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Stratified fluids

The incompressible Navier-Stokes + thermal diffusion 20
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U= (%, ) is the velocity field

p is the density

p is the pressure relatedto V- u =0
9 = (0,q) isgravity
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We study departures from the hydrostatic equilibrium:

Depth (m)
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Density (g cim?)

Due to gravity, the lower density
fluid is above and then
density decreases with height
(photo from http:/
ocp.ldeo.columbia.edv/
climatekidscorner/whale_dir.shtwl)
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Stratified fluids |

1) Linearization around the hydrostatic equilibrium with zero velocity
The perturbed variables are:

p=py)+pt, x,y) U= O+ x,y),0+9¢xy) p=p+ptxy)
0,p=—gp

RULE [Boussinesql: density variations only counts for buoyancy effects, not inertia

I + S(uvu+Wibe=vAu
po° reference density

4 = q
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Po e | (normalized density
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—>Reference for formal derivation: book by M. Rieutord
—>Math papers on the (B) systewm: Lions, Temam, Wang,
Beale, Bourgeois, Charve, Chewin,
Abidi, Panchin, Hmidi, Paicu, Rousset...




Stable stratification
—> Stably stratified fluids —> the ocean, fluids in the core of the Earth

—> Why “stable” stratification? Consider the rest state

P0)  T=00 op=-gp

and linearize Linear inviscid approx] around it:

th+éu3ﬁ'=0
Po
V.-u=90

The linearized system is spec’rrallv s’rable it 7'(y) < 0:thereis no eigenvalve w 8. t. R(w) > 0

R

* Pispersion relation:( _j =+ N -7

o

*Brunt-Vaisala frequency: N =

1K
Vlsperslonrelaflon of order 0 ink

The reflection law is unusual: In the presence of dissipation,
1) near-critical reflection from a slope 2) anisotropy in the frequency variables



Stratified fluids Il

I1) Linearization around a shear flow in the invisecid regime
The perturbed variables are:

p=pQ)+pxy) UV=l(UQy)+a(t,x,y),0+v(,x,y) p=p+pxYy)

0,0 =—ap
')bj; » Oy 31_7 5 f'(;] :,:J:O
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The Miles-Howard criterion

* Seek for a solution 5 = p(y)et+*x 0 = u¥(y)et ik i = u(y)et ik
* From the divergence-free condition, u* = — (i/k)o,u* and we can solve for p

* We end up with a 2nd order ODE in «”

* Multiply it by the complex conjugate (1)* and integratein y

* After a smart change of variable - Ly is the new variable]

Ep0mUM)?
ER(/I)J PON1 0 P + K| v [?) +—= y2
y [A+ kUM ™ R
where
[\ —Ps 1 )N
=5 UGr - \UG ) T prunt-vatil

Richardson number frequency

1
Since o' < 0,then RUN) =0 when Ri(z)> " and then
there are no growing eigenvalves



Spectral stability Vs Asywmptotic stability

* Spectral stability (no growing eigenvalues) started 19th century [Rayleigh, Kelvin, Orr...
BUT

it can be wisleading in fluid dynawmics,
where (linear) operators are often NON NORMAL (Orr mechanisms)

* We will investigate the (Lyapunov) asymptotic stability in L*(Tx R)

for the linearized system
* near the Covette flow U(y) = y and where_

* the stratification is exponential  (

" Depth(m)

For small 5, p(y) ~ 1 — By / |

and linear stratifications
are COWIWIO"'Y considered 102 103 104 105

Density (g crn?)



Stratified fluids I:
Near-critical reflection of internal waves

from a sloping boundary
with Anne-Laure Dalibard and Laure Saint-Raymond



1) Reflection from a sloping boundary

- The dispersion relation
fixes the angle of propagation, not the modulus Z|
of the wavelength

- The direction of propagation is orthogonal o K

- Refleetion from a flat
surface follows Descartes

- This is no longer truve in the
case of a SLOPE oz

The reflection law is: preserve the angle
w.rt. the vertical (gravity)

Focusing, accumulation of energy,
| growth of the amplitude of the waves|
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2 Main ingredients come into play: interaction with the boundary
and role of the nonlinearity



Reflection from a slope: boundary + nonlinearity

Coming back to the simpler case of a sloping boundary... near-critical reflection

A
U If 2
Ok B 40 )
A Znd harwonic W
MY ,Q’}‘\ ( Q e 4\
a; imadeu |
cgih xee: almost no space is left for the

reflected wave, its vertical
wavenumber is O(e~2)

1 Then the wavelength is O(&2)
Weakly nonlinear system in the slope’s coordinates ;\/

g

and its amplitudeis O(e~2)

'FOCUSING... the “small” |
ﬂ nonlinearity cowes into play'
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Near-critical reflection of internal waves from a sloping boundary

Since the amplitude of the “reflected z
wave” 0.1}
(boundary layers in the viscous case...) | <7
is “infinite”, then the nonlinearityisno [ |
longer small and produces a second 0,57
harwonic far from the boundary, in the |, ~ AL T4

outer region 0 05 1' 15 > 25

e —2iwyt+ik-x

* Formal study by Dauxois & Young NFM 1999)

* GOAL: understand the interactions of IWs with the boundary (viscous case) and the role
of the nonlinear term

-> construct an approximate solution which is CONSISTENT and STABLE,
in some functional space with finite energy

Main steps

1) Systewmatic boundary layers analysis of the linear
viscous system

2) Fixed point iteration schewme (add correctors taking
into account the nonlinearity)




A case study: linear analysis of the 20 INVISCID system

A
/c',* | "Qb;}

ou—(siny)b+0.p=0

ow —(cosy)b+0d,p=0

0,b + u(siny) + w(cosy) =0
du+ow=0 el

‘ _ b "
BOs:w| _,=0 L

Plane wave solution of the linear inviscid 20 system

(U, )
refl
k — msiny)?
L (k, m) Weefl| =2 (0 — det(Lk,m) =0 — w? = ( COSk}; +nn/;281n 7) = sinzﬁ = sin2y + 0(82)
b
\ refl)

Cosy siny + cos fsin f

Dispersion Relation has 2 rootsinm, and ~ m, = k————— = 0(e7%)
sin” f# — sin~y
i+ —iwyt+ikyx kO k()
Boundary Condition: — w;,.| o+ w.pnl =0 = e X a, ——+a,. )=0
My mrefl

Then e hastobe O(e2). Thus, w1, amplitude >>1 —> eritical case when S ~ y




Linear analysis of the 20 VISCOUS system

( 1 )

F @i ERERAR |
i}%ud -Gyl b x3wp= vAw

(B2)| | dvW -(emp)b + d3p = VAhw

gyu, +3%W‘10

grb 4+ u (ainyl +w (ery! = VADb

: A plane wave ks -
/_5 S b mg e—la)ot+lk0x+lm0z

i(kycosy —mgsiny)

\ mg sin )

is an approximate solution not
satistying the
Boundary Conditions

+Bcs ”"‘L\&M‘ Nizﬁo‘?@ (Nﬂ gL"”} QEH = © (uo ‘Fw;{j

2:o0

(Viscous Boundary Layers) to balance the trace,

Systematic approach: look for other linear solutions [”/1]
W) e—ia)ot+ik0x—/1z

with Re(1) > 0

System (B2) in Fourier
FLk, 2) (W, b;) =0

A is “adwissible” iff
det(L(k,A) =0, Re(4)>0

b,

*k

*k

* we need 3 adwmissible 1 to lift the 2 BCs

det(ZL(k, 1)) = 0 is a polynowmial of degree 6 in A
asymptotic of 1 w.rt. the small parameters: viscosity
v and eriticality parameter ¢ = ©w? — sin’y




Linear boundary layers analysis of the viscous system

Proposition. Assume v < 1, ¢ < 1. One has the following roots in A, with Re(1) > 0

ing 2 condi-
tions)

e One BL of size
(v/¢)H?

e One BL of size
1/2

e One BL of size
1/2

<[ 1 vi Sl <1 Vi < (| < v
e One reflected | e One highly | e One BL of size | ¢ One BL of size
wave oscillating  re- ¢4 /v p1/3
flected  wave . .
e One BL of (with slow | ® One BL of size |  One BL of size
size v1/2 (lift- decay) (/)12 v/2 (lifting 2

R R R R —

-> Scaling studied by
Pauxois and Young
JFM 1999

conditions)

Then find the amplitudes of the boundary layers by imposing zero frace on the boundary:
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This gives an (almost) exact sol to the linear viscous system
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The weakly nonlinear system

0BS: The linear solution is an approximate solution to the weakly nonlinear systew.

The boundary conditions are exactly satisfied, the only error comes from the weak
nonlinearity (which is not so weak, becauvse of the amplitudes of the BLs)
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). Recall that 20 =%

lin

Now the goal is to correet 5Q5(%" , %

lin> ™ lin

then there are contributions of different orders...

inc

0
+ Uy,



The second harwmonic and the mean flow

The nonlinear corrector has a non zero trace that has to be lifted.

inc

U, = J A (k, m)X,,,, exp(i(kx — wy it + my)) dk dm, A € S(R?)
RZ

AA = A(k,m)AK,m")
1 Z k+nky m+ nmg k' +n'kog m'+n'mg
el X g2 g2 X e2 1 g2
nn'e{£1}
= Aok, k' ,m,m") + Arr(k, k' ,m,m"), ==+ 1
where
Aok, K IR '~ ko] o
) 0\ Ivy 7m7m — 4
k-0, ] A 2 =
mean flow 1 s TV
Arr(k K m,m') = o Z % = =
{£1}

)

ktk=+/- 2K0, 4"/

2nd harwonie

Then the first corrector with zero trace is given by:

W(la) = WJEL,ez;(a) + WéL,sig;(a) + W}I;(a) + Wzlwp;(a)




The stability estimate

Theorew (R. Bianchini, A-L. Dalibard, L. Saint-Raymond, to apper on Analysis and PDE).

Consider the Boussinesq equations in the scaling by Pauvxois and Young (JFM 1999)
in R: = R X R,, withboundary conditions y_=w,_=0db _=0.

Then there exists a consistent approximate solution

W = b ) — Winc + WBL + W]l] i W

app (”app’ Wapp> Papp corr

which solves the system with a remainder O(5¢?).

Moreover, denoting by 77 the unique weak solution o the Cauchy problem with
initial data

W\ _o=W

app |t=0'
we have the following stability estimate:

1T =W | o2y < 962D (=36 < €7)

app

Alternatively, |7 — W', |l o2y < 573%™



Stratified fluids Il:
Linear inviscid damping of shear flows near Couvette

in the 20 stably stratified regime
with Michele Coti Zelati and Michele Dolce



2) Shear flows for exponentially stratified fluids

* Linearizearound 5(y)=e¢™® U= (U©y),0) 0,p=—ap

* Apply V* = (9,, — 9,) tothe momentum equation so that

t
q, |

0 U@ o = (UG~ FU G —
N

| (0, +U()g = o, |
w ) Ay =o, ? |
where o = V*- (u”,uw), g = 'BT'O and R = fq £
P .

—> The Covette flow is U(y) = y. We consider shears near Covette:

1.02 1.03 1.04 1.05
Density (g cm?)

U = UHlge + 1U s < €

—P (g 1
p(y) Uy

—> Recall




The Covette case Uly)lsy with constant density

—> In the constant density case, the vorticity o satisfies a scalar transport eq
0,0+ yo.w =10

a)(ta X, )7) — a)in(ta X = yta y) a(ta k? }7) — ain(ta ka 7’] + kt)

—> Mixing implies time-decay of the stream at the cost of regularity

s

f),

vtkn| = S
|y (. k)] e | S

| {n + kf>25)\in(k, N+ ki) |

Lanalogy with Landav damping for

_ .. . . Viasov-Poisson,
>Inviscid damping (predicted by Orr 1907) Moupf‘o ,(_Vi"a'm 2011

Grenier, Nguyen, Rodnianski 20201

1
w5(t) — [ W nyde |+ OOl < —lo, [l
T

(1)
12
—> In the NONLINEAR case, it was proved by Bedrossian & Masmoudi in 2013




What happens with stratified fluids and density variations?

* Hartman in 1975: decay rates
* Yang and Lin in 2018: hypergeometric functions

We will use a different strategy to improve the Covette case and handle shears
close to Couette

1) Start with Couette, Uly)=y 2) Pefine (0 = w — oy = (I — o, A Hw

(az‘ + yax)q = axllja
Ay = o,

0,4+ v0)0 = — Rd g — po. A1 — pA~H)7 16,
(0, +yd)q = 0,A™ (I - PA™)7'O



The Couette case

(0, +v0,)0 = — Ro.q — o A~ — pA~1H 19, ' \ 1— U
0, +vd)g = 0, A~ I — pA~1) 10 N I —

3 L
1t/////////'
x

—> Follow the flow:
* new coordinates: X =x—yr, Y=y

* pew variables: Q. X, Y) = w(@, X +1Y,Y), O¢ X, Y)=0@tX+1Y,Y)

—> Pecoupling [Fouried onlyinx | 9@, = — ikRQ, — SA;'B,©,
0,0 = ikA7'B,©, |

B, = (I — B(0y — t0x) A7)




The Couette case

* Look for a symmetrization of the non-autonomous dynamical system
Z, =p30, Z,:=psi/RO,.

with p = k% + (n — k1)* the symbol of —A,. The system reads

(1 p )
p _1 ( : )
——Z  —k/R ik
Z 4 p VRp™ Z, p—B; 01 /7,
o\z )= 1 p’ AN g Z
1 1
. k\/Rp~2 — ? k\/Rp~2(B, — 1) 0, 7
\ 4r \

lﬂ(ﬂ R kt) -~ f_l

In symbols, B, — 1 = : N
p +ip(n — kt)

* The “matrix of remainders” is integrable in time.
* A Gronwall-type estimate Iwith a proper functionall will be enough.



The Couette case

* For any fixed frequency #, we define the point-wise energy functional

R (p’p‘%Zl(t)m )

1 2 2
E(f)=5 |1 Z(D) "+ [ Z,(®) |” +

2kv/R

* This is coercive for €>1/4 Miles-Howard

Theorem [R. Bianchini, M. Coti Zelati, M. Dolece 20201
Let 5 > 0 and & # 0. Then

P30, |2 + | prO () I = | (k2 + 72770 0) |* + | (k> + 1270 0)|?, V>0,
point-wise in . In particular, back to 2,

P3O [* + P70 |* = | (2 + 727 7Q0) |* + | (K + 1270 (0) |, V1> 0.



A Lyapunov instability of the vorticity

1 k|? d 1 k
*From — | lE,s | l

2/R-1 P i 2\/_—1 p

onehas |p=7Q,(0) > 2 | (k% + 2" TQ0) |2 + | (k2 + 7)70,0) |* =: E,(0).

* This implies that | Q,(1) | = (k2 + (7 — kn)?TE(0) 2 (12| Z(0) || L

i.e. the vorticity grows after the critical time r = %

Theorem LR. Bianchini, M. Coti Zelati, M. Dolce 20201
LetR > 1/4 and g > 0.

1g(®) = @)l 2 + V(D) = W)l 2 S

(“0) _ <a)m> ”L2+ ”qm <qm>x”H1)’

(t)7

1
<”0)m _ <0)in>x”H% + ”qm — <qin>x”H%> .

(t)>

IO




Shear flows near Covette

* Lin & Zeng 2010, shears near Couette: there are steady state in 772, but not for &7° with s > 3/2.
* Bedrossian & Masmoudi in 2013 proved NONLINEAR inviscid damping for Covette in Gevrey 2-
(2 is optimal, Peng & Masmoudi 2018)

d 1 m_ m_ 1
—E+ | 1———= ) |IW/=Zl;+ I/ =2Zl5| <
dt 2/R m m 4|k|/R

Theorem LR. Bianchini, M. Coti Zelati, M. Dolce 20201

Let R > 1/4 and B > 0. There exists a small ¢, = £,(3,R) € (0,1) s, if
e € (0,e0] and [|U" = 1 gs + |U" | s < &,

1g(®) = (@) |2+ V(@ = Wl 2 S

8

+ ) R

i=1

/

<<P/P_%> Zy,Zy),

(Newg = (@)l 2 + NG = (@il i)
()77

1
WOl S —

s (1o @)l = Gl )

where 5, = 24/e.



Ongoing ...

* [nstabilities of internal waves
* Nonlinear perturbations of the Covette flow in the 20 stably stratified regime




What about shears flows near Couvette?

A review on the constant density case

—> Lin & Zeng in 2010, shears near Couette: there are steady state in 7= near Couette,
but not for H* with s > 3/2.

—> Bedrossian & Masmoudi in 2013 proved NONLINEAR inviscid damping for Couvette
in Gevrey 2~ (2 is optimal, Deng & Maswmoudi 2018)

Shears near Couvette for stratified fluids
They use a nonlinear change of coordinates which follows the background shear.

In our LINEAR problem for shears near Covetie we follow the shear as well.

—> We go back to the linearized systewm around

po)=eP  T=UM0) op=-gp
where [|U = 1|6+ |U"|lys <



Shear flows near Covette

(0, + U(y)o, )@ — poy) — (U"(y) — pU'(y)o,w = — R, q
0, + U(y)0,)g = 0. A" w

Define the new coordinates X =x— U(y):, Y =7y andthe unknowns

O#,X,Y)=0tX+1Y,Y), O&LX,Y)=qt,X+1tY,Y), QX Y)=w(tX+1tY,Y)

0,0 = — RoxQ + (b(Y) — Bg(Y)) 0xA;'B®,
00 =0,A7'BO.

Since 9, -9y, 0, g(Y)(@y—1dy), Where g(¥)=UUY)), bY)=UUY)),

—>then A, =0y, + g%(Y)(9y — 10y)* + b(Y)(dy — 10y)

—> and B, = (I - Bg(Y)(0y —10,)A7)~! where ®=B"'Q

* Thankstothehp ||U' — 1]|ys + |U"||lys < &, wehavethat A7'=A7'+9, and B =B, + 3,



The energy tunctional

Covette: Z, :=p~3©,  Z,:=psin/RQ,. Theenergy was point-wisein (k, 7).

Shears near Covette: Z, .= m~'p=3@,,  Z, := m 'psin/RQ,.

. 1 |
The energy is: E(D == 1ZDN1Z + 1 Z,Ol5 + R{(p'p~2Z,(t), Z,(0)), | -

2k+/R

Here m = m1w5 , Where

/

. w 1 '
—> w is such that —=- P l,so =

w p
where 5, = 0(/¢).

—> w isa “ghost weight” (eating time-intearable remainders)

-
g
yy

It absorbs the non-integrable remainders
at the price of a small loss of time decay



