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3.A Time-dependent problems
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Motivating example: Diffusion of mass

dp dp o 0o,
t —V - ot t —— (1 — — (7
2 (1.%) =~V - gt x) (it ==ty - it
To complete the model, we need a constitutive relation
that relates the mass flux ¢ (¢, x) to the mass density p(¢, x).

We could for example use.

ap
sen--vumen  (lny] o i)

The coefficient D [m?/s] is called the diffusivity.
‘Mass flows from locations with high concentrations to locations with low concentrations’

We then obtain

2 2
gﬁ(t X) _DAp<t7X>7 (ap<taxay) - _Daxp<taxay> —D p(t7$7y))
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Motivating example: Heat conduction

85“(15, r)=—HV - -q(t,x) + Q(t,x).

We again need constitutive relations to complete the model.

Fourier’s law of heat conduction in 2-D

q(t,x) = —kVT(t,x).

The coefficient £* [W/m/K] is the thermal conductivity and T'(¢, x) [K] is the temperature.
‘Heat flows from locations with high temperatures to locations with low temperatures’

Internal energy in 2-D

pu(t,x) = cHT(t,%).
The coefficient ¢ [J/K/m?®] heat capacity per unit volume.

We thus obtain 97
cHat(t, x) = kHAT(t,x) + Q(t,x). (1)

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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3.B Spatial discretization
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Spatial discretization / Method of Lines (MOL) / Semi-discretization

Suppose we want to approximate the solution (¢, z) of the initial value problem

2
Wita) = k0 4t2) 4 f(ta). (L) €(0.7) x (0. L)
ot 0z? 5
ult,0) =0, Tt L) =0, (0, ) = ug(x).
ox
Introduce an M-point grid in the interval [0, L] with a grid spacing Az = L/(M — 1)
Ax Ax Ax Ax Ax
®-------- ° ° [} o -------
Lo  xp = T2 T3 Tl xy = L 37M+1

Also introduce f,,(t) = f(t, z,,) and the approximations u,,(t) ~ u(t, x,).
Finite difference discretization (implicit BCs):

(s;(t):/-ﬁ;u +() ng)+u 1()+fm(t), m=1,2 ..., M,

up(t) =0, UM+1<75)2;$UM—1<75> =0, U (0) = up(xy,).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Implicit or explicit implementation of the boundary conditions
Finite difference discretization (implicit BCs):

duy, (t) H/um_|_1(t) — 20U (1) + Upp—1(1)

— m(t), =1,2,..., M,
dt Ax? + f®) "
U t) —up—1(t
ui(t) =0, weall) “ il _ tn(0) = o).
This is a system of Diffferential Algebraic Equations (DAES)
d uq (t) _ All A12 uq (t) 4 f(t)
dt| 0O Aoy Agal (ua(t) 0 |

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Implicit or explicit implementation of the boundary conditions
Finite difference discretization (implicit BCs):

duy, (t) H/um_|_1(t) — 20U (1) + Upp—1(1)

— m(t), =1,2,..., M,
dt Ax? + f®) "
U t) —up—1(t
ui(t) =0, weall) “ il _ tn(0) = o).
This is a system of Diffferential Algebraic Equations (DAES)
d uq (t) _ All A12 uq (t) 4 f(t)
dt| 0O Aoy Agal (ua(t) 0 |

Finite difference discretization (explicit BCs):

duy, (t) = Humﬂ(t) — 20U (1) + Upp—1(2)

RV m\Y/), :27 7"'7M_17
dt Ax? + Jnll) " ’

du —2up(T) + 2ups—1 (¢

L= u LEQ uall ), U (0) = (@),

where we should remember that u(t) = 0.
This is a system of Ordinary Diffferential Equations (ODEs) for the free DOFs ug(t)

llf(t) = A.f—fllf(t) + ff(t).
The explicit implementation of the BCs is preferred in time-dependent problems.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization



FRIEDRICH-ALEXANDER

K— £~ Department of AT ansEna
ﬂ ;NADUNUMER'CS := DATA SCI ENCE NATURWISSENSCHAFTLICHE

FAKULTAT

3.C Temporal discretization
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Linear ODEs
Consider the following system of linear ODEs:

du
dt(t) = Au(t) +£(t), u(0) = uy.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Linear ODEs
Consider the following system of linear ODEs:
du
(1) = Au(t) + £(1). u(0) = .

» Choose a uniform time grid £y, t1, to, . .. with £, = EAL.
» Define f* := f(¢;) and introduce the approximations u* ~ u(t;).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Linear ODEs
Consider the following system of linear ODEs:
du
(1) = Au(t) + £(1). u(0) = .

» Choose a uniform time grid £y, t1, to, . .. with £, = EAL.
» Define f* := f(#;) and introduce the approximations u* ~ ().
By Taylor’s theorem

du At?d*u
— At) = Af—— il
(tk+1) u(tk + t) u(tk) + tdt (tk;> TN 7 (7’),
for some T € [y, t;41]. Rearranging, we find
t —u(t d
ultiy) = ulte) _ u(tk) + O(At).

At dt

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Linear ODEs
I Consider the following system of linear ODEs:
du
(1) = Au(t) + (1), u(0) = wp.
I » Choose a uniform time grid £y, t1, to, . .. with £, = EAL.

» Define f* := f(¢;) and introduce the approximations u® ~ u(ty,).
By Taylor’s theorem
du At?d*u

(tk+1) = u(tk + At) == u(tk) + Ati(tk) 5 @

for some T € [y, t;41]. Rearranging, we find

u(tHl)A; u(ty) _ i‘;@k) +O(AY).

We thus find the following scheme.

Forward Euler

— Au® + ¥, u’ = uy.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Backward Euler

Instead of making a Taylor series expansion of u(t;,1) around t = ty,
we can also expand u(t;) in a Taylor series around ¢ = tj.1:

du At? d*u
u(ty) = u(tpr — At) = ulpr1) — At——(tgr1) + ———5(7),
dt 2 dt
for some 7 € [y, t;41]. Rearranging, we find
du u(tpy1) — u(ty)
At).
a ) = At + O(A7)

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization 10
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Backward Euler

Instead of making a Taylor series expansion of u(t;,1) around t = ty,
we can also expand u(t;) in a Taylor series around ¢ = tj.1:

du At? d*u
u(ty) = u(tpr — At) = ulpr1) — At——(tgr1) + ———5(7),
dt 2 dt
for some 7 € [y, t;41]. Rearranging, we find
du u(tpy1) — u(ty)
At).
b)) = =S oA

We thus find the following scheme.

Backward Euler

— Auft! 4 R u’ = ug.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization 10
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Backward Euler

Instead of making a Taylor series expansion of u(¢;.1) around ¢t = ty,
we can also expand u(t;) in a Taylor series around ¢ = tj.1:

du At? d*u
u(ty) = u(tpr — At) = ulpr1) — At——(tgr1) + ———5(7),
dt 2 dt
for some 7 € [y, t;41]. Rearranging, we find
du u(tpy1) — u(ty)
At).
n ——(tgps1) = A + O(At)

We thus find the following scheme.

Backward Euler

— Auft! 4 R u’ = ug.

Updates with forward and backward Euler:
u" ! = u" + At(AU" + £F), u = (I — AtA) L (u" + A,

In backward Euler we need to solve a system of linear equations in every time step.
Forward Euler is an explicit scheme, backward Euler is an implicit scheme.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization 10
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fg-schemes

From the previous two slides, we have

u(tpy1) —u(ty) du u(tpy1) —u(ty) du
o= () + O(A), = oy () + O(A)
Take a convex combination (with 6 € [0, 1))
B u(tpr1) —ulty) . ,du du
(1—0+0) o =(1—-0) dt( k) + ed (tes1) + O(AR).

o
=
Q
=
ol
< Ml
(2]
o
(71
O B
=
1

= % (Auk + fk) -+ % (Auk“L + fk“) : u’ = uy.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Convergence analysis

Two ingredients:

1) ODE with continuous solution u(t). 2) Discrete numerical scheme

F(u(t)) = 0. Fa (b)) = 0.

Theorem (Lax)

The numerical scheme is convergent if it is both
» consistent and

» stable.

Definition (Consistent numerical scheme)

The numerical scheme is consistent iff Fa;((u(t;))r) = O((At)?P) for some p > 0.

Definition (Stable numerical scheme)

The numerical scheme is stable iff there exists a constant K independent of At such
that [[u* —u(ty)|| < K||Fa((ults)s)ll

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Consistency

The computations on the previous slide already show that
u<tk+1> — U(tk>

But for the Crank-Nicolson scheme (6 = %) we can do better

u(tk“)A; u(ty) = % <Au(tk) + fk) + % (Au(tkﬂ) + ka) +O((At)?).

(Exercise: check this using Taylor series expansions)

N = (1—0) (Au(ty) + ) + 0 (Au(ti) + £71) + O(AL).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Proving stability (1/2)
We have
u<tk+1> o u(tk) — (1 0) (A fk‘ 0(A fk+1
At =(1- >( u(ty) + )+ ( u(tgs1) + >+rk.
I wFtl — yk
= (1= 0) (AuF ) 0 (AuT £ i) = u’ =,

where the residues r;, are O(At) (or O((At)?) if 6 = J).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Proving stability (1/2)
We have
u(tk?-l-l) o u(tk) — (1 0) (A fk 0(A f/H—l
At =(1-90) ( u(t) + ) + ( u(tgs1) + ) + 1}
u'tt —u k| ¢k k41 | pk+1 0
~ =(1-0) (Au* +£5) + 0 (Au" +£1) . u(ty) =u’ = u,,

where the residues r;, are O(At) (or O((At)?) if 6 = J).

Introduce e* := u* — u(t;) and subtract the first equation from the second:

of+l _ ok

N (1 —6)Ae” + gAe ™ —r;, e’ = 0.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Proving stability (1/2)

We have
u(tk?-l-l) o u(tk) — (1 0) (A fk 0(A fk—i—l
A7 = (1— )( u(ty) + )—l— ( u(tp1) + >—|-I‘]{;.
WFHl gk
NI (1—0) (Au]€ + fk> + 0 (Au]erl + fk“) : u(ty) = u’ = uy,

where the residues r;, are O(At) (or O((At)?) if 6 = J).

Introduce e* := u* — u(t;) and subtract the first equation from the second:

of+l _ ok

At
Rearranging shows that

= (1 — )Ae" + A" — 1y, e’ = 0.

(I—60AtA)e"™ = (1 — 0)AtAe" — 1,
e’ = Be" — Atby, e’ =0,
where
B = (I—-0AtA)" I+ (1-0)AtA), b, = (I —0AtA) "1y
Note that by, = O(At) (or O((At)?) if 6 = 1/2).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Proving stability (2/2)

I e’ = Be" — Atby, e’ =0,

When ||B|| > 1, the scheme is clearly unstable.

Assume that ||B|| < 1, then

k—1
" < lef| + Atby|, = |ef| <At k§0|bk| < Ck(At)?,

where it was used that b is O(At), i.e. there exists a C' such that |b;| < CAt.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Proving stability (2/2)

I e’ = Be" — Atby, e’ =0,

When ||B|| > 1, the scheme is clearly unstable.

Assume that ||B|| < 1, then
k—1
e < |ef| + Atlbi|, = lef| < At'Y |by| < Ck(At)?,
k=0

where it was used that b is O(At), i.e. there exists a C' such that |b;| < CAt.

So the error after a fixed number of k time-steps is of O((At)?).
However, the error at a fixed time-instant 7', i.e. the error after K = T'/At is

e | = CK(At)> = CTAt = O(At).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Stability regions
Recall that
B = (I-0AtA)" (I+(1—0)AtA).

Suppose that v is an eigenvalue of A, i.e. that Av = \v. Then also
14+ (1 —0)A\At
1 — OXAL

Bv =

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Stability regions
Recall that
B = (I—-0AtA)" ' (I+(1—0)AtA).

Suppose that v is an eigenvalue of A, i.e. that Av = \v. Then also

14+ (T - 0)AAE
Bv="""mar Y
The scheme is thus stable when
14 (1 —0)A\At

< :

T AL | S 1, for all A € o(A)
Forward Euler (6 = 0) Crank-Nicolson (0 = %) Backward Euler (6 = 1)
1+ AAL <1 11+ IAAL < |1 — IXAY 1= AAL > 1

imaginary part

)
imaginary part
S o

imaginary part
< IS}

real part

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Summary :

u
I d_t(t) = Au(t) + (), u(0) = uy.
I u't —u k| ¢k k+1 | gkl 0
N :(1—9)(Au +f>+9<Au + £ ), u = uy.
The scheme is stable iff
11+ (1 — 0)AAE| < |1 — OXAL, forall A € o(A).
Forward Euler (6 = 0) Crank-Nicolson (f = %) Backward Euler (6 = 1)

imaginary part
o

1+ AAL <1 11+ IAAL < |1 — IXAY 1= AAL > 1

imaginary part
S o
imaginary part
< IS

real part

D.W.M. Veldman -
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3.D Back to the spatial discretization
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Returning to our original problem

Suppose we want to approximate the solution u(t, z) of the initial value problem

ou 82
&(t,a?) hio 2(t x)a+ f(t,z), (t,z) € (0,T) x (0, L),
u(t,0) =0, aZ(t L)=0, w0, 7) = 1 (z).

Introduce an M-point grid in the interval |0, L] with a grid spacing Az = L/(M — 1)
Az Az Az Az Az

® ®
Lo  xp = L2 3 Tl xy = L 95M+1

Also introduce f,,(t) = f(t, z,,,) and the approximation w,,(t) ~ u(t, z,,).
Finite difference discretization (explicit BCs):

dum(t) _ K;umﬂ(t) — 2 () + Upp—1(1)

(), — 2.3, M—1,
dt . Ax? » ful®) " ’

duyy —2up(t) + 2upr—1(t

dt<t) =K A2 + fM(t>7 Um<0) — U()(Sl?m),

where we should remember that u(¢) = 0.

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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Returning to our original problem

Finite difference discretization (explicit BCs):

where we should remember that u;(t) = 0.

2 1 0
1 -2 1
o1

Aff — |
Az* g g o
0 0 0
0 0 0

Note: Ay depends on Az,

Aty U1 () = 2w () 4 w1 (t)
. )+ 211 o
U\ —2up(t) + 2upr—1 (L

a0 V= A + ),

This is a system of Ordinary Diffferential Equations (ODEs) for the free DOFs u(t)
lif(t) = Aﬂ-‘uf(t) + ff(t).

The stability of the numerical scheme may thus depend on At and Ax!

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization
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A first observation

Claim: All eigenvalues of Ag are nonpositive.

We will prove this claim next week.

Conclusion:
The Crank-Nicolson and Backward Euler scheme are stable (for all Az and At).

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization 21
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What about Forward Euler?

In the lecture next week, we will see how we can prove that

o(A) C [(525:.0)

The Forward Euler scheme is stable when

Forward Euler (¢ = 0) 11+ (;‘%Aﬂ <1

11+ At < 1
. Lt Giat <1, and = (14 5501 <1
(Zi%At <0, and ﬁg)gAt <2
Conclusion:
R The Forward Euler scheme is stable when

At < L(Ax)?

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization 22
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A nice trick for Finite Differences with Forward Euler

We consider
ou (t ) Ou? )
—_— r) = R——= €T].
ot "’ ox2"’
Finite differences+Forward Euler:

k+1 k k k k
Up,  — Uy, L Iium—H o 2um + Up—1

At (Ax)?
This scheme is of O(At + (Ax)?).

However, when we check the consistency error we see that

thot, Tm) — w(ty, Tym) O At 0*u
U(tpir, T )At ulth, Tm) _ a':(tk,xm) + S Q(tk,xm) +O((A1?)
U(ty, Tmr1) — 2u(te, Tm) + ulte, Tm-1) @ (Az)? 0" 4
K (Aac)2 = o 5 (e, T) + K T 8x4<tk’ Tm) + O((Ax)?)

Note that 2 = k7% and L 4(ty, x,,) = KDYty 2,0)-
When At - (Az)? we get O((At)* + (Az)*)!
(But you need to discretize the BCs with the same rates...)

D.W.M. Veldman - DCN - Practical Course: Modeling, Simulation, Optimization 23
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