Control for heterogeneous 1D reaction-diffusion equations

Maicon Sônego
Federal University of Itajubá-MG, Brazil
Visiting researcher at FAU

Joint work with Enrique Zuazua

Introduction

Preliminary definitions

For $L>0,0 \leq T \leq+\infty$, consider the following controlled reaction-diffusion equation on $(0, L) \times(0, T)$

$$
\left\{\begin{array}{l}
y_{t}=\left(a(x) y_{x}\right)_{x}+b(x) f(y) \tag{1}\\
y(0, t)=u(t), \quad y(L, t)=v(t) \\
y(x, 0)=y_{0}(x)
\end{array}\right.
$$

where f is monostable $\left(f(u)=u-u^{2}\right.$, for instance) or bistable $(f(u)=u(u-1)(\theta-u), \theta \in(0,1)$, for instance);
$a, b:(0, L) \rightarrow \mathbb{R}$ are positive functions of class C^{2} and the controls u and v are measurable functions satisfying the constraints

$$
0 \leq u(t) \leq 1, \quad 0 \leq v(t) \leq 1
$$

Let z be a steady state solution of (1) such that $0 \leq z \leq 1$. We say that the controlled equation (1) is

- controllable in finite time towards z if for any initial condition $0 \leq y_{0} \leq 1$ in $L^{\infty}(0, L)$, there exists $0 \leq T<\infty$ and controls $u, v \in L^{\infty}(0, T ;[0,1])$ such that

$$
y(T, \cdot)=z(\cdot)
$$

- controllable in infinite time towards z if for any initial condition $0 \leq y_{0} \leq 1$ in $L^{\infty}(0, L)$, there exists controls $u, v \in L^{\infty}(0, \infty ;[0,1])$ such that

$$
y(t, \cdot) \rightarrow z(\cdot)
$$

uniformly in $[0, L]$ as $t \rightarrow \infty$.

Some recent references

1. C. Pouchol, E. Trélat and E. Zuazua, Phase portrait control for 1D monostable and bistable reaction-diffusion equations, Nonlinearity, 2019.
2. D. Ruiz-Balet, E. Zuazua, Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations, Journal de Mathématiques Pures et Appliquées, 2020.
3. I. Mazari, D. Ruiz-Balet and E. Zuazua, Constrained control of gene-flow models, arXiv:2005.09236v4.

The main result

Our strategy will be to use the Matano's results on the asymptotic behavior of solutions of semilinear problems.

First, we present a very general result of existence and uniqueness.
Let $g\left(x, y, y^{\prime}\right)$ be a C^{1} function such that

$$
\begin{equation*}
G_{1}\left(y-z, y^{\prime}-z^{\prime}\right) \leq g\left(x, y, y^{\prime}\right)-g\left(x, z, z^{\prime}\right) \leq G_{2}\left(y-z, y^{\prime}-z^{\prime}\right) \tag{2}
\end{equation*}
$$

where

$$
G_{1}\left(y, y^{\prime}\right)= \begin{cases}M_{1} y^{\prime}+K_{1} y, & y \geq 0, \quad y^{\prime} \geq 0 \tag{3}\\ M_{2} y^{\prime}+K_{1} y, & y \geq 0, \quad y^{\prime} \leq 0 \\ M_{2} y^{\prime}+K_{2} y, & y \leq 0, \quad y^{\prime} \leq 0 \\ M_{1} y^{\prime}+K_{2} y, \quad y \leq 0, \quad y^{\prime} \geq 0\end{cases}
$$

$$
G_{2}\left(y, y^{\prime}\right)=\left\{\begin{array}{lll}
M_{2} y^{\prime}+K_{2} y, & y \geq 0, & y^{\prime} \geq 0 \tag{4}\\
M_{1} y^{\prime}+K_{2} y, & y \geq 0, & y^{\prime} \leq 0 \\
M_{1} y^{\prime}+K_{1} y, & y \leq 0, & y^{\prime} \leq 0 \\
M_{2} y^{\prime}+K_{1} y, & y \leq 0, & y^{\prime} \geq 0
\end{array}\right.
$$

and $L_{i}, K_{i} \in \mathbb{R}(i=1,2)$ are constant.

Theorem 1 (existence and uniqueness)

P. Bailey, L. F. Shampine, P. Waltman, 1966

For $\left(x, y, y^{\prime}\right) \in[0, L] \times[0,1] \times \mathbb{R}$, let $g\left(x, y, y^{\prime}\right)$ be a continuous functions and satisfying (2). If the two problems

$$
\left\{\begin{array}{l}
u_{i}^{\prime \prime}+G_{i}\left(u_{i}(x), u_{i}^{\prime}(x)\right)=0, \tag{5}\\
u_{i}(a)=\bar{A}, \quad u_{i}(b)=\bar{B}
\end{array}\right.
$$

have unique solutions on every interval $[a, b]$ of $[0, L]$ for arbitrary \bar{A}, \bar{B}, and if for $a=0, b=L, \bar{A}=A, \bar{B}=B$ the ranges are subsets of $[0,1]$, then the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+g\left(x, u(x), u^{\prime}(x)\right)=0, \tag{6}\\
u(0)=A, \quad u(L)=B
\end{array}\right.
$$

has a unique solution $u(x)$ which remains in $[0,1]$.

In our case the steady states solutions satisfy:

$$
\left\{\begin{array}{l}
y_{x x}+\frac{a_{x}(x)}{a(x)} y_{x}+\frac{b(x)}{a(x)} f(y)=0, \quad x \in(0, L) \tag{7}\\
y(0)=\bar{u}, \quad y(L)=\bar{v}
\end{array}\right.
$$

Thus, in this case

$$
g\left(x, u(x), u^{\prime}(x)\right)=\frac{a^{\prime}(x)}{a(x)} u^{\prime}(x)+\frac{b(x)}{a(x)} f(u(x))
$$

We denote,

$$
K^{+}=\sup _{(u, v) \in[0,1] \times[0,1]}\left\{\frac{f(u)-f(v)}{u-v}\right\}
$$

and

$$
K^{-}=\inf _{(u, v) \in[0,1] \times[0,1]}\left\{\frac{f(u)-f(v)}{u-v}\right\} .
$$

Hence, for any $\left(x, y, y^{\prime}\right),\left(x, z, z^{\prime}\right) \in[0, L] \times[0,1] \times \mathbb{R}$,
$G_{1}\left(y-z, y^{\prime}-z^{\prime}\right) \leq g\left(x, y, y^{\prime}\right)-g\left(x, z, z^{\prime}\right) \leq G_{2}\left(y-z, y^{\prime}-z^{\prime}\right)$,
where G_{1} and G_{2} are defined as (3) and (4), respectively, with

$$
\begin{align*}
& M_{1}=\inf _{x \in[0, L]}\left\{\frac{a^{\prime}(x)}{a(x)}\right\}, \tag{8}\\
& M_{2}=\sup _{x \in[0, L]}\left\{\frac{a^{\prime}(x)}{a(x)}\right\}, \tag{9}\\
& K_{1}=\inf _{x \in[0, L]}\left\{\frac{b(x)}{a(x)} K^{-}\right\} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
K_{2}=\sup _{x \in[0, L]}\left\{\frac{b(x)}{a(x)} K^{+}\right\} . \tag{11}
\end{equation*}
$$

In order to state our main result, we define

$$
\alpha(M, K)=
$$

$$
\begin{cases}\frac{2}{\sqrt{4 K-M^{2}}} \cos ^{-1}\left(\frac{M}{2 \sqrt{K}}\right), & \text { if } 4 K-M^{2}>0 \\ \frac{2}{\sqrt{M^{2}-4 K}} \cosh ^{-1}\left(\frac{M}{2 \sqrt{K}}\right), & \text { if } 4 K-M^{2}<0, M>0, K>0 \\ \frac{2}{M}, & \text { if } 4 K-M^{2}=0, M>0 \\ +\infty, & \text { otherwise }\end{cases}
$$

$$
\beta(M, K)=
$$

$$
\begin{cases}\frac{2}{\sqrt{4 K-M^{2}}} \cos ^{-1}\left(\frac{-M}{2 \sqrt{K}}\right), & \text { if } 4 K-M^{2}>0 \\ \frac{2}{\sqrt{M^{2}-4 K}} \cosh ^{-1}\left(\frac{-M}{2 \sqrt{K}}\right), & \text { if } 4 K-M^{2}<0, M<0, K>0 \\ \frac{-2}{M}, & \text { if } 4 K-M^{2}=0, M<0 \\ +\infty, & \text { otherwise }\end{cases}
$$

Theorem 2

Consider \bar{y} a steady state of (1) such that $\bar{y}(0)=\bar{u}, \bar{y}(L)=\bar{v}$ and $0 \leq \bar{u}, \bar{v} \leq 1$. If

$$
\begin{equation*}
L<\alpha\left(M_{2}, K_{2}\right)+\beta\left(M_{1}, K_{2}\right) \tag{12}
\end{equation*}
$$

and the problems $(i=1,2)$

$$
\left\{\begin{array}{l}
z^{\prime \prime}+G_{i}\left(z, z^{\prime}\right)=0, \quad(0, L) \tag{13}\\
z(0)=\bar{u}, \quad z(L)=\bar{v}
\end{array}\right.
$$

have solutions with ranges contained in $[0,1]$, then (1) is controllable in infinite time towards \bar{y}.

Example 1

Consider $a \equiv b \equiv 1$ and $f(u)=u(1-u)$. In this case, we have

$$
\left\{\begin{array}{l}
y_{t}=y^{\prime \prime}+y(1-y), \quad(0, L) \tag{14}\\
y(0, t)=u(t), \quad y(L, t)=v(t) \\
y(x, 0)=y_{0}(x)
\end{array}\right.
$$

Thus, we obtain

$$
K^{-}=-1, \quad K^{+}=1
$$

and then

$$
M_{1}=M_{2}=0, \quad K_{1}=-1, \quad K_{2}=1 .
$$

Moreover,

$$
\alpha\left(M_{2}, K_{2}\right)+\beta\left(M_{1}, K_{2}\right)=
$$

$$
\frac{2}{\sqrt{4 K_{2}-M_{2}^{2}}} \cos ^{-1}\left(\frac{M_{2}}{2 \sqrt{K_{2}}}\right)+\frac{2}{\sqrt{4 K_{2}-M_{1}^{2}}} \cos ^{-1}\left(\frac{-M_{1}}{2 \sqrt{K_{2}}}\right)=
$$

$$
\frac{\pi}{2}+\frac{\pi}{2}=\pi
$$

Hence, we take $L<\pi$ and if we want to analyse the solution $\bar{y} \equiv 0$ we can take controls $\bar{u}=\bar{v}=0$ and the problems

$$
\left\{\begin{array} { l }
{ z ^ { \prime \prime } + z = 0 , \quad (0 , L) } \\
{ z (0) = 0 , \quad z (L) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
z^{\prime \prime}-z=0, \quad(0, L) \\
z(0)=0, \quad z(L)=0
\end{array}\right.\right.
$$

It is easy to see that both have solution $z \equiv 0$ and, in these conditions, we can conclude that the problem (14) is controllable in infinite time towards $\bar{y} \equiv 0$.

Example 2

Now, we consider $a(x)=e^{5 x}, b(x)=x+6$ and again $f(u)=u(1-u)$. Then, we have

$$
\left\{\begin{array}{l}
y_{t}=\left(e^{5 x} y_{x}\right)_{x}+(x+6) y(1-y), \quad(0, L) \tag{15}\\
y(0, t)=u(t), \quad y(L, t)=v(t) \\
y(x, 0)=y_{0}(x)
\end{array}\right.
$$

In this case we obtain,

$$
M_{1}=M_{2}=5, \quad K_{1}=-6, \quad K_{2}=6
$$

and a simple computation give us

$$
\alpha\left(M_{2}, K_{2}\right)+\beta\left(M_{1}, K_{2}\right)=\infty
$$

Now, we can, for example, analyze a target \bar{y} such that $\bar{y}(0)=1 / 2$ and $\bar{y}(L)=1 / 4$. For this, and again adopting the strategy of static controls, we have to look for solutions of

$$
\left\{\begin{array} { l }
{ z ^ { \prime \prime } + 5 z ^ { \prime } - 6 z = 0 , \quad (0 , L) } \\
{ z (0) = 1 / 2 , \quad z (L) = 1 / 4 }
\end{array} \text { and } \left\{\begin{array}{l}
z^{\prime \prime}+5 z^{\prime}+6 z=0, \quad(0, L) \\
z(0)=1 / 2, \quad z(L)=1 / 4
\end{array}\right.\right.
$$

So, if we take $L=1$ for instance, we have the following solutions

$$
z_{1}(x)=\frac{e^{6-6 x}-2 e^{7-6 x}+2 e^{x}-e^{6+x}}{4-4 e^{7}}
$$

and

$$
z_{2}(x)=\frac{\left.e^{-3 x}\left(2 e-e^{3}-2 e^{x}+e^{3+x}\right)\right)}{4(-1+e)}
$$

Both solutions have ranges contained in $[0,1]$ and then we can use our main result to conclude that (15) is controllable in infinite time towards \bar{y}.

Some heterogeneous non-linearities that could be

 considered with the proposed method1. $f(u, x)=u(u-\theta(x))(1-u), 0<\theta(x)<1$ (related to

Fife-Greenlee equation);
2. $f(u, x)=u\left(a^{2}(x)-u^{2}(x)\right), 0<a(x)<1$;
3. $f(u, x)=\rho(x) u(1-u)$ (related to Fisher-KPP equation).

Thank you!

Maicon Sônego

mcn.sonego@unifei.edu.br

