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10.A Improved gradient descent algorithms



Constrained optimization
Consider the optimization problem

min
u∈Uad

J(x,u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to

Ax + Bu = 0.

Assume that A is invertible such that we can consider J(x(u),u) =: J̃(u).

Question: How to compute the Jacobian?

ANSWER 1: By finite differences.
Choose a step size h (typically 10−5) and approximate for every m ∈ {1, 2, . . . ,M}(

dJ̃
du

(u)
)
m

= dJ̃
dum

(u) ≈ J̃(u + hem)− J(u)
h

= J(x + δxm,u + hem)− J(x,u)
h

,

where δxm satisfies
Aδxm + hBem = 0.

Note: we need to solve M linear systems in N unknowns.
This is very time-consuming when M and N are large.
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Constrained optimization
Consider the optimization problem

min
u∈Uad

J(x,u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to

Ax + Bu = 0.
Assume that A is invertible such that we can consider J(x(u),u) =: J̃(u).

Question: How to compute the Jacobian?

ANSWER 2: Analytically.
Similarly, as in the exercise we can use the chain rule to find

dJ̃
du

= ∂J

∂x
∂x
∂u

+ ∂J

∂u
= −∂J

∂x
A−1B + ∂J

∂u
.

The computational cost depends on where you put the brackets:

dJ̃
du

= −∂J
∂x
(
A−1B

)
+ ∂J

∂u
= −

(
∂J

∂x
A−1

)
B + ∂J

∂u
.

Note: the first expression requires the solution of M linear system in N unknowns,
whereas the second requires requires the solution of 1 linear system in N unknowns.
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Constrained optimization
Consider the optimization problem

min
u∈Uad

J(x,u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to
Ax + Bu = 0.

Assume that A is invertible such that we can consider J(x(u),u) =: J̃(u).

Question: How to compute the Jacobian?

ANSWER 3: Using the Lagrangian.
Introduce the vector of Lagrange multipliers λ and form the Lagrangian

L(x,u,λ) = J(x,u) + λ> (Ax + Bu)
Take the partial derivative w.r.t. u to find the Jacobian

dJ̃
du

= ∂L
∂u

= ∂J

∂u
+ λ>Bu.

Set the partial derivative w.r.t. x to zero to determine λ:

0 = ∂L
∂x

= ∂J

∂x
+ λ>A, −λ> = ∂J

∂x
A−1, λ = −

(
A>
)−1

(
∂J

∂x

)>
.

The result is the same as for answer 2 (with well-placed brackets).
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Step size selection
For a convex C2-functional J(u),
we can estimate the stepsize based on a quadratic approximation:

uk+1 = uk − βk∇J(uk), βk > 0,

J(uk+1) ≈ J(uk)− βkG + H

2
β2
k + O(β3

k)
with

G = 〈∇J(uk),∇J(uk)〉

H =
[

d2

dθ2J(uk + θ∇J(uk))
]
θ=0

.

Note: G is positive because we update in a descent direction.
H is positive because J is convex.

Set derivative of the quadratic approximation to zero:

−G + Hβk,opt = 0, βk,opt = G

H
.

When J is quadratic, J(uk + βk,opt∇J(uk)) = J(uk)− βk,optG + H
2 β

2
k,opt = J(uk)− G2

2H
When J is not quadratic, there are higher order terms and we cannot guarantee that
J(uk + βk,opt∇J(uk)) ≤ J(uk). We still need to do a line search (starting from βk,opt)
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Computation of H (example)
Consider the optimization problem

min
u∈Uad

1
2x>Qx + 1

2u>Ru

with Q = Q>, R = R>, u ∈ Uad ⊂ RM , and x ∈ RN subject to
Ax + Bu = 0.

As explained before, we can compute the gradient ∇J(uk) at the current iterate uk.
We want to compute

H =
[

d2

dθ2J(uk + θ∇J(uk))
]
θ=0

.

Observe that
J(uk + θ∇J) = 1

2(xk + θx∇k )>Q(xk + θx∇k ) + 1
2(uk + θ∇J(uk))>R(uk + θ∇J(uk))

= 1
2x>k Qxk + 1

2u>k Ruk + θ
(

x>k Qx∇k + u>k R∇J(uk)
)

θ2
(

1
2

(
x∇k
)>

Qx∇k + 1
2 (∇J(uk))>R∇J(uk)

)
,

where xk = A−1Buk and x∇k = A−1B∇J(uk). Differentiating twice to θ, we obtain

H =
(

x∇k
)>

Qx∇k + (∇J(uk))>R∇J(uk).
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Inequality constraints

Consider the optimization problem

min
u∈Uad

J(u) = J(x(u),u)

with u ∈ Uad ⊂ RM and x ∈ RN subject to

Ax + Bu = 0.

We distinguish between two types of constraints:
I Constraints on u (‘input constraints’), g(u) ≥ 0
I Constraints on x(u) (‘state constraints’) h(x(u)) ≥ 0.

Input constraints can be easily incorporated with the projected gradient method.
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Projected gradient method

Suppose we want to solve an optimization problem with the constraints:

a ≤ um ≤ b, m ∈ {1, 2, . . . ,M}.

(This thus defines the admissible set Uad)

Problem: We do not know whether uk+1 = uk − βk∇J(uk) is in Uad.
(Even when uk ∈ Uad)

Solution: Project uk − βk∇J(uk) onto the Uad, i.e. do the update as

uk+1 = ΠUad (uk − βk∇J(uk)) ∈ Uad

In general, the projection onto the admissible set is difficult to compute
(it requires the solution of another optimization problem).

However, for the considered admissible set, the computation is straightforward:

(ΠUad (u))m =

 a um ≤ a
um a < um < b
b um ≥ b
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Projected gradient method (graphical illustration)

a ≤ um ≤ b, m ∈ {1, 2, . . . ,M}.
uk+1 = ΠUad (uk − βk∇J(uk)) ∈ Uad

(ΠUad (u))m =

 a um ≤ a
um a < um < b
b um ≥ b

b

a

uk

uk − βk∇J(uk)
uk
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Quadratic approximation for the projected gradient
We replace ∇J(uk) by

∇ΠJ(uk) = − lim
h↓0

Π(uk − h∇J(uk))− uk
h

∇ΠJ(uk) is equal to ∇J(uk) except for entries where the −∇J(uk) is pointing out of
the admissible set.

Explicitly,

(∇ΠJ(uk))m =

 0 (uk)m = a and (∇J(uk))m ≥ 0
or (uk)m = b and (∇J(uk))m ≤ 0

(∇J(uk))m otherwise.

We then can use the quadratic approximation:

J(uk+1) ≈ J(uk)− βkG + H

2
β2
k + O(β3

k)

with
G = 〈∇J(uk),∇ΠJ(uk)〉

H =
[

d2

dθ2J(uk + θ∇ΠJ(uk))
]
θ=0

.
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Computation of H with projected gradient (example)

Consider the optimization problem

min
u∈Uad

1
2x>Qx + 1

2u>Ru

with Q = Q>, R = R>, u ∈ Uad ⊂ RM , and x ∈ RN subject to

Ax + Bu = 0.

We have the ‘projected gradient’ (which is a bad name) ∇ΠJ(uk).

Compute the state resulting from the projected gradient

x∇Π
k = −A−1 (B∇ΠJ(uk)) .

We can then compute

H =
(

x∇Π
k

)>
Qx∇Π

k + (∇ΠJ(uk))>R∇ΠJ(uk).
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State constraints

For state constraints (i.e. constraints on x(u)),
it is not so straightforward to determine the projection on the admissible set.

State constraints can for example be included using a penalty function method, but we
will not discuss this further in this course.
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10.B Convergence analysis for gradient descent



Main result
We return to the more abstract optimization problem:

min
u∈RM

J(u).

Denote the minimizer by u∗.

For simplicity, we consider a gradient descent algorithm with a fixed step size β

uk+1 = uk − β∇J(uk).

Two assumptions:
I The functional J is α-convex, i.e.

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2, θ ∈ [0, 1].

I The gradient ∇J(u) is Lipschitz, i.e. there is an L > 0 such that for all u and v

|∇J(u)−∇J(v)| ≤ L|u− v|.

Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2
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Observation 1

The functional J is α-convex:

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

|u− v|2.

Subtract expand the brackets on the LHS and subtract J(v) on both sides:

J(v + θ(u− v))− J(v) ≤ θJ(u)− θJ(v)− αθ(1− θ)
2

|u− v|2.

Divide by θ and take the limit θ → 0:

〈∇J(v), u− v〉 = lim
θ→0

J(v + θ(u− v))− J(v)
θ

≤ J(u)− J(v)− α

2
|u− v|2.

We conclude
〈∇J(v), u− v〉 ≤ J(u)− J(v)− α

2
|u− v|2.
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Observation 2

From the previous slide:

〈∇J(v), u− v〉 ≤ J(u)− J(v)− α

2
|u− v|2.

Because this holds for all u and v, we may interchange u and v to obtain:

〈∇J(u), v − u〉 ≤ J(v)− J(u)− α

2
|v − u|2.

Adding these two equations, we find

〈∇J(v)−∇J(u), u− v〉 ≤ −α|u− v|2.

Multiply by −1, to find

〈∇J(u)−∇J(v), u− v〉 ≥ α|u− v|2.
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Proof
Theorem

|uk − u∗|2 ≤
(
1− 2αβ + β2L2)k |u0 − u∗|2

|uk+1 − u∗|2 = 〈uk+1 − u∗, uk+1 − u∗〉
= 〈uk − β∇J(uk)− u∗, uk − β∇J(uk)− u∗〉
= 〈uk − u∗, uk − u∗〉 − 2β〈∇J(uk), uk − u∗〉 + β2〈∇J(uk),∇J(uk)〉

Using that ∇J(u∗) = 0 and Observation 2, we find

〈∇J(uk), uk − u∗〉 = 〈∇J(uk)−∇J(u∗), uk − u∗〉 ≥ α|uk − u∗|2.

Again using that ∇J(u∗) = 0 and the Lipschitz continuity of ∇J(u), we also have that

〈∇J(uk),∇J(uk)〉 = |∇J(uk)−∇J(u∗)|2 ≤ L2|uk − u∗|2.

Inserting these two results back into the original expression, we conclude

|uk+1 − u∗|2 ≤
(
1− 2αβ + β2L2) |uk − u∗|2

The result now follows by induction over k.
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Other algorithms
There are many more gradient-based algorithms.
Gradient-descent/steepest descent is the simplest one.
For quadratic problems, the Conjugate Gradient (CG) method is the best method.
When optimizing u ∈ RM , it converges in at most M iterations to the minimizer.
For nonquadratic problems, other algorithms can be more effective.
see e.g. Ascher, The chaotic nature of faster gradient descent methods
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