

EXERCISE WEEK 10: PRACTICAL COURSE MODELING, SIMULATION, OPTIMIZATION

DANIËL VELDMAN

We consider the copper plate in Figure 1 with a length of $L_x = 0.5$ [m] in the x-direction, a length of $L_y = 0.75$ [m] in the y-direction, a thickness H = 0.01 [m], and a thermal conductivity k = 400 [W/K/m]. At six locations on the plate (indicated by the red crosses in the figure), temperature sensors are installed which measure the steady state temperatures $\bar{T}_{m,i}$ at these six locations.

FIGURE 1. The considered copper plate

We reconstruct the heat load applied Q(x, y) to the plate by minimizing the functional

$$\mathcal{J}(Q) = \frac{1}{2} \sum_{i=1}^{6} (T(x_{\mathrm{m},i}, y_{\mathrm{m},i}) - \bar{T}_{\mathrm{m},i})^2 + \frac{w}{2} \iint_{\Omega} (Q(x,y))^2 \, \mathrm{d}y \, \mathrm{d}x$$

where $\Omega = [0, L_x] \times [0, L_y]$, w > 0 is a weight and T(x, y) is the steady-state temperature field resulting from the heat load Q(x, y). In particular, T(x, y) is the solution of

$$kH\left(\frac{\partial^2 T}{\partial x^2}(x) + \frac{\partial^2 T}{\partial y^2}\right) + Q(x) = 0, \qquad -kH\nabla T \cdot \mathbf{n} = hT,$$

where the thermal conductance of the boundary h = 5 [W/K/m]. A finite element discretization of this problem takes the form

$$J(\mathbf{u}) = \frac{1}{2} \mathbf{e}_{\mathrm{m}}^{\top} \mathbf{e}_{\mathrm{m}} + \frac{w}{2} \mathbf{u}^{\top} \mathbf{E} \mathbf{u},$$
$$\mathbf{e}_{\mathrm{m}} = \mathbf{E}_{\mathrm{m}} \mathbf{T} - \mathbf{T}_{\mathrm{m}}, \qquad \mathbf{A} \mathbf{T} + \mathbf{E} \mathbf{u} = \mathbf{0},$$

where **T** and **u** are vectors containing the nodal values of T(x, y) and Q(x, y), $\mathbf{T}_{\rm m} = [\bar{T}_{{\rm m},1}, \bar{T}_{{\rm m},2}, \bar{T}_{{\rm m},3}, \bar{T}_{{\rm m},4}, \bar{T}_{{\rm m},5}, \bar{T}_{{\rm m},6}]^{\top}$, the $\mathbf{E}_{\rm m}$ is the 6 × N-matrix that selects the nodal temperatures at the location of the temperature sensors,

$$\mathbf{E} = \iint_{\Omega} (\mathbf{N})^{\top} \mathbf{N} \, \mathrm{d}y \, \mathrm{d}x,$$

DANIËL VELDMAN

$$\mathbf{A} = -kH \iint_{\Omega} \left(\left(\frac{\partial \mathbf{N}}{\partial x} \right)^{\top} \frac{\partial \mathbf{N}}{\partial x} + \left(\frac{\partial \mathbf{N}}{\partial y} \right)^{\top} \frac{\partial \mathbf{N}}{\partial y} \right) \, \mathrm{d}y \, \mathrm{d}x - h \int_{\partial \Omega} \mathbf{N}^{\top} \mathbf{N} \, \mathrm{d}y \, \mathrm{d}x.$$

with $\mathbf{N} = \mathbf{N}(x, y)$ the (row)vector of FE shape functions of length N.

The matrices \mathbf{E} , \mathbf{E}_{m} , and \mathbf{A} for a FE model on a nonuniform mesh with $M_{x} = 32$ elements in the *x*-direction and $M_{y} = 42$ elements in the *y*-direction are given in the file Week10_plate_model.mat. This file also contains the vector \mathbf{T}_{m} with the measured temperature values and the vectors \mathbf{x}_{m} and \mathbf{y}_{m} with the *x*- and *y*coordinates of the sensor locations.

a. (2pts) Compute the gradient of the function J in the discretized problem w.r.t. the standard Euclidean inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y}$ and the w.r.t. the weighted inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{E} \mathbf{y}$. Plot the obtained gradients in the point $\mathbf{u}_0 = \mathbf{0}$ against the spatial coordinates x and y.

Hint: there are two approaches to compute the Jacobian of J. One is to eliminate \mathbf{e}_{meas} and \mathbf{T} from the expression for the discretized cost function given above and differentiate the resulting expression. The other is to use the chain rule.

Hint: You can use the file Week10_exercisea as a starting point.

b. (3pts) Determine the quadratic approximations of the functional $\beta \mapsto J(\mathbf{u}_0 - \beta \nabla J(\mathbf{u}_0))$ for the two gradients at $\mathbf{u}_0 = \mathbf{0}$ computed in part a. Compare the values of the quadratic approximation to the values of $\beta \mapsto J(\mathbf{u}_0 - \beta \nabla J(\mathbf{u}_0))$ for a range of step sizes β in a plot.

Hint: You can use the file Week10_exerciseb as a starting point.

c. (2pts) Develop and implement a gradient-based algorithm to minimize the functional $J(\mathbf{u})$. Use the gradient w.r.t. the weighted inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{E} \mathbf{y}$ computed in a. and use the quadratic approximation developed in b. to determine the step size β . Terminate the algorithm when the relative change in \mathbf{u} and $J(\mathbf{u})$ are below 10^{-5} .

Hint: You can use the file Week10_exercisec as a starting point.

Hint: Do you need a line search to assure that the cost functional decreases in every iteration?

d. (3pts) Use the projected gradient method to assure that all entries of the vector \mathbf{u} remain between 0 and 100.

Hint: You can use the file Week10_exercised as a starting point.

Hint: Do you now need a line search to assure that the cost functional decreases in every iteration?

 $\mathbf{2}$