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Motivation and Introduction
The optimal shape and placement of sensors frequently arises in industrial applications such as
urban planning and temperature and pressure control in gas networks.

Fig 1. On the left, the European Gas Network and, on the right, optimal sensors (in red) over a graph corresponding to

different penalisations of its length.

Roughly, a sensor is optimally designed and placed if it assures the maximum observation of the
phenomenon under consideration. Naturally, it is often designed in a goal oriented manner,
constrained by a suitable PDE, accounting for the physics of the process. Various optimization
algorithms such as adjoint methods and random and heuristic search have been implemented.
Here, we address the problem in a purely geometric setting, without involving the specific PDE
model. We consider a simple and natural geometric criterion of performance, based on distance
functions. But, as we shall see, tackling it will require to eventually consider a PDE inspired
method.

Mathematical formulation of the problem
We adopt a shape optimization point of view. Given a region Ω in the euclidean space, we are
interested in the optimal shape and placement of a sensor ω ⊂ Ω, of a given volume, in such a
way to:

”minimize the maximal distance from the sensor ω to any point of the region Ω”.

This problem can be formulated in the shape optimization framework as follows:

inf{dH(ω,Ω) | |ω| = c0|Ω| and ω ⊂ Ω}, (1)

where c0 ∈ (0, 1] and dH is the Hausdorff distance defined as:

dH(A,B) := max(sup
x∈B

dA(x), sup
x∈A

dB(x)),

where dK : x 7−→ infy∈K ‖x− y‖ is the distance function to the set K.

Fig 2. The Hausdorff distance between the sensor ω and the set Ω.

Additional constraints
By using a homogenization strategy, which consists in
uniformly distributing the mass of the sensor over Ω (see
Figure 3), we see that problem (1) does not admit a
solution as the infimum vanishes and is asymptotically
attained by a sequence of disconnected sets with an
increasing number of connected components. Thus, it is
necessary to impose additional constraints on ω in order to
assure the existence of optimal solutions.
We investigate the problem for the following classes of
sets:

Fig 3. Homogenization strategy.

I K = {ω ⊂ Ω| ω is convex and |ω| = c0|Ω|}.
I BN = {∪Ni=1Bi ⊂ Ω | (Bi)i are disjoint balls s.t. |Bi| = c0|Ω|/N for every i }.

We are therefore interested in the problems:

min
ω∈K

dH(ω,Ω) and min
ω∈BN

dH(ω,Ω). (2)

Varadhan’s approximation of the distance function
Addressing these problems requires to obtain a reliable numerical approximation of the Hausdorff
distance. We do it using the following classical result:

Theorem 1. (Varadhan 67’ [2])
Let U be an open subset of Rn and ε > 0, we consider
the problem {

wε − ε∆wε = 0 in U ,

wε = 1 on ∂U .

We have

lim
ε→0+
−
√
ε lnwε(x) = d(x, ∂U) := inf

y∈∂U
‖x− y‖,

uniformly over any compact subset of U . Fig 4. Approximation of the distance to the

boundary on a non-convex sets, with ε = 10−4.

In Figure 4 we observe that, when the distance increases, the level sets develop singularities.

A relaxed formulation
Given a domain Ω ⊂ Rn, d(Ω) being its diameter, we consider a large box B containing the set
{x ∈ Rn | d(x,Ω) ≤ d(Ω)}. For ε > 0, we denote by wε the solution of the problem{

wε − ε∆wε = 0 in B\ω,

wε = 1 on ∂ω ∪ ∂B.

By Theorem 1, the function vε 7−→ −
√
ε lnwε(x) uniformly converges to

dω : x 7−→ inf
y∈ω
‖x− y‖ on Ω\ω. We then consider the following functionals

Jp,ε(ω) := ‖vε‖p, Jp,0(ω) := ‖dω‖p and J∞,0 := dH(ω,Ω) = ‖dω‖∞.

For both of the classes of sensors above K and BN , the following Γ-convergence result holds:

Jp,ε −→
ε→0

Jp,0 −→
p→+∞

J∞,0.

This guarantees the convergence of the minimizers of the given functionals on those classes. It is
then natural to address the following approximating shape optimization problems:

min
ω∈K

Jp,ε(ω) and min
ω∈BN

Jp,ε(ω), (3)

with p large and ε small. In contrast with (1), explicit formulae for the shape derivative of the
relaxed functional Jp,ε can be obtained, using classical tools on shape derivatives. This allows to
develop efficient computational algorithms.

Numerical simulations
Using Matlab’s routine fmincon, we solve (3) with p = 30 and ε = 10−4.

Fig 5. Optimal convex sensors obtained for the fractions c0 ∈ {0.01, 0.1, 0.4, 0.7}.

When the volume fraction c0 of the sensor ω is large, the optimal sensor corresponds to a level set
of the distance function to ∂Ω. But this is no longer true for small values of c0, due to the
singularities exhibited by the distance function.

Fig 6. Optimal placement of spherical sensors for N ∈ {1, 2, 3, 4}.

Conclusion
The problem of optimal shape and placement of sensors has been addressed in a purely geometric
setting, independent of the physical process under consideration and in the absence of PDE
restrictions. Problems are then recast in the context of the optimization of the Hausdorff
distance, but the use of Varadhan’s approximation theorem naturally leads to consider
optimization problems constrained by the Laplacian. This allows to apply the classical analytical
and computational tools in PDE shape design.

References
[1] I. Ftouhi, E. Zuazua (2022). From the average to the maximal distance via Γ
convergence. In prepation.
[2] S. R. S. Varadhan (1967). On the behavior of the fundamental solution of the heat
equation with variable coefficients. Communications on Pure and Applied Mathematics.


