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Introduction

Preliminary definitions

For L >0,0< T < 400, consider the following controlled
reaction-diffusion equation on (0, L) x (0, T)

where f is monostable (f(u) = u — u?, for instance) or bistable
(f(u) = u(u—1)(8 — u), 0 € (0,1), for instance);
a,b: (0,L) — R are positive functions of class C? and the
controls u and v are measurable functions satisfying the
constraints

0<u(t) <1, 0<vy(t)<1
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Let z be a steady state solution of (1) such that 0 < z <1. We
say that the controlled equation (1) is

e controllable in finite time towards z if for any initial
condition 0 < yp < 1in L*°(0, L), there exists 0 < T < o0
and controls u, v € L*°(0, T;[0,1]) such that

e controllable in infinite time towards z if for any initial
condition 0 < yp < 1 in L*°(0, L), there exists controls
u,v € L*>(0, 00; [0, 1]) such that

y(t,-) = 2(")

uniformly in [0, L] as t — oo.
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The main result

Our strategy will be to use the Matano’s results on the
asymptotic behavior of solutions of semilinear problems.

First, we present a very general result of existence and
unigueness.
Let g(x,y,y’) be a C! function such that

Gl(y_z7y/_z/) Sg(X7y7y/)_g(X7Z7Z/) < GZ(y_zayI_zl)

(2)
where
My’ + Kiy, y>0, y'>0
Moy' + K1y, y>0, y' <0
Gl(.y7 y/) = / / (3)
May'+ Koy, y <0, y' <0
My’ + Koy, y <0, ¥y >0
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Moy’ + Koy, y >0, y' >0

My + K >0 <0
Gz(y,y/)z 1}/+ 2y, y=2U, ¥y = (4)

My’ + Kiy, y <0, ¥y <0

My + Kiy, y <0, y'>0

and L, K; € R (i = 1,2) are constant.
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Theorem 1 (existence and uniqueness)
P. Bailey, L. F. Shampine, P. Waltman, 1966

For (x,y,y’) € [0,L] x [0,1] x R, let g(x,y,y’) be a continuous
functions and satisfying (2). If the two problems

{W+Gmu>(» -

o ||

u,-(a) = A, u,-(b)

have unique solutions on every interval [a, b] of [0, L] for
arbitrary A, B,andiffora=0 b=L, A=A, B=B the
ranges are subsets of [0, 1], then the problem

{LW+gvmuxwu»:m
u(0)=A, u(ll)=B

has a unique solution u(x) which remains in [0, 1].
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In our case the steady states solutions satisfy:

{yXXJFa;((XX))yXJFIXf(Y)O, x € (0,L)

Thus, in this case

a(x) a(x)
We denote,
K*=  sup {f(”)—f(")}
(u,v)€[0,1]x[0,1] u—v
and ) i
K- = inf {(“)—(‘/)} |
(u,v)€[0,1]x[0,1] Uu—v
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Hence, for any (x,y,y’),(x,z,2’) € [0, L] x [0,1] x R,

Gily—z,y' —2)<gxy.y)—g(x,2,2) < Gy — z,y — 2'),

where G; and G, are defined as (3) and (4), respectively, with

= in 7()
M= 8y { a(x) } ’ (®)
< a'(x)
Mo = xe[OF,)L] a(x) } ’ ©)
. b(x)
K= Mo {aX)K } (10)
and
= Su 7b(X) +
o= xE[OF,)L] { a(x) : } ' ()
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In order to state our main result, we define

a(M,K) =
2 (M _
% _cos i —— if 4K — M2 >0
VAK — M2 (2\/K> ’

2 M
Mcosh_]'(M), |f4K*M2<0,M>0,K>O

if 4K — M2 =0,M >0

400, otherwise

10/19



2 L[ —M ,
——— COS E—— If4-K—M2>O
VAK — M2 (2\/K> ’

2 -M
IV’ZCOSh_l(\/R), |f4K—M2<O,M<O,K>O

— if4AK —M? =0, M <0

400, otherwise

11/19



Theorem 2

Consider y a steady state of (1) such that y(0) =, y(L) = Vv
and 0< o, v <1 If

L< a(Mg,Kz)—i-ﬁ(Ml,Kz) (12)

and the problems (i = 1,2)

(13)

have solutions with ranges contained in [0, 1], then (1) is
controllable in infinite time towards .
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Example 1

Consider a= b =1 and f(u) = u(1l — u). In this case, we have

Thus, we obtain

and then

(14)
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Moreover,
a(Ma, K2) + B(My, K3) =

72 cos 1 ( M ) + 2 cos 1 <_M1 ) =
\JAKy — M2 VK)o JaKy, — M2 2VKz

T n T
— 4+ =—=m.
2 2

Hence, we take L < 7 and if we want to analyse the solution

¥ = 0 we can take controls & = ¥ = 0 and the problems

Z"+z=0, (0,L) q " —z=0, (0,L)
2000=0, z(L)=0 2(0) =0, z(L)=0.

It is easy to see that both have solution z = 0 and, in these
conditions, we can conclude that the problem (14) is

controllable in infinite time towards y = 0.
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Example 2

Now, we consider a(x) = €%, b(x) = x + 6 and again
f(u) = u(1l — u). Then, we have

ye = (e¥yx)x + (x +6)y(L —y), (0,L)
y(0,t) = u(t), y(L t)=v(t), (15)
y(x,0) = yo(x).

In this case we obtain,
My =M,=5 Ki=-6, K,=06,
and a simple computation give us

a(Ma, K2) 4+ B(My, K2) = o0
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Now, we can, for example, analyze a target y such that
y(0) =1/2 and y(L) = 1/4. For this, and again adopting the
strategy of static controls, we have to look for solutions of

Z"+57 —6z=0, (0,L) and Z"+57 +6z=0, (0,L)
z(0)=1/2, z(L)=1/4 z(0)=1/2, z(L)=1/4.
So, if we take L = 1 for instance, we have the following solutions

e6—6X _ 2e7—6x 1 2eX — 66+X
4 —4¢e”

z1(x) =

and
e—3x(2e _ e3 —2eX + e3+x))

4(—1+e)

7(x) =
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Both solutions have ranges contained in [0, 1] and then we can
use our main result to conclude that (15) is controllable in
infinite time towards .
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Some heterogeneous non-linearities that could be
considered with the proposed method

1. f(u,x)=u(u—0(x))(1—u), 0<6(x)<1 (related to
Fife-Greenlee equation);

2. f(u,x) = u(a*(x) — v?(x)), 0 < a(x) < 1;

3. f(u,x) = p(x)u(l — u) (related to Fisher-KPP equation).
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Thank you!
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