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Presentation of the model

g NASA Photo: ED01-0230-4 _Date: August 13, 2001 _ Pholo by: Carta Thomas

Beam of length ¢ > 0:
e Euler-Bernoulli
spatial variable x € [0, ¢], time variable ¢ > 0
e Timoshenko
+ cross sections not always perpendicular to centerline
e Geometrically Exact Beam (GEB)
" Geometrically exact Timoshenko beam”, "’ Geometric nonlinearity”
+ large motions (displacements, rotations of cross sections).
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Presentation of the model

at time t
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e Geometrically Exact Beam model (GEB)*
- position p € R? and rotation R € R3*3
- fixed coordinate system
e Intrinsic GEB model (IGEB)?
- linear velocity V, angular velocity W, internal forces ® and internal
moments ¥, all in R®
- moving coordinate system attached to the beam

!Reissner '81, Simo '85
2Hodges '03
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Presentation of the model

Beam parameters: M, C, R.
Freely vibrating beam.

nonlinear
transformation
v
T w
(p 7‘ R) — P = QI‘J
| U !
GEB IGEB

N ([R 0} y H) . {m] . [@p) 0 (MJ ay + A@)dzy + B(a)y = g(x,y)

first-order hyperbolic
semilinear
12 equations

Remark: V, W, ®, ¥ € R? are nonlinear functions of p, R (we omit the formula here).
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Single beam: well-posedness for IGEB

=[] =i - 1]

We consider the IGEB model:

Oy + A(x)0y + B(x)y = g(z,y) in (0,£) x (0,T)

v=20 on {¢} x (0,T) clamped
—z=—-Kv on {0} x (0,T) velocity feedback control
y=1" on (0,2) x {0}

With appropriate regularity of coefficients, eigenvalues/vectors of A =
assumptions on the beam parameters.

At least local existence-uniqueness results for 1-D first-order hyperbolic
systems:

e Bastin-Coron '16: in CY H2 (H? data)
e Li'10: in C},
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Single beam: stabilization for IGEB

K symmetric positive definite
Oy + A(z)day + Blx)y =glz,y) in (0,£) x (0,T)

(1) v=0 on {¢} x (0,T)
—z=—-Kv on {0} x (0,T)
y=1y° on (0,£) x {0}

If coefficients regular, the steady state y = 0 of (1) is locally H>
exponentially stable. Namely,

Je, o, > 0 such that Vy° € H?(0, 4; R*?) with ||3°|| 52 < € and fulfilling
compatibility conditions, 3y € C°([0, +oc0); H*(0,¢;R'?)) solution to (1), and

||y(~, t)||H2(0,é;JR<12) < We_at ||?J0||H2(0,4;R12)7 V.

e idea of the proof: quadratic Lyapunov functional

e a lot of work done in: Bastin-Coron '16

e possible because: first-order, A hyperbolic and no zero eigenvalue
e difficulty: g quadratic + B not small

See: R.-Leugering arXiv:1912.02543v3 to appear in SICON (isotropic prismatic beams). 6/15


https://arxiv.org/abs/1912.02543v3

Single beam: stabilization for IGEB

Quadratic Lyapunov functional £:
easier to show exponential decay for £

+ L equivalent to [[y(-,t)|[}2g s:12) When y is in some ball of CYC;
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Single beam: corresponding results for GEB

Corresponding GEB model:

9 (5 RIMW]) =0 [RE] + [@umxray] in (0,0) x (0,T)
—-[¢]=-K[w] on {0} x (0,T)
(p,R) = (h?, ™) constant on {£} x (0,T)
(p,R) = (p°,R"), (@:p,RW) = (p',w’)  on (0,6) x {0}.

)

Theorem 2

If coefficients regular and if data of both models fulfill compatibility conditions,
then: 3! solution in C;,t to IGEB =- ! solution in Cit to GEB.

Idea of the proof: show that 7 is bijective, using: last six equations of IGEB as
compatibility conditions + quaternions to parametrize rotations.

Corollary 1

Under assumptions of Theorems 1 and 2, where y° = f(p°, R?, p*, w?),
3l(p,R) € C?([0,4] x [0, +00); R® x SO(3)) solution to (2)
+ exponential decay of 9;p, ;R and ®, U.

See: R.-Leugering arXiv:1912.02543v3 to appear in SICON (isotropic prismatic beams). 8/15


https://arxiv.org/abs/1912.02543v3

Networks of beams

e beams/edges indexed by i € Z
e nodes indexed by n €

e unknown state: (p;, Ri)iez or (¥i)iez

Notation: for any node n,
- I" = indexes of edges incident to n

n

- x; = end of the interval [0, ¢;] corresponding to n, for any i € Z".
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Networks: GEB and IGEB systems

At multiple nodes, the beams remain attached without rotating + balance of

forces/moments.

o ([ v [0 ]) Oy + Ai(2)0e:

=% [giii + [@pormen]i  +Bi@)yi =7i(w,y:) in (0,4:) x (0,7),icZ
pi(x7',t) = p;(x],1) - (Ravs) (<2, 1) = (Ryoy) (<5,1) £ € (0,T),4,j €T", n € Ns
(R:RT)(xi',t) = (RyR])(x}, 1)

B Sz 7 [RE ] 010 =0 S M (Rizm) (6, ) =0 € (0,T), n € N

7Y = an ETi"Z«;:lln on {xi'} x (0,7),i€ZI", n€N§
w; H

(i, Ri) = (2, /) vi=dqn on {x}'} x (0,7), i € I", n € N§
(pi,R:) = (p!. RY) =y on (0,4:) x {0}, i €T

(0upi, RiW:) = (pi,w?)

where R; = diag(R;, R;)
N =Ny UNEUNZ
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Networks: well-posedness for IGEB

We consider the IGEB model.

At least local in time well-posedness:

e any network

e rewrite as a single system — apply previous results (Bastin-Coron, Li)
T

rT

i

o key step: _
- write system in diagonal form: new unknown state r; = { }

- rule for each node n:
components of r; corresponding to characteristics entering
[0, £;] x [0,400) at this node expressed as a function of the
components of r; corresponding to characteristics leaving
[0, £;] x [0,400) at this node

4 leaving
leaving

(01,1) i (61,1)
r3(0,t) | =f | r3(0,1)
(0, 1) 75 (0,1)

entering entering T
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Networks: stabilization for IGEB

H2 =Y, H?(0,4;R'?).

Star-shaped network, velocity feedback controls (7' z; = —Knv;, with K,
symmetric positive definite) at all simple nodes.
Then, the zero steady state of (3—IGEB) is locally F/? exponentially stable:
Je,B,m > 1s.t. V(y?)iez € Hi with Hy0||H2 < & and compatibility conditions, 3! solution
y = (yi)iez € C°([0, +c0); H2) to (3—IGEB), and

Iy Ollerz < me™ ™ ly° gz, V2.

Quadratic Lyapunov functional:

2 0:
— i 0 W
[ (G [y o)

i€Z k=0

< 3RqpPody

See: R. arXiv:2009.07183 preprint. 12/15


https://arxiv.org/abs/2009.07183

Networks: local nodal profile controllability for IGEB

nodal i)roﬁlcs

For t € [T*,T1,
y1(0,1) =7:(2)
y2(0, 1) = Bs().

Let

o T* =T*(A;,4;) > 0 large enough and T' > T*

e nodal profiles 7,75 € CL([T*, T]; R12) with small norm + transmission conditions
Then, ¥(y)iez € [T, C*([0,£;]; R?) with small norm and compatibility
conditions, 3qu, g5 € C* ([0, T]; R®) controls with small norm s.t. the solution
(yi)iez € [T, C*([0,4:] x [0, T); R*?) to (3—IGEB) has small norm and
satisfies the nodal profiles.

e Zhuang and al. '18 (Saint-Venant)

e construct solution satisfying all conditions + substitute to obtain desired control

BRI |

For t € (0,77,
24(la, 1) = qu(t)

z5(ls,t) = q5(t).

controls

e possible because: first-order, hyperbolic, no zero eigenvalues
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Networks: corresponding results for GEB

Then,
e invert the transformation between (3—GEB) and (3—IGEB)

e deduce results corresponding to Theorem 4 (stabilization) and Theorem 5
(nodal profile control), for (3—GEB)
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