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Shape optimization

A shape optimization problem

To minimize (or maximize) a functional, depending on a shape Ω,

F : Ω ∈ Uad 7→ R

among all the sets Ω living in a class Uad of admissible shapes.

In many applications, the functional F(Ω) depends on Ω via a state function uΩ,
which arises as the solution of a partial differential equation given in Ω.

F. Della Pietra Napoli Federico II 2



Shape optimization

A shape optimization problem

To minimize (or maximize) a functional, depending on a shape Ω,

F : Ω ∈ Uad 7→ R

among all the sets Ω living in a class Uad of admissible shapes.

In many applications, the functional F(Ω) depends on Ω via a state function uΩ,
which arises as the solution of a partial differential equation given in Ω.

F. Della Pietra Napoli Federico II 2



Isoperimetric inequalities and symmetrization

Isoperimetric inequalities

The term isoperimetric inequalities is used in literature to identify inequalities
which arise from minimum or maximum problems in which not necessarily
perimeter and volume are involved. For example, they can regard geometric
quantities as the diameter, general notion of perimeter, or physical quantities as
capacity, eigenvalues of boundary value problems, torsional rigidity

Symmetrization

A symmetrization procedure consists, roughly speaking, in transforming a
mathematical object (e.g. a set, a function) in another one “more symmetric” so
that it can preserve some property of the original object
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Symmetrization of sets

Ω

Ω#

|Ω| =
∣∣Ω#

∣∣

Among all the open sets Ω ⊆ RN with fixed volume, the ball has the smallest
perimeter.

min
|Ω|=k

Per(Ω) = Per(Ω#)
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Symmetrization of functions

u#(x)

u(x)

t

{x : u(x) > t}{x : u#(x) > t} {x : u(x) > t}

max u

{x : u(x) > t}{x : u(x) > t}

t
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Symmetrization of functions

u : Ω→ R measurable function, Ω ⊂ Rn, 0 < |Ω| <∞
Ω# ball centered at the origin, |Ω#| = |Ω|

u#
u

Spherical decreasing rearrangement, u#

(1) u# is radially symmetric decreasing

(2) |{x ∈ Ω# : u#(x) > t}| = |{x ∈ Ω: |u(x)| > t}|
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Symmetrization of functions

u : Ω→ R measurable function, Ω ⊂ Rn, 0 < |Ω| <∞
Ω# ball centered at the origin, |Ω#| = |Ω|

u#
u

Cavalieri principle: the Lp norm is preserved∫
Ω

|u|pdx =

∫
Ω#

|u#|pdx , ∀p ≥ 1
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Symmetrization of functions

u : Ω→ R measurable function, Ω ⊂ Rn, 0 < |Ω| <∞
Ω# ball centered at the origin, |Ω#| = |Ω|

u#
u

Pólya-Szegő: the energy decreases

If u has compact support,

∫
Rn

|∇u|2 dx ≥
∫
Rn

|∇u#|2 dx
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Two classical problems
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Partial differential equations: a classical result

(P)

{
−∆u = f (x) in Ω

u = 0 su ∂Ω

{
−∆v = f #(x) in Ω#

v = 0 su ∂Ω#

where Ω is a bounded open set in Rn, and ∆u(x) =
n∑

i=1

∂xixiu(x).

Hp: the rearrangement of f and the Lebesgue measure of Ω are fixed.

Problem

Among all the problems (P), for what data we have
the “largest solution”?

Maz’ja 1969, Talenti 1976

u#(x) ≤ v(x) ∀x ∈ Ω#.
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A consequence of Talenti’s result

(P)

{
−∆u = f (x) in Ω

u = 0 su ∂Ω

{
−∆v = f #(x) in Ω#

v = 0 su ∂Ω#

Saint Venant conjecture

If f ≡ 1 then

T (Ω) =

∫
Ω

u dx =

∫
Ω#

u#dx ≤
∫

Ω#

v dx = T (Ω#).

The torsional rigidity T (Ω) of an elastic bar with cross section Ω of fixed measure
is maximal when Ω is a disk.
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A classical shape optimization problem

Lord Rayleigh (1877)

Among all the elastic membranes, fixed at the boundary, with
constant density and given area, the circular one has the lowest

principal frequency
[Faber 1923, Krahn 1925]
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A classical shape optimization problem

Lord Rayleigh (1877)

Among all the elastic membranes, fixed at the boundary, with
constant density and given area, the circular one has the lowest

principal frequency
[Faber 1923, Krahn 1925]

Pólya-Szegő conjecture

Among all the n−sided polygonal membranes with constant
density and given area, the regular one has the lowest principal
frequency

Proved by Pólya and Szegő for n = 3 and n = 4, open for n ≥ 5.
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It holds:
min
|Ω|=k

λ1(Ω) = λ1(Ω#), sup
|Ω|=k

λ1(Ω) = +∞.

Pólya (1958)

If Ω is a bounded convex domain in R2, then

λ1(Ω) ≤ π2

4

Per(Ω)2

|Ω|2

and it is optimal for the slab.

Payne - Weinberger (1961)

If Ω is a bounded simply connected domain in R2, then

λ1(Ω) ≤ λND
1 (A)

where A is a annulus with |A| = |Ω| and Per(Ω) is equal to the perimeter of the
outer circumference, λND1 has Dirichlet on the outer circumference and Neumann
on the inner.
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Pólya (1958)

If Ω is a bounded convex domain in R2, then

λ1(Ω) ≤ π2

4

Per(Ω)2

|Ω|2

and it is optimal for the slab.

Payne - Weinberger (1961)

If Ω is a bounded simply connected domain in R2, then

λ1(Ω) ≤ λND
1 (A)

where A is a annulus with |A| = |Ω| and Per(Ω) is equal to the perimeter of the
outer circumference, λND1 has Dirichlet on the outer circumference and Neumann
on the inner.

F. Della Pietra Napoli Federico II 11



It holds:
min
|Ω|=k

λ1(Ω) = λ1(Ω#), sup
|Ω|=k

λ1(Ω) = +∞.
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Hersch inequality (1960)

Let Ω ⊂ R2 be a bounded convex domain. Then

λ1(Ω) ≥
(π

2

)2 1

ρ2(Ω)
where ρ(Ω) is the inradius of Ω. The equality sign holds in the limiting case when
Ω approaches a slab.
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Key arguments

• Use of the so-called “web functions” (Pólya)

ϕ(x) = v(d(x , ∂Ω)), x ∈ Ω.

• P−function method: in convex domains, if u is a positive first eigenfunction,
then the function

|∇u|2 + λu2

attains its maximum at the maximum points of u (Payne).

• on the level sets of u, we have

∆u = (N − 1)H uν + uνν
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Convex symmetrization

λ1,F (Ω) = min
u∈W 1,p

0 (Ω)

∫
Ω

F (∇u)pdx∫
Ω

|u|p dx

with F given norm in RN .

The geometry of the optimal sets is related to the polar (or dual) norm of F .

A. Alvino - V. Ferone - P.L.Lions - G. Trombetti AIHP 1997

M. Belloni - V. Ferone - B. Kawohl ZAMP 2003

D.P. - N. Gavitone Math. Nachr. 2014

D.P. - N. Gavitone - S. Guarino Lo Bianco J. Diff. Eq. 2018

D.P. - G. di Blasio - N. Gavitone Adv. Nonlinear Anal. 2020
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Efficiency of the first eigenfunction

Let Ω be a bounded domain in Rn.

λ1(Ω) = inf
ϕ∈H1

0 (Ω)\{0}

∫
Ω

|∇ϕ|2∫
Ω

ϕ2
.

Let uΩ be a positive eigenfunction relative to λ1(Ω). The efficiency or mean to
max ratio of uΩ is defined by

E (Ω) =

1

|Ω|

∫
Ω

uΩ dx

max uΩ
,

The functional E (Ω) is scaling invariant.
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Efficiency of the first eigenfunction

Payne-Stakgold, 1973

If Ω is bounded and convex domain in RN , then

E (Ω) ≤ 2

π
.

Chiti, 1982 (Reverse Hölder inequality)

If Ω is a bounded domain in RN , then

E (Ω) ≥ E (B)
|B|
|Ω|

,

where B is the ball in RN such that λ(B) = λ(Ω). Equality holds if Ω is a ball.
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Some examples

If 4 ⊂ R2 is an equilateral triangle, then

E (4) =
2

π
√

3
.

If � ⊂ R2 is any rectangle, then

E (�) =
4

π2
.

If B ⊂ R2 is a disc, then

E (B) ≈ 0.6782
2

π
.

Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press)

If R > 0, ε > 0, and ΩR,R+ε = {x ∈ RN : R < |x | < R + ε}, then

lim
ε↓0

ε2λ(ΩR,R+ε) = π2,

lim
ε↓0

E (ΩR,R+ε) =
2

π
.

F. Della Pietra Napoli Federico II 17
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Lower bound

What about lower bounds on E (Ω)?

Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press)

There exists C = C (N) > 0 s.t. for all open, connected, bounded domains Ω in
RN ,

C
ρ(Ω)N

|Ω|
≤ E (Ω)

where ρ(Ω) is the inradius of Ω.
There exists C > 0 s.t. for all Ω open, planar, bounded, and convex domain,

C
|Ω|

diam(Ω)2
≤ E (Ω).

Theorem (van den Berg, D.P., di Blasio, Gavitone, J. Spectral Theory, in press)

It holds
inf E (Ω) = 0

where the infimum is computed among all the bounded convex sets Ω of RN .

F. Della Pietra Napoli Federico II 18
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It holds
inf E (Ω) = 0

where the infimum is computed among all the bounded convex sets Ω of RN .
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Lower bound

We find (explicit) classes of convex domains Ωn for which E (Ωn)→ 0. For
example, in R2: shrinking circular sectors, rhombi, ellipses. We are able to give a
decay rate on E (Ωn) as n→ +∞.

The key point in our argument is given by a localizing property of the
eigenfunctions:

Localising sequences

Let (Ωn) be a sequence of non-empty bounded open sets in RN . We say that a
sequence of first eigenfunctions un = uΩn with un ∈ L2(Ωn), n ∈ N and ‖un‖2 = 1
localises if there exists a sequence of measurable sets An ⊂ Ωn such that

lim
n→∞

|An|
|Ωn|

= 0, lim
n→∞

∫
An

u2
n = 1.

Proposition (van den Berg, D.P., di Blasio, Gavitone JST, in press)

If un localises, then Ωn has vanishing efficiency.
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Upper bound

By Payne-Stakgold, for convex domain in RN it holds

E (Ω) ≤ 2

π
.

As we have seen, it is sharp for shrinking spherical shells. For a general domain, it
holds that

E (Ω) =
1

|Ω|max u

∫
Ω

udx ≤ 1.

Theorem (van den Berg, Bucur, Kappeler 2020)

sup{E (Ω), Ω bounded, connected in RN} = 1.
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Upper bound

Open problems

• is it the Payne-Stakgold sharp for convex domains of RN , or simply
connected of R2?

• to find the best constants. Is it

E (Ω) ≤ E (B),

with B ball of RN and Ω convex?

• What about more general functionals involving Lp − Lq norms of uΩ, instead
of L1 − L∞?

Kröger 1996:
∫

Ω
u2

Ωdx

|Ω|(max uΩ)2 .

Thank you for your attention!
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