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Introduction
Preliminary definitions

For L > 0, 0 ≤ T ≤ +∞, consider the following controlled

reaction-diffusion equation on (0, L)× (0,T )
yt = (a(x)yx)x + b(x)f (y),

y(0, t) = u(t), y(L, t) = v(t),

y(x , 0) = y0(x),

(1)

where f is monostable (f (u) = u − u2, for instance) or bistable

(f (u) = u(u − 1)(θ − u), θ ∈ (0, 1), for instance);

a, b : (0, L)→ R are positive functions of class C 2 and the

controls u and v are measurable functions satisfying the

constraints

0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1.

2 / 19



Let z be a steady state solution of (1) such that 0 ≤ z ≤ 1. We

say that the controlled equation (1) is

• controllable in finite time towards z if for any initial

condition 0 ≤ y0 ≤ 1 in L∞(0, L), there exists 0 ≤ T <∞
and controls u, v ∈ L∞(0,T ; [0, 1]) such that

y(T , ·) = z(·).

• controllable in infinite time towards z if for any initial

condition 0 ≤ y0 ≤ 1 in L∞(0, L), there exists controls

u, v ∈ L∞(0,∞; [0, 1]) such that

y(t, ·)→ z(·)

uniformly in [0, L] as t →∞.
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The main result

Our strategy will be to use the Matano’s results on the

asymptotic behavior of solutions of semilinear problems.

First, we present a very general result of existence and

uniqueness.

Let g(x , y , y ′) be a C 1 function such that

G1(y − z , y ′ − z ′) ≤ g(x , y , y ′)− g(x , z , z ′) ≤ G2(y − z , y ′ − z ′)

(2)

where

G1(y , y ′) =


M1y

′ + K1y , y ≥ 0, y ′ ≥ 0

M2y
′ + K1y , y ≥ 0, y ′ ≤ 0

M2y
′ + K2y , y ≤ 0, y ′ ≤ 0

M1y
′ + K2y , y ≤ 0, y ′ ≥ 0

(3)
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G2(y , y ′) =


M2y

′ + K2y , y ≥ 0, y ′ ≥ 0

M1y
′ + K2y , y ≥ 0, y ′ ≤ 0

M1y
′ + K1y , y ≤ 0, y ′ ≤ 0

M2y
′ + K1y , y ≤ 0, y ′ ≥ 0

(4)

and Li ,Ki ∈ R (i = 1, 2) are constant.
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Theorem 1 (existence and uniqueness)
P. Bailey, L. F. Shampine, P. Waltman, 1966

For (x , y , y ′) ∈ [0, L]× [0, 1]× R, let g(x , y , y ′) be a continuous

functions and satisfying (2). If the two problems{
u′′i + Gi (ui (x), u′i (x)) = 0,

ui (a) = Ā, ui (b) = B̄
(5)

have unique solutions on every interval [a, b] of [0, L] for

arbitrary Ā, B̄, and if for a = 0, b = L, Ā = A, B̄ = B the

ranges are subsets of [0, 1], then the problem{
u′′ + g(x , u(x), u′(x)) = 0,

u(0) = A, u(L) = B
(6)

has a unique solution u(x) which remains in [0, 1].
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In our case the steady states solutions satisfy: yxx +
ax(x)

a(x)
yx +

b(x)

a(x)
f (y) = 0, x ∈ (0, L)

y(0) = ū, y(L) = v̄ .
(7)

Thus, in this case

g(x , u(x), u′(x)) =
a′(x)

a(x)
u′(x) +

b(x)

a(x)
f (u(x)).

We denote,

K+ = sup
(u,v)∈[0,1]×[0,1]

{
f (u)− f (v)

u − v

}
and

K− = inf
(u,v)∈[0,1]×[0,1]

{
f (u)− f (v)

u − v

}
.
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Hence, for any (x , y , y ′), (x , z , z ′) ∈ [0, L]× [0, 1]× R,

G1(y − z , y ′− z ′) ≤ g(x , y , y ′)− g(x , z , z ′) ≤ G2(y − z , y ′− z ′),

where G1 and G2 are defined as (3) and (4), respectively, with

M1 = inf
x∈[0,L]

{
a′(x)

a(x)

}
, (8)

M2 = sup
x∈[0,L]

{
a′(x)

a(x)

}
, (9)

K1 = inf
x∈[0,L]

{
b(x)

a(x)
K−
}

(10)

and

K2 = sup
x∈[0,L]

{
b(x)

a(x)
K+

}
. (11)
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In order to state our main result, we define

α(M,K ) =



2√
4K −M2

cos−1

(
M

2
√
K

)
, if 4K −M2 > 0

2√
M2 − 4K

cosh−1

(
M

2
√
K

)
, if 4K −M2 < 0,M > 0,K > 0

2

M
, if 4K −M2 = 0,M > 0

+∞, otherwise
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β(M,K ) =



2√
4K −M2

cos−1

(
−M
2
√
K

)
, if 4K −M2 > 0

2√
M2 − 4K

cosh−1

(
−M
2
√
K

)
, if 4K −M2 < 0, M < 0, K > 0

−2

M
, if 4K −M2 = 0, M < 0

+∞, otherwise
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Theorem 2

Consider ȳ a steady state of (1) such that ȳ(0) = ū, ȳ(L) = v̄

and 0 ≤ ū, v̄ ≤ 1. If

L < α(M2,K2) + β(M1,K2) (12)

and the problems (i = 1, 2){
z ′′ + Gi (z , z

′) = 0, (0, L)

z(0) = ū, z(L) = v̄
(13)

have solutions with ranges contained in [0, 1], then (1) is

controllable in infinite time towards ȳ .
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Example 1

Consider a ≡ b ≡ 1 and f (u) = u(1− u). In this case, we have
yt = y ′′ + y(1− y), (0, L)

y(0, t) = u(t), y(L, t) = v(t),

y(x , 0) = y0(x).

(14)

Thus, we obtain

K− = −1, K+ = 1

and then

M1 = M2 = 0, K1 = −1, K2 = 1.
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Moreover,

α(M2,K2) + β(M1,K2) =

2√
4K2 −M2

2

cos−1

(
M2

2
√
K2

)
+

2√
4K2 −M2

1

cos−1

(
−M1

2
√
K2

)
=

π

2
+
π

2
= π.

Hence, we take L < π and if we want to analyse the solution

ȳ ≡ 0 we can take controls ū = v̄ = 0 and the problems{
z ′′ + z = 0, (0, L)

z(0) = 0, z(L) = 0
and

{
z ′′ − z = 0, (0, L)

z(0) = 0, z(L) = 0.

It is easy to see that both have solution z ≡ 0 and, in these

conditions, we can conclude that the problem (14) is

controllable in infinite time towards ȳ ≡ 0.
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Example 2

Now, we consider a(x) = e5x , b(x) = x + 6 and again

f (u) = u(1− u). Then, we have
yt = (e5xyx)x + (x + 6)y(1− y), (0, L)

y(0, t) = u(t), y(L, t) = v(t),

y(x , 0) = y0(x).

(15)

In this case we obtain,

M1 = M2 = 5, K1 = −6, K2 = 6,

and a simple computation give us

α(M2,K2) + β(M1,K2) =∞.
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Now, we can, for example, analyze a target ȳ such that

ȳ(0) = 1/2 and ȳ(L) = 1/4. For this, and again adopting the

strategy of static controls, we have to look for solutions of{
z ′′ + 5z ′ − 6z = 0, (0, L)

z(0) = 1/2, z(L) = 1/4
and

{
z ′′ + 5z ′ + 6z = 0, (0, L)

z(0) = 1/2, z(L) = 1/4.

So, if we take L = 1 for instance, we have the following solutions

z1(x) =
e6−6x − 2e7−6x + 2ex − e6+x

4− 4e7

and

z2(x) =
e−3x(2e − e3 − 2ex + e3+x))

4(−1 + e)
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Both solutions have ranges contained in [0, 1] and then we can

use our main result to conclude that (15) is controllable in

infinite time towards ȳ .
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Some heterogeneous non-linearities that could be

considered with the proposed method

1. f (u, x) = u(u − θ(x))(1− u), 0 < θ(x) < 1 (related to

Fife-Greenlee equation);

2. f (u, x) = u(a2(x)− u2(x)), 0 < a(x) < 1;

3. f (u, x) = ρ(x)u(1− u) (related to Fisher-KPP equation).
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