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Introduction and Motivations
The Cheeger constant of set Ω ⊆ R2 is defined as

h(Ω) = inf

{
P (E)

|E|
: E measurable andE ⊆ Ω

}
, (1)

where P (E) is the perimeter of E in the sense of De Giorgi and |E| is the area of E. If Ω has Lipschitz
boundary, the infimum in (1) is achieved. The set CΩ that realizes this minimum is called a Cheeger set of
Ω. In particular, in the case of planar convex sets, the Cheeger set is unique and we have a characterization
for the Cheeger constant.

The Cheeger constant appears in several mathematical contexts:

▶ Study of plate failure under stress;

▶ Applications in the context of maximal flow-minimal cut problems. In particular, the problem of
computing exact continuous optimal curves and surfaces for image segmentation in 2D and 3D
reconstruction from a stereo image pair has applications in medical image process (see [1]);

▶ The extension of the Cheeger problem involving anisotropic norms and anisotropic total variation turns
out to be useful in the context of image processing (see [2]).

For these reasons, it is useful to have estimates of the Cheeger constant in terms of
geometric quantities that can be easily computed.

The Blaschke-Santaló diagrams
A Blaschke–Santaló diagram is a tool that allows to visualize all the possible inequalities between three
geometric quantities. More precisely, if we consider three shape functionals (J1, J2, J3), this means that we
want to find a system of inequalities describing the set

{(J1(Ω), J2(Ω)) : J3(Ω) = 1, Ω ∈ K2},
where

K2 := {Ω | Ω is an open, bounded and convex set of R2} \ {∅}.
In [3] our aim is to study the Blaschke-Santaló triplets associated to the Cheeger constant and two between
the following geometrical quantities: area, perimeter, inradius, circumradius, minimal width and diameter.
Let us see, in particular, what happens for the Blaschke-Santaló diagram associated to the width (J1(·)),
the Cheeger constant (J2(·)) and the diameter (J3(·)).

Sharp estimates for h(Ω) in terms of width and diameter
We use the following notations:

▶ d(Ω) is the diameter of Ω, i.e. the maximal distance between two points in ∂Ω;

▶ ω(Ω) is the minimal width of Ω, i.e. the minimal distance between two parallel supporting hyperplanes;

and we define the following sets:

▶ a symmetrical spherical slice is the set obtained by the intersection between a ball of radius r and a
strip of width ω < 2r, that is symmetrical w.r.t. the center of the ball;

▶ a subequilateral triangle is an isosceles triangle with the two equal angles greater than π/3.

In [3] we prove the following results:

Lower bound Let Ω ∈ K2. Then, it holds
h(Ω) ≥ h(KS),

where KS is the symmetrical spherical slice such that ω(Ω) = ω(KS) and d(Ω) = d(KS). Equality
is achieved by the symmetrical spherical slice KS.

Upper bound Let Ω ∈ K2. Then, it holds

h(Ω) ≤ h(TI), if ω(Ω) ≤
√
3

2
d(Ω),

where TI is the subequilateral triangle such that ω(Ω) = ω(TI) and d(Ω) = d(TI). Equality is
achieved by the subequilateral triangle TI .
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Blaschke-Santaló diagram for the triplet (ω, h, d)

Generating random convex polygons
We want to provide a numerical approximation of the Blaschke-Santaló diagram for the triplet (ω, h, d). To
do so, a natural idea is to generate a large number of convex polygons and for each of them to compute the
involved functionals. The main difficulty is to design an efficient and fast algorithm that allows to obtain an
uniform distribution of the generated random convex polygons.

▶ one easy way to generate random convex polygons is by rejection sampling. We generate a random set
of points in a square; if they form a convex polygon, we return it, otherwise we try again.The
probability of a set of n points uniformly generated inside a given square to be in convex position is

equal to pn =

(
(2n−2
n−1 )
n!

)2

. Thus, the random variable Xn corresponding to the expected number of

iterations needed to obtain a convex distribution follows a geometric law of parameter pn, which means

that its expectation is given by E(Xn) =
1
pn

=

(
n!

(2n−2
n−1 )

)2

. For example, if N = 20, the expected

number of iterations is approximately equal to 2.109, and since one iteration is performed in an average
of 0.7 seconds, the algorithm will need about 50 years to provide one convex polygon with 20 sides.

▶ Another natural approach is to generate random points and take their convex hull. This method is
quite fast, as one can compute the convex hull of N points in a O(N log(N)) time, but it is not quite
relevant since it yields to a biased distribution.

In order to avoid the issues stated above, we use an algorithm based on the work of P. Valtr [4], where the
author computes the probability of a set of n points uniformly generated inside a given square to be in
convex position, with a fast and non biased method. We generate 105 random convex polygons of unit area
and number of sides between 3 and 30 for which we compute the involved functionals, obtaining clouds of
dots that provide approximations of the diagrams.

A new conjecture
We conjecture that, if

√
3/2d(Ω) ≤ ω(Ω) ≤ d(Ω), then for all ∈ K2

h(Ω) ≤ h(Y )

where Y is the Yamanouti set with ω(Y ) = ω(Ω) and d(Y ) = d(Ω). A Yamanouti set Y is a set obtained
by an equilateral triangle by constructing on each side an arc of circle centered in the opposite vertex and
with radius less or equal than the side itself. The Yamanouti set is the convex hull of the set obtained in
this way.

Zoom in: conjectured inequality
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Open Problems
▶ Prove the conjectured inequalities given by numerical simulations.

▶ Study the Blaschke-Santalò diagrams for the Cheeger constant in dimension n > 2.

▶ Study the Blaschke-Santalò diagrams for the Cheeger constant in the anisotropic case.
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