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Daniël Veldman
Chair in Dynamics, Control, and Numerics, Friedrich-Alexander-University Erlangen-Nürnberg

Contents

3.A Time-dependent problems
3.B Spatial discretization
3.C Temporal discretization
3.D Back to the spatial discretization



3.A Time-dependent problems



Motivating example: Diffusion of mass
∂ρ

∂t
(t,x) = −∇ · φ(t,x)

∂ρ
∂t

(t, x, y) = −∂φx
∂x

(t, x, y)− ∂φy
∂y

(t, x, y)
 .

To complete the model, we need a constitutive relation
that relates the mass flux φ(t,x) to the mass density ρ(t,x).

We could for example use.

Fick’s law

φ(t,x) = −D∇ρ(t,x)

φx(t, x, y)
φy(t, x, y)

 = −D

∂ρ
∂x(t, x, y)
∂ρ
∂y(t, x, y)


 .

The coefficient D [m2/s] is called the diffusivity.
‘Mass flows from locations with high concentrations to locations with low concentrations’

We then obtain

∂ρ

∂t
(t,x) = −D∆ρ(t,x),

∂ρ
∂t

(t, x, y) = −D∂
2ρ

∂x2(t, x, y)−D∂
2ρ

∂y2(t, x, y)
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Motivating example: Heat conduction

∂ρu
∂t

(t, x) = −H∇ · q(t,x) + Q(t,x).

We again need constitutive relations to complete the model.

Fourier’s law of heat conduction in 2-D

q(t,x) = −k∇T (t,x).
The coefficient k∗ [W/m/K] is the thermal conductivity and T (t,x) [K] is the temperature.
‘Heat flows from locations with high temperatures to locations with low temperatures’

Internal energy in 2-D

ρu(t,x) = cHT (t,x).
The coefficient c [J/K/m3] heat capacity per unit volume.

We thus obtain

cH
∂T

∂t
(t,x) = kH∆T (t,x) + Q(t,x). (1)
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3.B Spatial discretization



Spatial discretization / Method of Lines (MOL) / Semi-discretization

Suppose we want to approximate the solution u(t, x) of the initial value problem

∂u

∂t
(t, x) = κ

∂2u

∂x2(t, x) + f (t, x), (t, x) ∈ (0, T )× (0, L),

u(t, 0) = 0, ∂u

∂x
(t, L) = 0, u(0, x) = u0(x).

Introduce an M -point grid in the interval [0, L] with a grid spacing ∆x = L/(M − 1)

x1 = 0 x2 x3 xM−1 xM = L

∆x ∆x ∆x

x0

∆x

xM+1

∆x

Also introduce fm(t) = f (t, xm) and the approximations um(t) ≈ u(t, xm).

Finite difference discretization (implicit BCs):

dum
dt

(t) = κ
um+1(t)− 2um(t) + um−1(t)

∆x2 + fm(t), m = 1, 2, . . . ,M,

u1(t) = 0, uM+1(t)− uM−1(t)
2∆x

= 0, um(0) = u0(xm).
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Implicit or explicit implementation of the boundary conditions
Finite difference discretization (implicit BCs):

dum
dt

(t) = κ
um+1(t)− 2um(t) + um−1(t)

∆x2 + fm(t), m = 1, 2, . . . ,M,

u1(t) = 0, uM+1(t)− uM−1(t)
2∆x

= 0, um(0) = u0(xm).

This is a system of Diffferential Algebraic Equations (DAEs)

d
dt

u1(t)
0

 =
A11 A12
A21 A22


u1(t)
u2(t)

 +
f(t)

0

 .

Finite difference discretization (explicit BCs):

dum
dt

(t) = κ
um+1(t)− 2um(t) + um−1(t)

∆x2 + fm(t), m = 2, 3, . . . ,M − 1,
duM
dt

(t) = κ
−2uM(t) + 2uM−1(t)

∆x2 + fM(t), um(0) = u0(xm),

where we should remember that u1(t) = 0.
This is a system of Ordinary Diffferential Equations (ODEs) for the free DOFs uf(t)

u̇f(t) = Affuf(t) + ff(t).
The explicit implementation of the BCs is preferred in time-dependent problems.
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3.C Temporal discretization



Linear ODEs
Consider the following system of linear ODEs:

du
dt

(t) = Au(t) + f(t), u(0) = u0.

I Choose a uniform time grid t0, t1, t2, . . . with tk = k∆t.
I Define fk := f(tk) and introduce the approximations uk ≈ u(tk).
By Taylor’s theorem

u(tk+1) = u(tk + ∆t) = u(tk) + ∆tdu
dt

(tk) + ∆t2

2
d2u
dt2

(τ ),

for some τ ∈ [tk, tk+1]. Rearranging, we find

u(tk+1)− u(tk)
∆t

= du
dt

(tk) + O(∆t).

We thus find the following scheme.

Forward Euler

uk+1 − uk

∆t
= Auk + fk, u0 = u0.
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Backward Euler
Instead of making a Taylor series expansion of u(tk+1) around t = tk,
we can also expand u(tk) in a Taylor series around t = tk+1:

u(tk) = u(tk+1 −∆t) = u(tk+1)−∆tdu
dt

(tk+1) + ∆t2

2
d2u
dt2

(τ ),

for some τ ∈ [tk, tk+1]. Rearranging, we find

du
dt

(tk+1) = u(tk+1)− u(tk)
∆t

+ O(∆t).

We thus find the following scheme.

Backward Euler

uk+1 − uk

∆t
= Auk+1 + fk+1, u0 = u0.

Updates with forward and backward Euler:

uk+1 = uk + ∆t(Auk + fk), uk+1 = (I−∆tA)−1(uk + ∆tfk+1).

In backward Euler we need to solve a system of linear equations in every time step.
Forward Euler is an explicit scheme, backward Euler is an implicit scheme.
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θ-schemes
From the previous two slides, we have

u(tk+1)− u(tk)
∆t

= du
dt

(tk) + O(∆t), u(tk+1)− u(tk)
∆t

= du
dt

(tk+1) + O(∆t).

Take a convex combination (with θ ∈ [0, 1])

(1− θ + θ)u(tk+1)− u(tk)
∆t

= (1− θ)du
dt

(tk) + θ
du
dt

(tk+1) + O(∆t).

θ-scheme

uk+1 − uk

∆t
= (1− θ)

(
Auk + fk

)
+ θ

(
Auk+1 + fk+1) , u0 = u0.

For θ = 1/2, we find the Crank-Nicolson scheme.

Crank-Nicolson

uk+1 − uk

∆t
= 1

2

(
Auk + fk

)
+ 1

2

(
Auk+1 + fk+1) , u0 = u0.
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Convergence analysis

Two ingredients:
1) ODE with continuous solution u(t).

F (u(t)) = 0.

2) Discrete numerical scheme

F∆t((uk)k) = 0.

Theorem (Lax)

The numerical scheme is convergent if it is both
I consistent and
I stable.

Definition (Consistent numerical scheme)

The numerical scheme is consistent iff F∆t((u(tk))k) = O((∆t)p) for some p > 0.

Definition (Stable numerical scheme)

The numerical scheme is stable iff there exists a constant K independent of ∆t such
that ‖uk − u(tk)‖ ≤ K‖F∆t((u(tk))k)‖
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Consistency

The computations on the previous slide already show that

u(tk+1)− u(tk)
∆t

= (1− θ)
(
Au(tk) + fk

)
+ θ

(
Au(tk+1) + fk+1) + O(∆t).

But for the Crank-Nicolson scheme (θ = 1
2) we can do better

u(tk+1)− u(tk)
∆t

= 1
2

(
Au(tk) + fk

)
+ 1

2

(
Au(tk+1) + fk+1) + O((∆t)2).

(Exercise: check this using Taylor series expansions)
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Proving stability (1/2)
We have

u(tk+1)− u(tk)
∆t

= (1− θ)
(
Au(tk) + fk

)
+ θ

(
Au(tk+1) + fk+1) + rk.

uk+1 − uk

∆t
= (1− θ)

(
Auk + fk

)
+ θ

(
Auk+1 + fk+1) , u(t0) = u0 = u0,

where the residues rk are O(∆t) (or O((∆t)2) if θ = 1
2).

Introduce ek := uk − u(tk) and subtract the first equation from the second:

ek+1 − ek

∆t
= (1− θ)Aek + θAek+1 − rk, e0 = 0.

Rearranging shows that

(I− θ∆tA)ek+1 = (1− θ)∆tAek − rk
ek+1 = Bek −∆tbk, e0 = 0,

where

B = (I− θ∆tA)−1 (I + (1− θ)∆tA) , bk = (I− θ∆tA)−1 rk.

Note that bk = O(∆t) (or O((∆t)2) if θ = 1/2).
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Proving stability (2/2)

ek+1 = Bek −∆tbk, e0 = 0,

When ‖B‖ > 1, the scheme is clearly unstable.

Assume that ‖B‖ ≤ 1, then

|ek+1| ≤ |ek| + ∆t|bk|, ⇒ |ek| ≤ ∆t
k−1∑
k=0
|bk| ≤ Ck(∆t)2,

where it was used that bk is O(∆t), i.e. there exists a C such that |bk| ≤ C∆t.

So the error after a fixed number of k time-steps is of O((∆t)2).
However, the error at a fixed time-instant T , i.e. the error after K = T/∆t is

|eK| = CK(∆t)2 = CT∆t = O(∆t).
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Stability regions
Recall that

B = (I− θ∆tA)−1 (I + (1− θ)∆tA) .

Suppose that v is an eigenvalue of A, i.e. that Av = λv. Then also

Bv = 1 + (1− θ)λ∆t
1− θλ∆t

v.

The scheme is thus stable when∣∣∣∣∣∣∣
1 + (1− θ)λ∆t

1− θλ∆t

∣∣∣∣∣∣∣ ≤ 1, for all λ ∈ σ(A).

Forward Euler (θ = 0)

|1 + λ∆t| ≤ 1

Crank-Nicolson (θ = 1
2)

|1 + 1
2λ∆t| ≤ |1− 1

2λ∆t|

Backward Euler (θ = 1)

|1− λ∆t| ≥ 1
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Summary
du
dt

(t) = Au(t) + f(t), u(0) = u0.

θ-scheme

uk+1 − uk

∆t
= (1− θ)

(
Auk + fk

)
+ θ

(
Auk+1 + fk+1) , u0 = u0.

The scheme is stable iff
|1 + (1− θ)λ∆t| ≤ |1− θλ∆t| , for all λ ∈ σ(A).

Forward Euler (θ = 0)

|1 + λ∆t| ≤ 1

Crank-Nicolson (θ = 1
2)

|1 + 1
2λ∆t| ≤ |1− 1

2λ∆t|

Backward Euler (θ = 1)

|1− λ∆t| ≥ 1
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3.D Back to the spatial discretization



Returning to our original problem

Suppose we want to approximate the solution u(t, x) of the initial value problem

∂u

∂t
(t, x) = κ

∂2u

∂x2(t, x) + f (t, x), (t, x) ∈ (0, T )× (0, L),

u(t, 0) = 0, ∂u

∂x
(t, L) = 0, u(0, x) = u0(x).

Introduce an M -point grid in the interval [0, L] with a grid spacing ∆x = L/(M − 1)

x1 = 0 x2 x3 xM−1 xM = L

∆x ∆x ∆x

x0

∆x

xM+1

∆x

Also introduce fm(t) = f (t, xm) and the approximation um(t) ≈ u(t, xm).
Finite difference discretization (explicit BCs):

dum
dt

(t) = κ
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∆x2 + fm(t), m = 2, 3, . . . ,M − 1,
duM
dt
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where we should remember that u1(t) = 0.
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Aff = κ

∆x2



−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 0 0 0
... . . . ...
0 0 0 −2 1 0
0 0 0 1 −2 1
0 0 0 · · · 0 2 −2



.

Note: Aff depends on ∆x,
The stability of the numerical scheme may thus depend on ∆t and ∆x!

D.W.M. Veldman · DCN · Practical Course: Modeling, Simulation, Optimization 20



A first observation

Claim: All eigenvalues of Aff are nonpositive.

We will prove this claim next week.

Conclusion:
The Crank-Nicolson and Backward Euler scheme are stable (for all ∆x and ∆t).
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What about Forward Euler?

In the lecture next week, we will see how we can prove that

σ(Aff) ⊂ [ −4κ
(∆x)2 , 0]

Forward Euler (θ = 0)

|1 + λ∆t| ≤ 1

The Forward Euler scheme is stable when

|1 + −4κ
(∆x)2∆t| ≤ 1

1 + −4κ
(∆x)2∆t ≤ 1, and −

(
1 + −4κ

(∆x)2∆t
)
≤ 1

−4κ
(∆x)2∆t ≤ 0, and 4κ

(∆x)2∆t ≤ 2

Conclusion:
The Forward Euler scheme is stable when

∆t ≤ 1
2κ(∆x)2
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A nice trick for Finite Differences with Forward Euler

We consider
∂u

∂t
(t, x) = κ

∂u2

∂x2(t, x).

Finite differences+Forward Euler:

uk+1
m − ukm

∆t
= κ

ukm+1 − 2ukm + ukm−1
(∆x)2

This scheme is of O(∆t + (∆x)2).

However, when we check the consistency error we see that

u(tk+1, xm)− u(tk, xm)
∆t

= ∂u

∂t
(tk, xm) + ∆t

2
∂2u

∂t2
(tk, xm) + O((∆t)2)

κ
u(tk, xm+1)− 2u(tk, xm) + u(tk, xm−1)

(∆x)2 = κ
∂2u

∂x2(tk, xm) + κ
(∆x)2

12
∂4u

∂x4(tk, xm) + O((∆x)4)

Note that ∂u∂t = κ∂
2u
∂x2 and ∂2u

∂t2 (tk, xm) = κ2∂4u
∂x4(tk, xm).

When ∆t = 1
6κ(∆x)2 we get O((∆t)2 + (∆x)4)!

(But you need to discretize the BCs with the same rates...)
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