing the corresponding
boundary norm) and to try to characterize them by means of some optimality
conditions (the optimality system).

In order to make more precise the functicnal setting of these problems,
let us assume that [FO,T' verify (2.2) and (2.3) and let us fix some
initial and final data

iyt 120,21 e Hg ) x BTN, withy € (0,1), v £ 1. 4. 1)

We then introduce the set of admissible controls as follows:

Uy =1{ve H;(O,T;L‘(ro)) such that the solution y = y(x,t) of

(1.1)-(1.3) also satisfies (].4) (4.2)

and the cost function

| T ;
J(v} = 5N . (4.3)

From Theorem 3.1 we know that the set U d contains infinitely many controls.
a

Now, we consider the following problem:

to find v U such that J(v) = min J(u). (P)
ad =
vl
ad

It is easy to see (since v > 0) that at least a scolution to problem (I')

exists. In fact, any weak Ha(ﬁ.T:L {75)) limit of a minimizing sequence

leads to an optimal centrol.

REVARE 4.1. The nonlinear term of (l.l) can be easily handled to prove
a

this statement. The facr that v > 0 provides the compactness in L7{0)

which allows us to pass to the limit in the nonlinear term.

In the linear case where f{s) = as for some q € R, the ser U 4 is
a
convex and ther the optimal contrel is unigque. This opt.mal control is

in fact the one that HUM provides.



1n the general semilinear framework™ the set U d is no longer convex and
a

we do not kmnow whether the optimal control is unique or not. In order to
obtain additional information on the optimal controls it is interesting o
write down a set of equations (an optimality system) that they satisfy.

In section 4.] we shall use 2 penalization method inspired by | 10] and
[11], which will allow us to prove that some of the optimal controls

satisfy an optimality system. This system consists of two coupled

semilinear wave equations and it is a natural extension of the optimality

system of the linear framework that motivated HUM.
This type of system seems to be new and therefore, in section 4.2, we

shall give some remarks on the existence and uniqueness of solutions.

4.1, Obtaining the optimality system

For every ¢ > 0 we introduce the penalized cost function

,2 ! {§ 8 |2
L tamllyt — ey + EGOIT, (4.3)
Yo T L7(Q)

and the set of admissible states fy,v}:

. 2
{{y,v} such that v € HE{U,T:L‘(TO)} and v = vix,tr)

P 5 s
Uad = (4.3)
satisfies conditions (4.6) below}
2
y' - iy £ LTQ)
v on I
gw g 0 (4.6)
Le on "\'5

y(0) =50, vy (0) =¥ ; y(T) =z, y'(I) ==z

-
REMARK 4.2. Every funcrion y that verifies (4.6) satisfies y € L7(Q)

and then f(y} € LZ(QJ. Hence, the function JE(-,-) is well defined on
r

{
Jad'

Ve now consider the penalized problem:

§ P .
to find iyf,v[]EUad such that Jc(yc'vc) = qmin v Jc(y,u). (PE)
(y,u)EUad

The following lemma is easy to prove taking into account that y > 0

. ; p 2
provides the compactness in L“(Q) that allows one to handle the nonlinear

term f(y) of J:'

LEMMA 4.1. For every ¢ > 0 problem (Pc) has at least a solution

P
{Y:’vc) € Uad

The main result of this section is as follows.

THEOREM 4.1, Assume that the pair {?O,T]issuchthat(2.2)and(2.3)aresatisfkd

] -
and £ € C (R). Let vy € (0,1), y # %, and {yo,y]}, {zo,z]} £ Hg(ﬂ) x H r(Q).
Let {yc'vc)f>0 be a sequence of optimal controls associated to the

famil i
amily of penalized problems (?E)£>ﬂ‘

Then, for some subsequence (which we still denote by {y ,v_ ) >0) we
? £’'c'e

have

2 -
iyL,vi' s dy,v) in L7(Q) x L-(TG) strongly as ¢ - 0 (4.7)

where v € Uad is solution to (P) and y satisfies (1.1)=(1.4).

Moreover, we have

48
v o= L'{:T ) on 0 (4.8)
for some % = %{(x,t) such that {v,"" satisfy:
yn e QF 4 f(y) =0 in 0

" = A6+ f'(y)v =0 in 0

L (#8/3v) on C
% j H 0 ” =
b 1 =0 on L (4.9)
0] on NI

-
=
=
=
L]
%
-
ol
o
=
"
-
“
<
=
!
—
n
]
%
-
—_
-
=
"
2]

1=y

I ™ e
0 () 0w (O, T;H ().

5 L(0,T:H

381



Proof. Ve proceed in two steps. This argument, applied with ) < 0 and passing to the limit as A t O,
provides the inverse inequality of (4.14) (< 0 instead of = 0). Hence,
Step |. Optimality conditions for the penalized problem (Pc)' ve have

Let {ye,vc} be a solution of (F_). Then for any pair {z,u} such that

U | e
v, ,u_>+ E(}';:' <8y * Oy Yyz" - bz + ¥ {)'E)"!) =0

2
z'" - Az © LT(0)

2{0) & 25(0) = =0T} % 2" (I} = 0 Viz,u} satisfying (4.10} (4.15)
Yo z
€ H T;L°(T on I . .
2 = { H 0( LR U)) 0 or equivalently, that the function
. 4.10)
0 on ‘_'\._0 ( ) |
e - L1 - .
g ™ byl =AY EG D) (4.16)
we have
satisfies
{y + 3z, v +Xu‘€U:d,‘:’-EJR (4.11)
6" - ne Y A = i
e £+E(y()c O Q
and
& =0 on L.
£
Jiy ,v i1 <€J{y +hz,v = ‘u' ¥iFR, (4.12) . i -1 R 2 . .
e 7eT e £ s € 3¢ foo =L (v ) € H "(0,T;L77)) on I,. (4.17)
E A3 0] D
From (4.12) we easily get (in that which follows, for simplicity, we
. s .. . 3 a a2 : nti s R [ =
denote by {y,v! the pair Ug"’r": The estimate (2.23), applied to the potential he: £ (yc) vields
5 p 2 2 1 1 i il
2w i P ‘ - ;"-&D)I.,, +|let (i <c | G (4.18)
—hull™ s dev,ue 4 o iy + a2) | - i, ) 5 T € ¥ Tef o Eivag
= o <E Lo Lo
ML O P R ikl f".""J') Step 2. Passing to the limirt,
A / Let us consider a sequence of solutions {v_,v ° wg TP the family of
= o .
" : %
2 4 , problem (P ) _ .
+ = |z - zz|f7, + =~ (2" - tz, f(y + 1z)) = 0 (4.13) . el
2c Lo £ 2 First of all we remark that
_ . 5 min J (y,u) € min J{u} wvc >0 (4.19)
where <-, -> denotes the scalar product in H_ (D, T;L7(r.}) and (-,-}) the . _n E EU
2 9 g (3, wEU ad
scalar product in L7{(Q}. ad
We divide {4.13) by » > 0 and pass to limit as / } 0, It follows . ) L P . o
since for every u € Uad’ the pair ‘y{u),u} € U;d 1s admissible for
1 problem (P ).
cv,u> + — (y" = 2y + fiy}, 2" - pz + f'{yviz) = 0, (4.14) B
£ From (4.19) we deduce that
383



Hvslk!ro <C Ve>0 (4.20)
velp Il <Cc v > 0. (4.21)
RA(e))

We may easily improve the estimate (4.21). Indeed, taking into account

that v > | and

e ool < lietll ve > 0

L7 () L™ (R)
we deduce, from the "uniform comtrollability property" of Theorem 2.2,

that the constant CY % of (4.18) is uniformly bounded. Thus, (4.18) and

(4.20) imply
b ol +ller@|f <c. ve>o (4.22)
e " ey € ¥ ¥

or equivalently

{6 i ., is bounded in L’(G,T;Hé"‘(;)) awb T, @), (4.23)

On the other hand, from Remzrk 3.1 and (4.20) we deduce that

=1 1/2 ¢ 2 ;
iy } is bounded in H' “{0,T:H / (3)) D" HYO,T;LTG)). (4.24)
‘e g0
From estimates (4.20), (4.23) and (4.24) and the fact that y € (0,1},

by extracting some subsequences (still dencoted by v,y 8 ) we have

. 2
TR : ! SL(T - e (] (4 .25
v v in HG(D,T,L (,nlJ weak, v Lad 5)

ol
ly & 1 = 1y,8} in L7(Q) strongly (4.26)

Assertions (4.25) and (4.26} zllow vs te pass to the limit in (4.6) and

(6.7). On the other hand, (4.23} implies

(L.27)

Therefore, (y,®) satisfy (4.9) with
L (3?) ¥
v LG e Iy
On the other hand
J(v) < lim Jc(yc've)

e~0

which combined with (4.19) yields

J(v) = lim J (y_,v_ ) = min J(u).
" EBEMETE p
e+ u=ld
ad
Then
Pv b = il . as € - 0
c 'u'o !no

and from (4.25}) we conclude that
. ¥ 2
v+ v in H (0, T;L7(F )) strongly.
£ 8] 0 =
The proof of Theorem 4.1 is now coumpleted. H

4.2. Some remarks on the optimalicy svstem

4.2.1 First of all we note that the exact controllability of (!.1)-{I
. Y- N M — . ! . v oY Fons s
in By(2) H'7{Z) (v € (D,1), v # =) with controls in Hy(0,T5L7(7)) =

time T is equivalent to the following statemenc:
i 2 1 o 1, y 5 i i
For every 'y ,y i, {z ,z } € Hétx) ~ B (&), the svstem 7
- 4

{4.9) has at least a sclution {y,8}.

Indeed, we have proven in Thecrem 4.1 that the exact controllability
implies the existence of a solution to (4.9). Conversely, it is obvious
that if (4.9) bas a solution for every initizl and final data then the

system is exactly controllable.

i)

t

28)



L[}
(=

4,2.2 In the linear case where f(s) = as for some a € R, system (4.9) g = 4D+ E'(E)D in Q
corresponds to the scheme motivating HUM. In this case it is easy to prove i
8 = on L

that the solution of (4.9) is unique. Indeed, let us assume that i i
[yi’ei}jﬁl , are solutions of {(4.9). Then y = ¥, < ¥ 3 = 8, - iy satisfy a(0) =¢e, 8'(0) =8
the same equations with initial and final data {0,0}. Multiplying by a

and then

in the equation satisfied by v and integrating by parts we get

y" - ay + f(y) =0 in Q

B _ v on %
E’— 0110 )
L (38/3v) on L
ve {0 0
which imply, by (2.23), 8 = 0 and hence y = 0. ’ 0 on I\E,
We do not know if the solution of (4.9) is unique in the pemneral 0 |

semilinear case f' € Lm(R). yle) =z, ¥'(T) =z .

4,2.3 Llet us consider again the linear case f(s) = as, a € R. As we 9 7
The nonlinear operator K : L7(Q) = L7(0) such that K(§) =y is well

have seen in the proof of Theorem 2.1, the first step on the application 0 7

. ; . defined and compact and it maps L°(Q) into a bounded set of L7(Q). Therefore
of HUM is the construction of the operator &4 . In the semilinear framework,

J . we may apply Schauder's fixed point theorem and the existence of a solution
this construction yields to the study of the existence and unigueness of
i . to problem (4.29) holds. This argument applies also when y = | (note that
——galytions to the following svstem:
we have not used here any estimate of type (2.23)).

) . We do not know whether solutions to (4.29) are unigque or not under the
y' -ty + f(y) =0 in Q . 1 R - .
sole assumption f € C (R),f' €L (R). Of course, uniqueness may be proven

under some additional! (but not natural) restrictions on f. This gquestion

p" - 8 + f'(y)s =0 in Q
— may be interssting even independently of the exact controllability theory.
L (@8fow) on =
i b o] . .
=0 oni; y-= { ! {4.29
0 onm I, 5. Concluding remarks
) 1
w(T} =275 y'(T) =z . : ; . :
S.1. The techuaiques of this paper are general and apply, in particular,
R(0) = FO; £'(0) = 6' for equations
for give frinl wod Eingl duta 6o2') 5 B V(o) # 4 i - 5
fo g;v n initial and final data . € H, (% v, W Ay - flx,t,yr =0 (5.1)
: : =1
iz ,z 1 & HE(&; > H' ).
)
I
It o E e bl = 3E 4 . 3 ¢ there ists a ; : P : Fi
When v = (0,1}, v 5 e LE LS BRSY 10 Bee that there exists at least where A is a second order elliptic operator with smoeth coefficients only

* 29y § 3 — se ol ; Tlve : : : s 0 i
a solution to (4.29) for any T > 0. We proceed as follows. Given depending on the space variable x and f : C * R » R -~ R is a locally

2
I3 ; - % i . - + . . N = -~ '
£ € L7(Q) we solve Lipschitz continuous function such that 3f/3y € L (4G x R » K).

186 387



—=ven under the weaker regularity assumptions W € L

5.2. The same techniques allow us to treat Neumann and Dirichlet/Neumann

vl

boundary conditions but for brevity we will not consider these cases here.

We refer to | 18] for the case where f is asymptotically linear.

. It would be very interesting to have some general unique

|Lr|

continuation results ensuring that (2.3) holds for any o C I when

T is large enough.

The results by Ruiz [ 14] show that when TO =T, then (2.3) holds
™ eqy and
g € LZ(Q). However, the results from [l14] do not apply to the case

where FD is a subset of I'.

The question of the unique continuation of weak solutions seems to be

crucial when one tries to extend the results of this paper for models of

plates, for instance,

y" o+ ATy + £(y) = 0.

In this case, we must establish a priori estimates for solutions of

-

B" + 478 + WA = 0, with ¥€ L7(Q) (5.2)

wiiich seems to need a unique certinuation result for weak solutionms

2
H™(Q). To our knowledge, such a result has not been proven in the

m

literature.

5.4, The method of this paper does not apply to problems of type (1.1}-

{1.3) where f is superlinear, for instance,

yp|

fy) ==y]" 'y, P> 1. (5.3)

In [18] we have proven the local contreollability under some natural

gprowth sssumptions.

The stabilisation results of Komornik and Zuazua [ 6,7} (only valid for
the + sign in (5.3)) allow us to prove that every initial state may be
driven to every final state, but a priori in a time that tends to
infinity when the norm of the initial and final data goes to infinity.

The exact controllability problem remains open in the superlinear

case.
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