Shape optimization and isoperimetric inequalities

Francesco Della Pietra

Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università degli Studi di Napoli Federico II

Recent Advances in Analysis and Control Friedrich-Alexander Universität Erlangen - Nürnberg
Department of Data Science (DDS) April 30, 2021.

Shape optimization

A shape optimization problem
To minimize (or maximize) a functional, depending on a shape Ω,

$$
\mathcal{F}: \Omega \in \mathcal{U}_{a d} \mapsto \mathbb{R}
$$

among all the sets Ω living in a class $\mathcal{U}_{\mathrm{ad}}$ of admissible shapes.

Shape optimization

A shape optimization problem
To minimize (or maximize) a functional, depending on a shape Ω,

$$
\mathcal{F}: \Omega \in \mathcal{U}_{a d} \mapsto \mathbb{R}
$$

among all the sets Ω living in a class $\mathcal{U}_{\mathrm{ad}}$ of admissible shapes.

In many applications, the functional $\mathcal{F}(\Omega)$ depends on Ω via a state function u_{Ω}, which arises as the solution of a partial differential equation given in Ω.

Isoperimetric inequalities and symmetrization

Isoperimetric inequalities
The term isoperimetric inequalities is used in literature to identify inequalities which arise from minimum or maximum problems in which not necessarily perimeter and volume are involved. For example, they can regard geometric quantities as the diameter, general notion of perimeter, or physical quantities as capacity, eigenvalues of boundary value problems, torsional rigidity

Isoperimetric inequalities and symmetrization

Isoperimetric inequalities
The term isoperimetric inequalities is used in literature to identify inequalities which arise from minimum or maximum problems in which not necessarily perimeter and volume are involved. For example, they can regard geometric quantities as the diameter, general notion of perimeter, or physical quantities as capacity, eigenvalues of boundary value problems, torsional rigidity

Symmetrization

A symmetrization procedure consists, roughly speaking, in transforming a mathematical object (e.g. a set, a function) in another one "more symmetric" so that it can preserve some property of the original object

Symmetrization of sets

Symmetrization of sets

Among all the open sets $\Omega \subseteq \mathbb{R}^{N}$ with fixed volume, the ball has the smallest perimeter.

Symmetrization of sets

Among all the open sets $\Omega \subseteq \mathbb{R}^{N}$ with fixed volume, the ball has the smallest perimeter.

$$
\min _{|\Omega|=k} \operatorname{Per}(\Omega)=\operatorname{Per}\left(\Omega^{\#}\right)
$$

Symmetrization of functions

$$
u(x)
$$

Symmetrization of functions

$$
u^{\#}(x) \quad u(x)
$$

Symmetrization of functions

$$
u^{\#}(x) \quad u(x)
$$

Symmetrization of functions

$$
u^{\#}(x) \quad u(x)
$$

Symmetrization of functions

$$
u^{\#}(x) \quad u(x)
$$

Symmetrization of functions

Symmetrization of functions

$$
u^{\#}(x) \quad u(x)
$$

Symmetrization of functions

$u: \Omega \rightarrow \mathbb{R}$ measurable function, $\Omega \subset \mathbb{R}^{n}, 0<|\Omega|<\infty$
$\Omega^{\#}$ ball centered at the origin, $\left|\Omega^{\#}\right|=|\Omega|$

Spherical decreasing rearrangement, $u^{\#}$
(1) $u^{\#}$ is radially symmetric decreasing
(2) $\left|\left\{x \in \Omega^{\#}: u^{\#}(x)>t\right\}\right|=|\{x \in \Omega:|u(x)|>t\}|$

Symmetrization of functions

$u: \Omega \rightarrow \mathbb{R}$ measurable function, $\Omega \subset \mathbb{R}^{n}, 0<|\Omega|<\infty$
$\Omega^{\#}$ ball centered at the origin, $\left|\Omega^{\#}\right|=|\Omega|$

Cavalieri principle: the L^{p} norm is preserved

$$
\int_{\Omega}|u|^{p} d x=\int_{\Omega^{\#}}\left|u^{\#}\right|^{p} d x, \quad \forall p \geq 1
$$

Symmetrization of functions

$u: \Omega \rightarrow \mathbb{R}$ measurable function, $\Omega \subset \mathbb{R}^{n}, 0<|\Omega|<\infty$
$\Omega^{\#}$ ball centered at the origin, $\left|\Omega^{\#}\right|=|\Omega|$

Pólya-Szegő: the energy decreases
If u has compact support, $\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \geq \int_{\mathbb{R}^{n}}\left|\nabla u^{\#}\right|^{2} d x$

Two classical problems

Partial differential equations: a classical result

(P) $\quad \begin{cases}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{cases}$
where Ω is a bounded open set in \mathbb{R}^{n}, and $\Delta u(x)=\sum_{i=1}^{n} \partial_{x_{i} x_{i}} u(x)$.

Partial differential equations: a classical result

(P) $\quad \begin{cases}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{cases}$
where Ω is a bounded open set in \mathbb{R}^{n}, and $\Delta u(x)=\sum_{i=1}^{n} \partial_{x_{i} x_{i}} u(x)$.

Problem
Among all the problems (P), for what data we have the "largest solution"?

Partial differential equations: a classical result

(P) $\quad \begin{cases}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{cases}$
where Ω is a bounded open set in \mathbb{R}^{n}, and $\Delta u(x)=\sum_{i=1}^{n} \partial_{x_{i} x_{i}} u(x)$.
Hp: the rearrangement of f and the Lebesgue measure of Ω are fixed.

Problem
Among all the problems (P), for what data we have the "largest solution"?

Partial differential equations: a classical result

(P) $\quad\left\{\begin{array}{ll}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{array} \quad \begin{cases}-\Delta v=f^{\#}(x) & \text { in } \Omega^{\#} \\ v=0 & \text { su } \partial \Omega^{\#}\end{cases}\right.$
where Ω is a bounded open set in \mathbb{R}^{n}, and $\Delta u(x)=\sum_{i=1}^{n} \partial_{x_{i} x_{i}} u(x)$.
Hp: the rearrangement of f and the Lebesgue measure of Ω are fixed.

Problem
Among all the problems (P), for what data we have the "largest solution"?

Partial differential equations: a classical result

(P) $\quad\left\{\begin{array}{ll}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{array} \quad \begin{cases}-\Delta v=f^{\#}(x) & \text { in } \Omega^{\#} \\ v=0 & \text { su } \partial \Omega^{\#}\end{cases}\right.$
where Ω is a bounded open set in \mathbb{R}^{n}, and $\Delta u(x)=\sum_{i=1}^{n} \partial_{x_{i} x_{i}} u(x)$.
Hp: the rearrangement of f and the Lebesgue measure of Ω are fixed.

Problem
Among all the problems (P), for what data we have the "largest solution"?

Maz'ja 1969, Talenti 1976

$$
u^{\#}(x) \leq v(x) \quad \forall x \in \Omega^{\#} .
$$

A consequence of Talenti's result

(P) $\quad\left\{\begin{array}{ll}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{array} \quad \begin{cases}-\Delta v=f^{\#}(x) & \text { in } \Omega^{\#} \\ v=0 & \text { su } \partial \Omega^{\#}\end{cases}\right.$

A consequence of Talenti's result

(P) $\quad\left\{\begin{array}{ll}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{array} \quad \begin{cases}-\Delta v=f^{\#}(x) & \text { in } \Omega^{\#} \\ v=0 & \text { su } \partial \Omega^{\#}\end{cases}\right.$

Saint Venant conjecture
If $f \equiv 1$ then

$$
T(\Omega)=\int_{\Omega} u d x=\int_{\Omega^{\#}} u^{\#} d x \leq \int_{\Omega^{\#}} v d x=T\left(\Omega^{\#}\right)
$$

A consequence of Talenti's result

(P) $\quad\left\{\begin{array}{ll}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { su } \partial \Omega\end{array} \quad \begin{cases}-\Delta v=f^{\#}(x) & \text { in } \Omega^{\#} \\ v=0 & \text { su } \partial \Omega^{\#}\end{cases}\right.$

Saint Venant conjecture
If $f \equiv 1$ then

$$
T(\Omega)=\int_{\Omega} u d x=\int_{\Omega^{\#}} u^{\#} d x \leq \int_{\Omega^{\#}} v d x=T\left(\Omega^{\#}\right)
$$

The torsional rigidity $T(\Omega)$ of an elastic bar with cross section Ω of fixed measure is maximal when Ω is a disk.

A classical shape optimization problem

Lord Rayleigh (1877)
Among all the elastic membranes, fixed at the boundary, with constant density and given area, the circular one has the lowest principal frequency
[Faber 1923, Krahn 1925]

A classical shape optimization problem

Lord Rayleigh (1877)
Among all the elastic membranes, fixed at the boundary, with constant density and given area, the circular one has the lowest principal frequency
[Faber 1923, Krahn 1925]

$$
\lambda_{1}(\Omega) \quad[\text { principal } \quad \text { frequency of } \Omega]
$$

A classical shape optimization problem

Lord Rayleigh (1877)

Among all the elastic membranes, fixed at the boundary, with constant density and given area, the circular one has the lowest principal frequency
[Faber 1923, Krahn 1925]

$$
\begin{aligned}
& \lambda_{1}(\Omega) \text { [principal } \\
& \operatorname{fr}_{1}(\Omega)=\min _{\varphi \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla \varphi|^{2} d x}{\int_{\Omega} \varphi^{2} d x}=\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x}
\end{aligned}
$$

A classical shape optimization problem

Lord Rayleigh (1877)

Among all the elastic membranes, fixed at the boundary, with constant density and given area, the circular one has the lowest principal frequency
[Faber 1923, Krahn 1925]

$$
\begin{aligned}
\lambda_{1}(\Omega) & \text { [principal }
\end{aligned} \begin{aligned}
& \text { frequency of } \Omega \text {] } \\
& \lambda_{1}(\Omega)=\min _{\varphi \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla \varphi|^{2} d x}{\int_{\Omega} \varphi^{2} d x}=\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x} \\
& \geq \frac{\int_{\Omega^{\#}}\left|\nabla u^{\#}\right|^{2} d x}{\int_{\Omega^{\#}}\left(u^{\#}\right)^{2} d x}
\end{aligned}
$$

A classical shape optimization problem

Lord Rayleigh (1877)

Among all the elastic membranes, fixed at the boundary, with constant density and given area, the circular one has the lowest principal frequency
[Faber 1923, Krahn 1925]

$$
\begin{aligned}
\lambda_{1}(\Omega) \quad \text { [principal } & \text { frequency of } \Omega \text {] } \\
\lambda_{1}(\Omega)=\min _{\varphi \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla \varphi|^{2} d x}{\int_{\Omega} \varphi^{2} d x} & =\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x} \\
& \geq \frac{\int_{\Omega^{\#}}\left|\nabla u^{\#}\right|^{2} d x}{\int_{\Omega^{\#}}\left(u^{\#}\right)^{2} d x} \geq \lambda_{1}\left(\Omega^{\#}\right)
\end{aligned}
$$

A classical shape optimization problem

Lord Rayleigh (1877)

Among all the elastic membranes, fixed at the boundary, with constant density and given area, the circular one has the lowest principal frequency
[Faber 1923, Krahn 1925]

Pólya-Szegő conjecture

Among all the n-sided polygonal membranes with constant density and given area, the regular one has the lowest principal frequency

Proved by Pólya and Szegő for $n=3$ and $n=4$, open for $n \geq 5$.

It holds:

$$
\min _{|\Omega|=k} \lambda_{1}(\Omega)=\lambda_{1}\left(\Omega^{\#}\right), \quad \sup _{|\Omega|=k} \lambda_{1}(\Omega)=+\infty .
$$

It holds:

$$
\min _{|\Omega|=k} \lambda_{1}(\Omega)=\lambda_{1}\left(\Omega^{\#}\right), \quad \sup _{|\Omega|=k} \lambda_{1}(\Omega)=+\infty .
$$

Pólya (1958)
If Ω is a bounded convex domain in \mathbb{R}^{2}, then

$$
\lambda_{1}(\Omega) \leq \frac{\pi^{2}}{4} \frac{\operatorname{Per}(\Omega)^{2}}{|\Omega|^{2}}
$$

and it is optimal for the slab.

It holds:

$$
\min _{|\Omega|=k} \lambda_{1}(\Omega)=\lambda_{1}\left(\Omega^{\#}\right), \quad \quad \sup _{|\Omega|=k} \lambda_{1}(\Omega)=+\infty .
$$

Pólya (1958)
If Ω is a bounded convex domain in \mathbb{R}^{2}, then

$$
\lambda_{1}(\Omega) \leq \frac{\pi^{2}}{4} \frac{\operatorname{Per}(\Omega)^{2}}{|\Omega|^{2}}
$$

and it is optimal for the slab.

Payne - Weinberger (1961)
If Ω is a bounded simply connected domain in \mathbb{R}^{2}, then

$$
\lambda_{1}(\Omega) \leq \lambda_{1}^{N D}(A)
$$

where A is a annulus with $|A|=|\Omega|$ and $\operatorname{Per}(\Omega)$ is equal to the perimeter of the outer circumference, $\lambda_{1}^{N D}$ has Dirichlet on the outer circumference and Neumann on the inner.

Hersch inequality (1960)
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded convex domain. Then

$$
\lambda_{1}(\Omega) \geq\left(\frac{\pi}{2}\right)^{2} \frac{1}{\rho^{2}(\Omega)}
$$

where $\rho(\Omega)$ is the inradius of Ω. The equality sign holds in the limiting case when Ω approaches a slab.

Key arguments

- Use of the so-called "web functions" (Pólya)

$$
\varphi(x)=v(d(x, \partial \Omega)), \quad x \in \Omega .
$$

Key arguments

- Use of the so-called "web functions" (Pólya)

$$
\varphi(x)=v(d(x, \partial \Omega)), \quad x \in \Omega .
$$

- P-function method: in convex domains, if u is a positive first eigenfunction, then the function

$$
|\nabla u|^{2}+\lambda u^{2}
$$

attains its maximum at the maximum points of u (Payne).

Key arguments

- Use of the so-called "web functions" (Pólya)

$$
\varphi(x)=v(d(x, \partial \Omega)), \quad x \in \Omega .
$$

- P-function method: in convex domains, if u is a positive first eigenfunction, then the function

$$
|\nabla u|^{2}+\lambda u^{2}
$$

attains its maximum at the maximum points of u (Payne).

- on the level sets of u, we have

$$
\Delta u=(N-1) H u_{\nu}+u_{\nu \nu}
$$

Convex symmetrization

$$
\lambda_{1, F}(\Omega)=\min _{u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega} F(\nabla u)^{p} d x}{\int_{\Omega} \mid\left\langle\left.\right|^{p} d x\right.}
$$

with F given norm in \mathbb{R}^{N}.
The geometry of the optimal sets is related to the polar (or dual) norm of F.

Convex symmetrization

$$
\lambda_{1, F}(\Omega)=\min _{u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega} F(\nabla u)^{p} d x}{\int_{\Omega}|u|^{p} d x}
$$

with F given norm in \mathbb{R}^{N}.
The geometry of the optimal sets is related to the polar (or dual) norm of F.
A. Alvino - V. Ferone - P.L.Lions - G. Trombetti AIHP 1997
M. Belloni - V. Ferone - B. Kawohl ZAMP 2003
D.P. - N. Gavitone Math. Nachr. 2014
D.P. - N. Gavitone - S. Guarino Lo Bianco J. Diff. Eq. 2018
D.P. - G. di Blasio - N. Gavitone Adv. Nonlinear Anal. 2020

Efficiency of the first eigenfunction

Let Ω be a bounded domain in \mathbb{R}^{n}.

$$
\lambda_{1}(\Omega)=\inf _{\varphi \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla \varphi|^{2}}{\int_{\Omega} \varphi^{2}} .
$$

Let u_{Ω} be a positive eigenfunction relative to $\lambda_{1}(\Omega)$. The efficiency or mean to max ratio of u_{Ω} is defined by

$$
E(\Omega)=\frac{\frac{1}{|\Omega|} \int_{\Omega} u_{\Omega} d x}{\max u_{\Omega}}
$$

Efficiency of the first eigenfunction

Let Ω be a bounded domain in \mathbb{R}^{n}.

$$
\lambda_{1}(\Omega)=\inf _{\varphi \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla \varphi|^{2}}{\int_{\Omega} \varphi^{2}} .
$$

Let u_{Ω} be a positive eigenfunction relative to $\lambda_{1}(\Omega)$. The efficiency or mean to max ratio of u_{Ω} is defined by

$$
E(\Omega)=\frac{\frac{1}{|\Omega|} \int_{\Omega} u_{\Omega} d x}{\max u_{\Omega}}
$$

The functional $E(\Omega)$ is scaling invariant.

Efficiency of the first eigenfunction

Payne-Stakgold, 1973
If Ω is bounded and convex domain in \mathbb{R}^{N}, then

$$
E(\Omega) \leq \frac{2}{\pi}
$$

Efficiency of the first eigenfunction

Payne-Stakgold, 1973
If Ω is bounded and convex domain in \mathbb{R}^{N}, then

$$
E(\Omega) \leq \frac{2}{\pi}
$$

Chiti, 1982 (Reverse Hölder inequality)
If Ω is a bounded domain in \mathbb{R}^{N}, then

$$
E(\Omega) \geq E(B) \frac{|B|}{|\Omega|}
$$

where B is the ball in \mathbb{R}^{N} such that $\lambda(B)=\lambda(\Omega)$. Equality holds if Ω is a ball.

Some examples

If $\triangle \subset \mathbb{R}^{2}$ is an equilateral triangle, then

$$
E(\triangle)=\frac{2}{\pi \sqrt{3}} .
$$

If $\square \subset \mathbb{R}^{2}$ is any rectangle, then

$$
E(\square)=\frac{4}{\pi^{2}} .
$$

If $B \subset \mathbb{R}^{2}$ is a disc, then

$$
E(B) \approx 0.6782 \frac{2}{\pi} .
$$

Some examples

If $\triangle \subset \mathbb{R}^{2}$ is an equilateral triangle, then

$$
E(\triangle)=\frac{2}{\pi \sqrt{3}} .
$$

If $\square \subset \mathbb{R}^{2}$ is any rectangle, then

$$
E(\square)=\frac{4}{\pi^{2}} .
$$

If $B \subset \mathbb{R}^{2}$ is a disc, then

$$
E(B) \approx 0.6782 \frac{2}{\pi} .
$$

Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press) If $R>0, \varepsilon>0$, and $\Omega_{R, R+\varepsilon}=\left\{x \in \mathbb{R}^{N}: R<|x|<R+\varepsilon\right\}$, then

$$
\begin{aligned}
& \lim _{\varepsilon \downarrow 0} \varepsilon^{2} \lambda\left(\Omega_{R, R+\varepsilon}\right)=\pi^{2}, \\
& \lim _{\varepsilon \downarrow 0} E\left(\Omega_{R, R+\varepsilon}\right)=\frac{2}{\pi} .
\end{aligned}
$$

Lower bound

What about lower bounds on $E(\Omega)$?

Lower bound

What about lower bounds on $E(\Omega)$?
Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press)
There exists $C=C(N)>0$ s.t. for all open, connected, bounded domains Ω in \mathbb{R}^{N},

$$
C \frac{\rho(\Omega)^{N}}{|\Omega|} \leq E(\Omega)
$$

where $\rho(\Omega)$ is the inradius of Ω.
There exists $C>0$ s.t. for all Ω open, planar, bounded, and convex domain,

$$
C \frac{|\Omega|}{\operatorname{diam}(\Omega)^{2}} \leq E(\Omega) .
$$

Lower bound

What about lower bounds on $E(\Omega)$?
Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press)
There exists $C=C(N)>0$ s.t. for all open, connected, bounded domains Ω in \mathbb{R}^{N},

$$
C \frac{\rho(\Omega)^{N}}{|\Omega|} \leq E(\Omega)
$$

where $\rho(\Omega)$ is the inradius of Ω.
There exists $C>0$ s.t. for all Ω open, planar, bounded, and convex domain,

$$
C \frac{|\Omega|}{\operatorname{diam}(\Omega)^{2}} \leq E(\Omega) .
$$

Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press) It holds

$$
\inf E(\Omega)=0
$$

where the infimum is computed among all the bounded convex sets Ω of \mathbb{R}^{N}.

Lower bound

We find (explicit) classes of convex domains Ω_{n} for which $E\left(\Omega_{n}\right) \rightarrow 0$. For example, in \mathbb{R}^{2} : shrinking circular sectors, rhombi, ellipses. We are able to give a decay rate on $E\left(\Omega_{n}\right)$ as $n \rightarrow+\infty$.

Lower bound

We find (explicit) classes of convex domains Ω_{n} for which $E\left(\Omega_{n}\right) \rightarrow 0$. For example, in \mathbb{R}^{2} : shrinking circular sectors, rhombi, ellipses. We are able to give a decay rate on $E\left(\Omega_{n}\right)$ as $n \rightarrow+\infty$.

The key point in our argument is given by a localizing property of the eigenfunctions:

Localising sequences

Let $\left(\Omega_{n}\right)$ be a sequence of non-empty bounded open sets in \mathbb{R}^{N}. We say that a sequence of first eigenfunctions $u_{n}=u_{\Omega_{n}}$ with $u_{n} \in L^{2}\left(\Omega_{n}\right), n \in \mathbb{N}$ and $\left\|u_{n}\right\|_{2}=1$ localises if there exists a sequence of measurable sets $A_{n} \subset \Omega_{n}$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left|A_{n}\right|}{\left|\Omega_{n}\right|}=0, \quad \lim _{n \rightarrow \infty} \int_{A_{n}} u_{n}^{2}=1
$$

Lower bound

We find (explicit) classes of convex domains Ω_{n} for which $E\left(\Omega_{n}\right) \rightarrow 0$. For example, in \mathbb{R}^{2} : shrinking circular sectors, rhombi, ellipses. We are able to give a decay rate on $E\left(\Omega_{n}\right)$ as $n \rightarrow+\infty$.

The key point in our argument is given by a localizing property of the eigenfunctions:

Localising sequences

Let $\left(\Omega_{n}\right)$ be a sequence of non-empty bounded open sets in \mathbb{R}^{N}. We say that a sequence of first eigenfunctions $u_{n}=u_{\Omega_{n}}$ with $u_{n} \in L^{2}\left(\Omega_{n}\right), n \in \mathbb{N}$ and $\left\|u_{n}\right\|_{2}=1$ localises if there exists a sequence of measurable sets $A_{n} \subset \Omega_{n}$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left|A_{n}\right|}{\left|\Omega_{n}\right|}=0, \quad \lim _{n \rightarrow \infty} \int_{A_{n}} u_{n}^{2}=1
$$

Proposition (van den Berg, D.P., di Blasio, Gavitone JST, in press)
If u_{n} localises, then Ω_{n} has vanishing efficiency.

Upper bound

By Payne-Stakgold, for convex domain in \mathbb{R}^{N} it holds

$$
E(\Omega) \leq \frac{2}{\pi}
$$

As we have seen, it is sharp for shrinking spherical shells. For a general domain, it holds that

$$
E(\Omega)=\frac{1}{|\Omega| \max u} \int_{\Omega} u d x \leq 1 .
$$

Theorem (van den Berg, Bucur, Kappeler 2020)

$$
\sup \left\{E(\Omega), \Omega \text { bounded, connected in } \mathbb{R}^{N}\right\}=1 .
$$

Upper bound

Open problems

- is it the Payne-Stakgold sharp for convex domains of \mathbb{R}^{N}, or simply connected of \mathbb{R}^{2} ?

Upper bound

Open problems

- is it the Payne-Stakgold sharp for convex domains of \mathbb{R}^{N}, or simply connected of \mathbb{R}^{2} ?
- to find the best constants. Is it

$$
E(\Omega) \leq E(B),
$$

with B ball of \mathbb{R}^{N} and Ω convex?

Upper bound

Open problems

- is it the Payne-Stakgold sharp for convex domains of \mathbb{R}^{N}, or simply connected of \mathbb{R}^{2} ?
- to find the best constants. Is it

$$
E(\Omega) \leq E(B),
$$

with B ball of \mathbb{R}^{N} and Ω convex?

- What about more general functionals involving $L^{p}-L^{q}$ norms of u_{Ω}, instead of $L^{1}-L^{\infty}$?
Kröger 1996: $\frac{\int_{\Omega} u_{\Omega}^{2} d x}{|\Omega|\left(\max u_{\Omega}\right)^{2}}$.

Upper bound

Open problems

- is it the Payne-Stakgold sharp for convex domains of \mathbb{R}^{N}, or simply connected of \mathbb{R}^{2} ?
- to find the best constants. Is it

$$
E(\Omega) \leq E(B),
$$

with B ball of \mathbb{R}^{N} and Ω convex?

- What about more general functionals involving $L^{p}-L^{q}$ norms of u_{Ω}, instead of $L^{1}-L^{\infty}$?
Kröger 1996: $\frac{\int_{\Omega} u_{\Omega}^{2} d x}{|\Omega|\left(\max u_{\Omega}\right)^{2}}$.
Thank you for your attention!

