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Stratified fluids

The incompressible Navier-Stokes + thermal diffusion 2D 

 

  

-  is the velocity field 
-   is the density 
-  is the pressure related to  
-    is gravity 

We study departures from the hydrostatic equilibrium: 

      

where the stratification  is stable —>     

         

ρ(∂t + u ⋅ ∇)u + ∇p = − ρg + νΔu
(∂t + u ⋅ ∇)ρ = κΔρ

∇ ⋅ u = 0

u = (ux, uy)
ρ
p ∇ ⋅ u = 0
g = (0,𝔤)

(ρ(y), u, ∂yp = − 𝔤ρ)

ρ(y) ρ′ (y) < 0

Due to gravity, the lower density 
fluid is above and then 

density decreases with height 
(photo from http://

ocp.ldeo.columbia.edu/
climatekidscorner/whale_dir.shtml)

http://ocp.ldeo.columbia.edu/climatekidscorner/whale_dir.shtml
http://ocp.ldeo.columbia.edu/climatekidscorner/whale_dir.shtml
http://ocp.ldeo.columbia.edu/climatekidscorner/whale_dir.shtml


—>Reference for formal derivation: book by M. Rieutord 
—>Math papers on the (B) system: Lions, Temam, Wang,  
      Beale, Bourgeois, Charve, Chemin, 
      Abidi, Danchin, Hmidi, Paicu, Rousset…                                                                            

Internal waves are well described by the Boussinesq equations

Internal waves are responses to small departures from equilibrium, 
where the restoring force is gravity (Archimedes’ principle)
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Stratified fluids I

b=buoyancy  
(normalized density 
perturbation)

= reference densityρ0

(B)

I) Linearization around the hydrostatic equilibrium with zero velocity  
The perturbed variables are: 
           ρ = ρ(y) + ρ̃(t, x, y) u = (0 + ũ(t, x, y),0 + ṽ(t, x, y)) p = p + p̃(t, x, y)

∂yp = − 𝔤ρ

RULE [Boussinesq]: density variations only counts for buoyancy effects, not inertia



Stable stratification
—> Stably stratified fluids —> the ocean, fluids in the core of the Earth 
—> Why ‘’stable’’ stratification?  Consider the rest state 

                                         
                    
and linearize [linear inviscid approx] around it: 

 

The linearized system is spectrally stable if                : there is no eigenvalue  s. t.  

         * Dispersion relation:                          *Brunt-Väisälä frequency:  

                                    Dispersion relation of order 0 in k 

      The reflection law is unusual:                           In the presence of dissipation,              
   1) near-critical reflection from a slope            2) anisotropy in the frequency variables 
      

ρ(y) u = (0,0) ∂yp = − 𝔤ρ

∂tb +
g
ρ0

u3ρ̄′ = 0

∂tu + b e 3 + ∇P = 0
∇ ⋅ u = 0

ω ℜ(ω) > 0

ω = ± N
|kh |

| K |
N =

−ρ′ 

ρ0

ρ′ (y) < 0



Stratified fluids II

(C)

II) Linearization around a shear flow in the inviscid regime 
The perturbed variables are: 
           ρ = ρ(y) + ρ̃(t, x, y) u = (U(y) + ũ(t, x, y),0 + ṽ(t, x, y)) p = p + p̃(t, x, y)

∂yp = − 𝔤ρ
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* Seek for a solution       
* From the divergence-free condition,  and we can solve for  
* We end up with a 2nd order ODE in  
* Multiply it by the complex conjugate  and integrate in  
* After a smart change of variable - [  is the new variable] 

   (*)   

where  

  

Since  , then         when      and then 
there are no growing eigenvalues

ρ̃ = ρ(y)eλt+ikx ũx = ux(y)eλt+ikx ũy = uy(y)eλt+ikx

ux = − (i/k)∂yuy p
uy

(uy)* y
v

ℜ(λ)∫y {ρ(y)( |∂yv |2 + k2 |v |2 ) +
k2ρ(y)U′ (y)2

|λ + ikU(y) |2 (Ri(y) −
1
4 ) |v |2 } dy = 0

Ri(y) =
−ρ′ (y)𝔤

ρ(y)
⋅

1
U′ (y)2

= ( N(y)
U′ (y) )

2

ρ′ < 0 ℜ(λ) = 0 Ri(z) >
1
4

The Miles-Howard criterion

Richardson number
Brunt-Väisälä 

frequency



Spectral stability  Vs   Asymptotic stability

* Spectral stability (no growing eigenvalues) started 19th century [Rayleigh, Kelvin, Orr…]   
BUT  

       it can be misleading in fluid dynamics, 
       where (linear) operators are often NON NORMAL (Orr mechanisms) 

* We will investigate the (Lyapunov) asymptotic stability in  
       for the linearized system  

* near the Couette flow  and where  
* the stratification is exponential       

          

L2(𝕋 × ℝ)

U(y) = y
ρ(y) = e−βy, β > 0

For small ,     
and linear stratifications  
are commonly considered 

β ρ(y) ≈ 1 − βy



Stratified fluids I: 
Near-critical reflection of internal waves  

from a sloping boundary 
with Anne-Laure Dalibard and Laure Saint-Raymond



1) Reflection from a sloping boundary

- Refle c t i o n f rom a flat 
surface follows Descartes 

- This is no longer true in the 
case of a SLOPE

- The dispersion relation                                             
fixes the angle of propagation, not the modulus 
of the wavelength 

-   The direction of propagation is orthogonal to K

ω = ± N
|kh |

| K |
= ± sin β

The reflection law is: preserve the angle 
w.r.t. the vertical (gravity)

Focusing, accumulation of energy, 
growth of the amplitude of the waves

2 Main ingredients come into play: interaction with the boundary  
and role of the nonlinearity



Reflection from a slope: boundary + nonlinearity
Coming back to the simpler case of a sloping boundary… near-critical reflection

Near-critical reflection of internal waves from a sloping boundary 2b
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2nd harmonic

If           
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of

almost no space is left for the 
reflected wave, its vertical 
wavenumber is O(ε−2)

and its amplitude is O(ε−2)

Then the wavelength is O(ε2)

FOCUSING… the ‘’small’’ 
nonlinearity comes into play!

Boussinesq system in the slope’s coordinates

Same procedure as in the inviscid case: 

—> Start from a ‘’near-critical’’ incident wave 
—> Look for solutions linear system to  
       balance the trace of the incident wave                        
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Weakly nonlinear system in the slope’s coordinates

Boussinesq system in the slope’s coordinates

Same procedure as in the inviscid case: 

—> Start from a ‘’near-critical’’ incident wave 
—> Look for solutions linear system to  
       balance the trace of the incident wave                        
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Near-critical reflection of internal waves from a sloping boundary

Reflection from a not flat boundary
For IW, the angle of propagation is fixed by the dispersion relation

Preservation of this angle w. r. t. gravity generates a focusing mechanism 
when reflecting from a slope

—> What happens is that  
the energy is concentrated close to the boundary, 

the vertical wave number is ‘infinite’. 

—> Goal of this talk 
Understand the interactions  

of IW with the boundary 
in a rigorous mathematical 

framework

ǀǂ $IBQUFS ǀ� /POMJOFBS SFĚFDUJPO PG UXP�EJNFOTJPOBM JOUFSOBM XBWF CFBNT

6B;m`2 jXkXR, aF2i+? Q7 i?2 BMi2`�+iBQM #2ir22M i?2 BM+B/2Mi �M/ `2~2+i2/ r�p2b BM i?2
(x, z) TH�M2X h?2 BM+B/2Mi �M/ `2~2+i2/ r�p2 #2�Kb �`2 BM/B+�i2/ #v #Hm2 HBM2b �M/ i?2
b2+QM/ ?�`KQMB+ r�p2 #2�K Bb BM/B+�i2/ #v `2/ HBM2bX h?2 �HQM; bHQT2 �M/ MQ`K�H iQ
bHQT2 +QQ`/BM�i2b Ux′ �M/ z′V �`2 �HbQ b?QrMX

8F DBO SPUBUF PVS DPPSEJOBUF TZTUFN CZ UIF TMPQF BOHMF TP UIBU XF IBWF UIF DPPSEJOBUFT
(x′, z′) XIFSF x′ JT UIF BMPOH�TMPQF DPPSEJOBUF BOE z′ JT UIF OPSNBM�TMPQF DPPSEJOBUFT� ĉFZ
BSF EFėOFE BT

x′ = x cosα + z sinα 	ǀ�ǄB


z′ = z cosα− x sinα 	ǀ�ǄC


ĉF BMPOH�TMPQF BOE OPSNBM�TMPQF XBWFOVNCFST JO UIJT DPPSEJOBUF TZTUFN DBO CF XSJĨFO BT
k BOE nk� ĉJT JT UP NBLF GVSUIFS DBMDVMBUJPOT TJNQMFS BT UIF BMPOH�TMPQF XBWFOVNCFS k JT
DPOTFSWFE EVSJOH SFĚFDUJPO� ĉFO UIF EJTQFSTJPO SFMBUJPO DBO CF XSJĨFO BT GPMMPXT�

ω2 = N2 sin2 θ + f 2 cos2 θ = N2 (n sinα− cosα)2

1 + n2
+ f 2 (sinα + n cosα)2

1 + n2
	ǀ�ǅ


ĉJT MFBET UP B RVBESBUJD FRVBUJPO JO n JO XIJDIN BOE f EJTBQQFBS 	GPSN "= f
� ĉF UXP
SPPUT PG UIF SFTVMUJOH RVBESBUJD FRVBUJPO BSF

nI =
sin θ cos θ − sinα cosα

sin2 θ − sin2 α
	ǀ�ǆB


nR = −sin θ cos θ + sinα cosα

sin2 θ − sin2 α
	ǀ�ǆC


ĉFTF SPPUT DPSSFTQPOE UP UIF OPSNBM�TMPQF XBWFOVNCFS PG UIF JODJEFOU BOE SFĚFDUFEXBWFT
SFTQFDUJWFMZ�

8F DBO OPO�EJNFOTJPOBMJTF UIF FRVBUJPOT ǀ�ǁ	C
 	D
 BOE ǀ�ǃ VTJOH UIF BNQMJUVEF PG UIF
JODJEFOU XBWF WFMPDJUZ U  BT B WFMPDJUZ TDBMF JUT XBWFMFOHUI λ BT B MFOHUI TDBMF BOE 1/N BT
B UJNF TDBMF� " 'SPVEF OVNCFS DBO CF EFėOFE VTJOH UIFTF TDBMFT BT Fr = U/λN  XIJDI

[From the PhD thesis of RAJA 2016, Grenoble]  

Since the amplitude of the ‘’reflected 
wave’’ 
(boundary layers in the viscous case…) 
is ‘’infinite’’, then the nonlinearity is no 
longer small and produces a second 
harmonic far from the boundary, in the 
outer region

e−2iω0t+ik⋅x

* Formal study by Dauxois & Young (JFM 1999) 

* GOAL: understand the interactions of IWs with the boundary (viscous case) and the role  
of the nonlinear term 

           ->   construct an approximate solution which is CONSISTENT and STABLE, 
                 in some functional space with finite energy

Main steps 
1) Systematic boundary layers analysis of the linear 

viscous system  
2) Fixed point iteration scheme (add correctors taking 

into account the nonlinearity) 
      

[From LEGI, Grenoble]



A case study: linear analysis of the 2D INVISCID system

ℒ(k, m)

urefl
wrefl

brefl

= 0 → det(ℒ(k, m)) = 0 → ω2 =
(k cos γ − m sin γ)2

k2 + m2
= sin2 β = sin2 γ + O(ε2)

Plane wave solution of the linear inviscid 2D system

Boundary Condition: winc |z=0 + wrefl |z=0 = 0 → e−iω0t+ik0x(αinc
k0

minc
+αrefl

k0

mrefl
) = 0

Near-critical reflection of internal waves from a sloping boundary 2b
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of

Dispersion Relation has 2 roots in m, and mrefl = k
cos γ sin γ + cos β sin β

sin2 β − sin2 γ
= O(ε−2)

Then           has to be                .     Thus, m>>1,   amplitude >>1 —> critical case when  αrefl O(ε−2) β ∼ γ

∂tu − (sin γ)b + ∂x p = 0
∂tw − (cos γ)b + ∂z p = 0

∂tb + u(sin γ) + w(cos γ) = 0
∂xu + ∂zw = 0

BCs: w |z=0 = 0



Linear analysis of the 2D VISCOUS system Near-critical reflection in the linear viscous case

Now the linear system is

In the viscous case, the same procedure but a much more delicate analysis... 
The vertical wave number bifurcates from the reflected wave 

when one adds a small viscosity.

* 2 boundary layers of exponential decay 
* 1 boundary layer of exponential decay

Notation 12 AME i 132Asked BOUNDARYLAYERS 2 of exponential decay 2

Is A5q3 H BOUNDARY LAYER of a Hq's

Near-critical reflection in the linear viscous case

Now the linear system is

In the viscous case, the same procedure but a much more delicate analysis... 
The vertical wave number bifurcates from the reflected wave 

when one adds a small viscosity.

* 2 boundary layers of exponential decay 
* 1 boundary layer of exponential decay

Notation 12 AME i 132Asked BOUNDARYLAYERS 2 of exponential decay 2

Is A5q3 H BOUNDARY LAYER of a Hq's

+BCs

A plane wave   

                    
is an approximate solution not 
satisfying the 
Boundary Conditions

1

−
k0

m0

i(k0 cos γ − m0 sin γ)
m0 sin β

e−iω0t+ik0x+im0z

Systematic approach: look for other linear solutions  
(Viscous Boundary Layers) to balance the trace, 
with Re(λ) > 0

uλ
wλ

bλ

e−iω0t+ik0x−λz

(B2)

System (B2) in Fourier 
ℒ(k, λ)(uλ wλ bλ) = 0

 is ‘’admissible’’ iff   λ
det(ℒ(k, λ)) = 0, Re(λ) > 0

*  is a polynomial of degree 6 in  
*  asymptotic of  w.r.t. the small parameters: viscosity 

 and criticality parameter  
* we need 3 admissible  to lift the 3 BCs

det(ℒ(k, λ)) = 0 λ
λ

ν ζ = ω2 − sin2 γ
λ



Proposition. Assume . One has the following roots in , with ν ≪ 1, ζ ≪ 1 λ Re(λ) > 0

Then find the amplitudes of the boundary layers by imposing zero trace on the boundary:

where ' 2 C1
0 (R). The Plancherel theorem entails that the L2

x,y
norm of this

quantity is bounded by

1

⌫1/6

✓Z

R

Z 1

0
'2

✓
k

⌫1/3

◆
exp

�
�2c⌫|k|3y

�
dy dk

◆1/2

 1

⌫1/6

✓Z

R
'2

✓
k

⌫1/3

◆
1

2c⌫|k|3 dk

◆ 1
2

.

It is not clear that the right-hand side is finite, unless we add further assumptions
on '. Therefore, in the rest of this paper, we will discard the part of the solution
that should be handled by the eigenvalue �2 in this regime. As a consequence,
we will only be able to lift two boundary conditions in this case.

Let us sum up the results of this paragraph in the following table.

Table 1: Sizes of the boundary layers in di↵erent regimes

|⇣| & 1 ⌫
1
4 . |⇣| ⌧ 1 ⌫

1
3 ⌧ |⇣| ⌧ ⌫

1
4 |⇣| . ⌫

1
3

• One reflected
wave

• One BL of
size ⌫1/2 (lift-
ing 2 condi-
tions)

• One highly
oscillating re-
flected wave
(with slow
decay)

• One BL of size
(⌫/⇣)1/2

• One BL of size
⌫1/2

• One BL of size
|⇣|4/⌫

• One BL of size
(⌫/⇣)1/2

• One BL of size
⌫1/2

• One BL of size
⌫1/3

• One BL of size
⌫1/2 (lifting 2
conditions)

1. Case |k| & 1:

• If |⇣| & 1, there is one reflected wave (lifting the vertical bound-
ary condition) and one boundary layer of size ⌫1/2, lifting the two
remaining boundary conditions;

• If ⌫1/3 ⌧ |⇣| ⌧ 1, there are three boundary layers, of sizes ⇣4/⌫,
(⌫/⇣)1/2, and ⌫1/2;

• If |⇣| . ⌫1/3, there are two boundary layers, of sizes ⌫1/3 and ⌫1/2.

2. Case |k| . ⌫1/3, |!| . ⌫1/3:

There is one boundary layer of size ⌫1/2, lifting two (out of three) boundary
conditions.
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Near-critical reflection in the linear viscous case
Idea: when the incident hits the boundary, the boundary conditions are not 

satisfied. The boundary layers are added to the incident wave 
in order to balance the trace.

This ‘matching condition’, i.e. 

provides the amplitudes of the boundary layers

The (almost) exact linear solution is 

MineIz o t kBtI z o 0
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MlinearNine tGIZg
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Linear boundary layers analysis of the viscous system

This gives an (almost) exact sol to the linear viscous system
Plane waves - wave packets

The linear solution is now at the level of plane waves

and we have some conceptual/technical problems with plane waves:
* they do not have compact support, they just oscillate in each direction 
* what is the meaning of ‘group velocity’ for a single plane wave?

* Plane waves have infinite energy, but the pressure P satisfies an 
elliptic equation and the inverse of the Laplacian is not well defined for 

non decaying function! 

decayoftheRs
t

0 ajXg either
H dit
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eigenvectorof eigenvectors oftheBts
theincidentwave amplitudes
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-> Scaling studied by 
Dauxois and Young 

JFM 1999



OBS: The linear solution is an approximate solution to the weakly nonlinear system.

The boundary conditions are exactly satisfied, the only error comes from the weak 
nonlinearity (which is not so weak, because of the amplitudes of the BLs)

The weakly nonlinear system

The weakly nonlinear system

To deal with the weak non linearity, the idea is to consider  
the linear solution as a first approximation to the weakly nonlinear system

Note that the boundary conditions are exactly satisfied, the only error  
comes from the weak nonlinearity

At Wein Moine Nope e uein Wein bein the linearsolution

footstep Mapp Mein

weaulynonlinear
system inampedform tillepp Ledlapp tf QEMappdapple8Olwen Molin

when LE Ug p If E AM this s THE Errorterm

using warp
V
ftp.w ButTHERE is no error

on THE Boundary
teranyProjector

QIU U IP untwdt M
Now the goal is to correct .  Recall that   
then there are contributions of different orders…

δQε(𝒰0
lin, 𝒰0

lin) 𝒰0
lin = 𝒰inc + 𝒰0

BL



The nonlinear corrector has a non zero trace that has to be lifted. 
𝒰inc := ∫ℝ2

̂A (k, m)Xk,m exp(i(kx − ωk,mt + my)) dk dm, ̂A ∈ 𝒮(ℝ2)

to the frequencies ±2!0, and will give rise to the second harmonic), or the one
in the case |k| . ⌫1/3 = "2, |!| . "2 (this corresponds to the frequencies close
to zero, and will give rise to the mean flow).

Before doing the explicit computation, we need to identify the parts of
W1

BL,"2;(a) that will give rise to a second harmonic or to a mean flow. To
that end, we write

bA bA0 = bA(k,m) bA(k0,m0)

=
1

"4

X

⌘,⌘02{±1}

�

✓
k + ⌘k0

"2
,
m+ ⌘m0

"2

◆
�

✓
k0 + ⌘0k0

"2
,
m0 + ⌘0m0

"2

◆

= A0(k, k
0,m,m0) +AII(k, k

0,m,m0),

where

A0(k, k
0,m,m0) =

1

"4

X

⌘2{±1}

�

✓
k + ⌘k0

"2
,
m+ ⌘m0

"2

◆
�

✓
k0 � ⌘k0

"2
,
m0 � ⌘m0

"2

◆
,

AII(k, k
0,m,m0) =

1

"4

X

⌘2{±1}

�

✓
k + ⌘k0

"2
,
m+ ⌘m0

"2

◆
�

✓
k0 + ⌘k0

"2
,
m0 + ⌘m0

"2

◆
.

If (k, k0,m,m0) 2 SuppA0, then (k + k0,m + m0,! + !0) = O("2), while if
(k, k0,m,m0) 2 SuppAII , then (k+k0,m+m0,!+!0) = ±2(k0,m0,!0)+O("2).

Using the expressions above, we infer that
0

B@
U1
BL,"2;(a)

W 1
BL,"2;(a)

@yB1
BL,"2;(a)

1

CA

|y=0

= ��

Z

R4

(A0 +AII) e
i(k+k

0)x�i(!+!
0)t

0

@
u(a)
w(a)

b(a)

1

A dk dk0 dm dm0,

where
0

@
u(a)
w(a)

b(a)

1

A =
1

2

X

j,j02{2,3}

X

±
aa0

k0U + i�0W

�(! + !0)± sin �
(U 0 ± iB0)

0

@
1

i(k+k
0)

�+�0

±i(�+ �0)

1

A

+
1

2

X

j02{2,3}

X

±
a0

k0Uinc + i�0Winc

�(! + !0)± sin �
(U 0 ± iB0)

0

@
1

i(k+k
0)

�0�im

±i(�0 � im)

1

A

=
X

j,j02{2,3}

X

±
O("�4)

0

@
1

i(k+k
0)

�+�0

O("�2)

1

A+
X

j02{2,3}

X

±
O("�4)

0

@
1

i(k+k
0)

�0�im

O("�2)

1

A .

We recall that a, a0,�, U, U 0, etc. are condensed notations for aj , aj0 , �j(k,m,!),
U�, U�0 respectively, see (2.17), while we refer to (2.14) for the notations Uinc,Winc.
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Then the first corrector with zero trace is given by:
(iii) W1

(a) can be decomposed as the sum of a mean flow W1
MF ;(a), a second

harmonic W1
II;(a), an "2 boundary layer W1

BL,"2;(a), and an "3 boundary

layer W1
BL,"3;(a)

W1
(a) = W1

BL,"2;(a) +W1
BL,"3;(a) +W1

II;(a) +W1
MF ;(a) .

– The "2 boundary layer satisfies

kW1
BL,"2;(a)kL2(R2

+) . �, kW1
BL,"2;(a)kL1(R2

+) . � ;

Moreover, the normal component of the velocity is smaller by a factor
O("2). Derivatives with respect to t and x are bounded, while each
derivative with respect to y has a cost O("�2).

– The "3 boundary layer satisfies

kW1
BL,"3;(a)kL2(R2

+) . �"1/2, kW1
BL,"3;(a)kL1(R2

+) . � ;

Moreover, the normal component of the velocity is smaller by a factor
O("3). Derivatives with respect to t and x are bounded, while each
derivative with respect to y has a cost O("�3).

– The second harmonic satisfies

kW1
II;(a)kL2(R2

+) . �, kW1
II;(a)kL1(R2

+) . �"2 ;

– The mean flow is much smaller

kW1
MF ;(a)kHs . �"2, kW1

MF ;(a)kW s,1 . �"3 .

For these second harmonic and mean flow contributions, derivatives
with respect to t, x, y are bounded.

Our strategy will be the following: we will first find an approximate solution
of the equation

@tW + L"W = �� ⇥ (a)

without taking into account the boundary condition. We then lift the remain-
ing trace by using the boundary operator of the previous section. Note that
our construction is very reminiscent from the construction of Ekman boundary
layers for instance.

We start with a computation of Q(W0
BL,"2

,W0
BL,"2

) and Q(W0
inc,W0

BL,"2
).

Using the formulas of the previous section, we have

(u0
BL,"2

@x + w0
BL,"2

@y)W0
BL,"2

=

Z

R4

X

j,j02{2,3}

ÂÂ0aa0ei(k+k
0)x�i(!+!

0)t�(�+�
0)y⇥

⇥ (ik0U � �0W )

0

@
U 0

W 0

B0

1

A dk dm dk0 dm0,

(3.3)
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The second harmonic and the mean flow

k+k’=0, 
mean flow

k+k’=+/- 2k0, 
2nd harmonic

η = ± 1



The stability estimate

Theorem (R. Bianchini, A.-L. Dalibard, L. Saint-Raymond, to apper on Analysis and PDE). 

Consider the Boussinesq equations in the scaling by Dauxois and Young (JFM 1999) 
in ,  with boundary conditions  .    

Then there exists a consistent approximate solution 

 

which solves the system with a remainder . 

Moreover, denoting by  the unique weak solution to the Cauchy problem with 
initial data  

, 

we have the following stability estimate: 

 (—> ) 

Alternatively,      

ℝ2
+ = ℝ × ℝ+ u|z=0

= w|z=0
= ∂zb|z=0

= 0

𝒲app := (uapp, wapp, bapp) = 𝒲inc + 𝒲BL + 𝒲1
II + 𝒲corr,

O(δε2)

𝒲

𝒲 |t=0 = 𝒲app |t=0

∥𝒲 − 𝒲app∥L2(ℝ2
+) ≤ δε2e(δε−2+1)t . δ ≤ ε2

∥𝒲 − 𝒲app∥L2(ℝ2
+) ≤ δ

1
2ε3eδε−2t .



Stratified fluids II: 
Linear inviscid damping of shear flows near Couette 

in the 2D stably stratified regime 
with Michele Coti Zelati and Michele Dolce



2) Shear flows for exponentially stratified fluids

  * Linearize around       
  * Apply   to the momentum equation so that  

 

where   ,        and        

—> The Couette flow is .   We consider  shears near Couette: 
  

  

—> Recall that   

ρ(y) = e−βy u = (U(y),0) ∂yp = − 𝔤ρ
∇⊥ = (∂y, − ∂x)

(∂t + U(y)∂x)(ω − β∂yψ) − (U′ ′ (y) − βU′ (y))∂xψ = − R∂xq,
(∂t + U(y)∂x)q = ∂xψ,

Δψ = ω,

ω = ∇⊥ ⋅ (ux, uy) q =
βρ
ρ

R = β𝔤

U(y) = y

∥U′ − 1∥H6 + ∥U′ ′ ∥H5 ≤ ε

Ri(y) =
−ρ′ (y)𝔤

ρ(y)
⋅

1
U′ (y)2

= β𝔤 ⋅
1

U′ (y)2
≈ R = β𝔤



The Couette case   U(y)=y    with constant density
—> In the constant density case, the vorticity      satisfies a scalar transport eq 

 

ω

∂tω + y∂xω = 0

ω(t, x, y) = ωin(t, x − yt, y) ̂ω (t, k, η) = ̂ω in(t, k, η + kt)

Mixing and inviscid damping in the Couette flow

Consider the much simpler case of the shear flow (y , 0) in T⇥ R:

@t! + y@x! = 0.

Solution given by !(t, x , y) = !in(x � ty , y), and hence !̂(t, k, ⌘) = !̂in(k, ⌘ + kt):

The mixing implies decay of the streamfunction through elliptic regularity:
��� ̂(t, k, ⌘)

��� =
����
!̂(t, k, ⌘)
k2 + ⌘2

���� .
1

hkti2
���h⌘ + kti2!̂in(k, ⌘ + kt)

���

“Inviscid damping”: velocity goes to a shear flow (Orr 1907):
����u

x(t)� 1
2⇡

Z

T
ux(t, s, y)ds

����
L2

+ hti kuy (t)k
L2

. 1
hti k!inkH2 .

Confirmed for (nonlinear) 2D Euler equations for su�ciently smooth perturbations
of Couette flow in JB/Masmoudi ‘13. (c.f. Landau damping of Vlasov-Poisson by
Mouhot/Villani ‘11).
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—> Mixing implies time-decay of the stream at the cost of regularity 
  

  

—> Inviscid damping (predicted by Orr 1907)    

| ̂ψ (t, k, η) | =
̂ω

k2 + η2
≲

1
⟨kt⟩2

|⟨η + kt⟩2 ̂ω in(k, η + kt) |

ux(t) − ∫𝕋
ux(t, τ, y) dτ

L2

+ ⟨t⟩∥uy(t)∥L2 ≲
1

⟨t⟩
∥ωin∥L2

—> In the NONLINEAR case, it was proved by Bedrossian & Masmoudi in 2013

[analogy with Landau damping for 
Vlasov-Poisson, 

Mouhot-Villani 2011 
Grenier, Nguyen, Rodnianski 2020]



What happens with stratified fluids and density variations?

1) Start with Couette, U(y)=y 

 
(∂t + y∂x)(ω − β∂yψ) + β∂xψ = − R∂xq,

(∂t + y∂x)q = ∂xψ,
Δψ = ω,

2) Define    

 

θ = ω − β∂yψ = (I − β∂yΔ−1)ω

(∂t + y∂x)θ = − R∂xq − β∂xΔ−1(I − βΔ−1)−1θ,
(∂t + y∂x)q = ∂xΔ−1(I − βΔ−1)−1θ

This is transported

* Hartman in 1975: decay rates 
* Yang and Lin in 2018: hypergeometric functions 

We will use a different strategy to improve the Couette case and handle shears 
close to Couette



The Couette case

(∂t + y∂x)θ = − R∂xq − β∂xΔ−1(I − βΔ−1)−1θ,
(∂t + y∂x)q = ∂xΔ−1(I − βΔ−1)−1θ

—> Follow the flow: 
       * new coordinates:  
       * new variables:  

—> Decoupling [Fourier] only in x 
   

X = x − yt, Y = y
Ω(t, X, Y ) = ω(t, X + tY, Y ), Θ(t, X, Y ) = θ(t, X + tY, Y )

∂tΘk = − ikRQk − βΔ−1
L BLΘk

∂tQK = ikΔ−1
L BLΘk

ΔL = ∂XX + (∂Y − t∂X)2

BL = (I − β(∂Y − t∂X)Δ−1
L )−1

time-dependent 
Fourier multipliers 

Θ = B−1
L Ω



The Couette case

* Look for a symmetrization of the non-autonomous dynamical system 
 

with     the symbol of . The system reads 

 

In symbols,   .  

* The ‘’matrix of remainders’’ is integrable in time. 
* A Gronwall-type estimate [with a proper functional] will be enough. 

Z1 := p− 1
4 Θk, Z2 := p

1
4i RQk .

p = k2 + (η − kt)2 −ΔL

∂t (Z1
Z2) =

−
1
4

p′ 

p
−k Rp− 1

2

k Rp− 1
2

1
4

p′ 

p
(Z1

Z2) +
β

ik
p

BL 0

k Rp− 1
2 (BL − 1) 0

(Z1
Z2) .

BL − 1 =
iβ(η − kt)

p + iβ(η − kt)
≈ t−1

matrix of remainders



* For any fixed frequency , we define the point-wise energy functional 

 

* This is coercive for R>1/4, Miles-Howard 

Theorem [R. Bianchini, M. Coti Zelati, M. Dolce  2020] 
Let  and . Then 

 

point-wise in . In particular, back to , 

η

E(t) =
1
2 [ |Z1(t) |2 + |Z2(t) |2 +

1

2k R
ℜ (p′ p− 1

2 Z1(t)Z2(t))]

β > 0 k ≠ 0

|p− 1
4 Θk(t) |2 + |p

1
4Qk(t) |2 ≈ | (k2 + η2)− 1

4 Θk(0) |2 + | (k2 + η2)1
4Qk(0) |2 , ∀t ≥ 0,

η Ωk

|p− 1
4 Ωk(t) |2 + |p

1
4Qk(t) |2 ≈ | (k2 + η2)− 1

4 Ωk(0) |2 + | (k2 + η2)1
4Qk(0) |2 , ∀t ≥ 0.

The Couette case



A Lyapunov instability of the vorticity

* From        

       one has    

* This implies that    , 

       i.e. the vorticity grows after the critical time . 

Theorem [R. Bianchini, M. Coti Zelati, M. Dolce 2020] 
Let  and . 

 

      

−
1

2 R − 1

|k |2

p
E ≲

d
dt

E ≲
1

2 R − 1

|k |2

p
E .

|p− 1
4 Ωk(t) |2 ≳ | (k2 + η2)− 1

4 Ωk(0) |2 + | (k2 + η2)1
4Qk(0) |2 =: Ξk(0) .

|Ωk(t) | ≳ (k2 + (η − kt)2)1
4Ξk(0) ≳ ⟨t⟩1/2∥Ξ(0)∥

H
1
2

t =
η
k

R > 1/4 β > 0
∥q(t) − ⟨q⟩x∥L2 + ∥vx(t) − ⟨vx⟩x∥L2 ≲

1

⟨t⟩1
2

(∥ωin − ⟨ωin⟩x∥L2 + ∥qin − ⟨qin⟩x∥H1),

∥vy(t)∥ ≲
1

⟨t⟩3
2

(∥ωin − ⟨ωin⟩x∥H
1
4

+ ∥qin − ⟨qin⟩x∥H
5
4) .



d
dt

Es + (1 −
1

2 R ) [∥
m′ 

m
Z1∥2

s + ∥
m′ 

m
Z2∥2

s] ≤
1

4 |k | R
⟨(p′ p− 1

2 )
′ 
Z1, Z2⟩s +

8

∑
i=1

ℛi,

Shear flows near Couette

Theorem [R. Bianchini, M. Coti Zelati, M. Dolce 2020] 
Let  and . There exists a small  s.t., if 
  and  

 

    where . 

R > 1/4 β > 0 ε0 = ε0(β, R) ∈ (0,1)
ε ∈ (0,ε0] ∥U′ − 1∥H6 + ∥U′ ′ ∥H5 ≤ ε,

∥q(t) − ⟨q⟩x |L2 + ∥vx(t) − ⟨vx⟩x∥L2 ≲
1

⟨t⟩ 1
2 −δε

(∥ωin − ⟨ωin⟩x∥L2 + ∥qin − ⟨qin⟩x∥H1),

∥vy(t)∥ ≲
1

⟨t⟩ 3
2 −δε

(∥ωin − ⟨ωin⟩x∥H
1
4

+ ∥qin − ⟨qin⟩x∥H
5
4),

δε = 2 ε

loss of decay prescribed by the weight

R>1/4

* Lin & Zeng 2010, shears near Couette: there are steady state in , but not for  with . 
* Bedrossian & Masmoudi in 2013 proved NONLINEAR inviscid damping for Couette in Gevrey     
(2 is optimal, Deng & Masmoudi 2018) 

H
3
2 Hs s > 3/2

2−



Ongoing …

* Instabilities of internal waves  
* Nonlinear perturbations of the Couette flow in the 2D stably stratified regime



What about shears flows near Couette?

—> Lin & Zeng in 2010, shears near Couette: there are steady state in  near Couette,  
       but not for  with . 
—> Bedrossian & Masmoudi in 2013 proved NONLINEAR inviscid damping for Couette  
      in Gevrey    (2 is optimal, Deng & Masmoudi 2018) 
       
      Shears near Couette for stratified fluids 
      They use a nonlinear change of coordinates which follows the background shear. 
        
       In our LINEAR problem for shears near Couette we follow the shear as well. 

—> We go back to the linearized system around  
 

where    

H
3
2

Hs s > 3/2

2−

ρ(y) = e−βy u = (U(y),0) ∂yp = − 𝔤ρ
∥U′ − 1∥H6 + ∥U′ ′ ∥H5 ≤ ε

A review on the constant density case



Shear flows near Couette

 

Define the new coordinates       and the unknowns    

 

 

Since    ,    where    , 

—> then     

—>  and         where                            

(∂t + U(y)∂x)(ω − β∂yψ) − (U′ ′ (y) − βU′ (y))∂xψ = − R∂xq

(∂t + U(y)∂x)q = ∂xΔ−1ω

X = x − U(y)t, Y = y

Θ(t, X, Y ) = θ(t, X + tY, Y ), Q(t, X, Y ) = q(t, X + tY, Y ), Ω(t, X, Y ) = ω(t, X + tY, Y )

∂tΘ = − R∂XQ + (b(Y ) − βg(Y )) ∂XΔ−1
t BtΘ,

∂tQ = ∂XΔ−1
t BtΘ .

∂x → ∂X, ∂y → g(Y )(∂Y − t∂X) g(Y ) = U′ (U−1(Y )), b(Y ) = U′ ′ (U−1(Y ))

Δt = ∂XX + g2(Y )(∂Y − t∂X)2 + b(Y )(∂Y − t∂X)

Bt = (I − βg(Y )(∂Y − t∂X)Δ−1
t )−1 Θ = B−1

t Ω

* Thanks to the hp  we have that        and        ∥U′ − 1∥H6 + ∥U′ ′ ∥H5 ≤ ε, Δ−1
t = Δ−1

L + 𝒟ε Bt = BL + ℬε

their  norm are Hs 𝒪(ε)



The energy functional

Couette:    The energy was point-wise in . 

Shears near Couette:  

The energy is:  

Here     , where 

—>  m  is a ‘’ghost weight’’ (eating time-integrable remainders) 

—> w is such that  , so   , 

      where  . 

Z1 := p− 1
4 Θk, Z2 := p

1
4i RQk . (k, η)

Z1 := m−1p− 1
4 Θk, Z2 := m−1p

1
4i RQk .

Es(t) =
1
2 [∥Z1(t)∥2

s + ∥Z2(t)∥2
s +

1

2k R
ℜ⟨p′ p− 1

2 Z1(t), Z2(t)⟩s] .

m = m1wδ

w′ 

w
=

1
4

|p′ |
p

(wδ)′ =
δε

4
|p′ |

p
δε = 𝒪( ε)

It absorbs the non-integrable remainders 
at the price of a small loss of time decay


