Geometrically exact beam model: well-posedness, stabilization, networks

Charlotte Rodriguez in collaboration with: Günter Leugering, Yue Wang

CAA – Alexander von Humboldt Workshop

October 12, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579.

Presentation of the model

Presentation of the model

- Geometrically Exact Beam model (GEB)¹
 - position $\mathbf{p} \in \mathbb{R}^3$ and rotation $\mathbf{R} \in \mathbb{R}^{3 \times 3}$
 - fixed coordinate system
- Intrinsic GEB model (IGEB)²
 - linear velocity V, angular velocity W, internal forces Φ and internal moments $\Psi,$ all in \mathbb{R}^3
 - moving coordinate system attached to the beam

¹Reissner '81, Simo '85

²Hodges '03

Presentation of the model

Beam parameters: \mathbf{M} , \mathbf{C} , R. Freely vibrating beam.

Remark: $V, W, \Phi, \Psi \in \mathbb{R}^3$ are nonlinear functions of \mathbf{p}, \mathbf{R} (we omit the formula here).

Single beam: well-posedness for IGEB

Notation:
$$y = \begin{bmatrix} v \\ z \end{bmatrix}$$
, $v = \begin{bmatrix} V \\ W \end{bmatrix}$, $z = \begin{bmatrix} \Phi \\ \Psi \end{bmatrix}$.

We consider the IGEB model:

$$\begin{cases} \partial_t y + A(x)\partial_x y + \overline{B}(x)y = \overline{g}(x,y) & \text{in } (0,\ell) \times (0,T) \\ v = 0 & \text{on } \{\ell\} \times (0,T) & \text{clamped} \\ -z = -Kv & \text{on } \{0\} \times (0,T) & \text{velocity feedback control} \\ y = y^0 & \text{on } (0,\ell) \times \{0\} \end{cases}$$

<u>With</u> appropriate regularity of coefficients, eigenvalues/vectors of $A \Rightarrow$ assumptions on the beam parameters.

At least local **existence-uniqueness** results for **1-D first-order hyperbolic** systems:

- Bastin-Coron '16: in $C_t^0 H_x^2$ (H_x^2 data)
- Li '10: in $C^1_{x,t}$

Single beam: stabilization for IGEB

K symmetric positive definite

(1)
$$\begin{cases} \partial_t y + A(x)\partial_x y + \overline{B}(x)y = \overline{g}(x,y) & \text{in } (0,\ell) \times (0,T) \\ v = 0 & \text{on } \{\ell\} \times (0,T) \\ -z = -Kv & \text{on } \{0\} \times (0,T) \\ y = y^0 & \text{on } (0,\ell) \times \{0\} \end{cases}$$

Theorem 1

If coefficients regular, the steady state $y \equiv 0$ of (1) is locally H^2 exponentially stable. Namely,

 $\exists \varepsilon, \alpha, \eta > 0 \text{ such that } \forall y^0 \in H^2(0, \ell; \mathbb{R}^{12}) \text{ with } \|y^0\|_{H^2} \leq \varepsilon \text{ and fulfilling compatibility conditions, } \exists ! y \in C^0([0, +\infty); H^2(0, \ell; \mathbb{R}^{12})) \text{ solution to (1), and }$

$$\|y(\cdot,t)\|_{H^2(0,\ell;\mathbb{R}^{12})} \le \eta e^{-\alpha t} \|y^0\|_{H^2(0,\ell;\mathbb{R}^{12})}, \qquad \forall t.$$

- idea of the proof: quadratic Lyapunov functional
- a lot of work done in: Bastin-Coron '16
- possible because: first-order, A hyperbolic and no zero eigenvalue
- difficulty: \overline{g} quadratic + \overline{B} not small

Single beam: stabilization for IGEB

Quadratic Lyapunov functional $\overline{\mathcal{L}}$:

easier to show exponential decay for $\overline{\mathcal{L}}$

 $+\ \overline{\mathcal{L}}$ equivalent to $\|y(\cdot,t)\|^2_{H^2(0,\ell;\mathbb{R}^{12})}$ when y is in some ball of $C^0_t C^1_x$

Single beam: corresponding results for GEB

Corresponding GEB model:

(2)
$$\begin{cases} \partial_t \left(\begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \mathbf{M} \begin{bmatrix} V \\ W \end{bmatrix} \right) = \partial_x \begin{bmatrix} \mathbf{R} \Phi \\ \mathbf{R} \Psi \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ (\partial_x \mathbf{p}) \times (\mathbf{R} \Phi) \end{bmatrix} & \text{in } (0, \ell) \times (0, T) \\ - \begin{bmatrix} \Phi \\ \Psi \end{bmatrix} = -K \begin{bmatrix} V \\ W \end{bmatrix} & \text{on } \{0\} \times (0, T) \\ (\mathbf{p}, \mathbf{R}) = (h^{\mathbf{p}}, h^{\mathbf{R}}) & \text{constant} & \text{on } \{\ell\} \times (0, T) \\ (\mathbf{p}, \mathbf{R}) = (\mathbf{p}^0, \mathbf{R}^0), \ (\partial_t \mathbf{p}, \mathbf{R} W) = (\mathbf{p}^1, w^0) & \text{on } (0, \ell) \times \{0\}. \end{cases}$$

Theorem 2

If coefficients regular and if data of both models fulfill compatibility conditions, then: \exists ! solution in $C_{x,t}^1$ to IGEB $\Rightarrow \exists$! solution in $C_{x,t}^2$ to GEB.

Idea of the proof: show that ${\cal T}$ is bijective, using: last six equations of IGEB as compatibility conditions + quaternions to parametrize rotations.

Corollary 1

Under assumptions of Theorems 1 and 2, where $y^0 = f(\mathbf{p}^0, \mathbf{R}^0, \mathbf{p}^1, w^0)$, $\exists ! (\mathbf{p}, \mathbf{R}) \in C^2([0, \ell] \times [0, +\infty); \mathbb{R}^3 \times SO(3))$ solution to (2) + exponential decay of $\partial_t \mathbf{p}$, $\partial_t \mathbf{R}$ and Φ, Ψ .

Networks of beams

- beams/edges indexed by $i \in \mathcal{I}$
- nodes indexed by $n \in \mathcal{N}$
- unknown state: $(\mathbf{p}_i, \mathbf{R}_i)_{i \in \mathcal{I}}$ or $(y_i)_{i \in \mathcal{I}}$

<u>Notation</u>: for any node n,

- \mathcal{I}^n = indexes of edges incident to n
- \mathbf{x}_i^n = end of the interval $[0, \ell_i]$ corresponding to n, for any $i \in \mathcal{I}^n$.

$$\mathbf{x}_{i}^{k} = 0 \qquad \mathbf{x}_{i}^{n} = \ell_{i}$$

$$\mathbf{o}$$

$$\mathbf{x}_{i}^{n} = \mathbf{i}$$

$$\mathbf{n}$$

Networks: GEB and IGEB systems

At multiple nodes, the beams remain attached without rotating + balance of forces/moments.

 $(3) \begin{cases} \frac{\partial_t \left(\begin{bmatrix} \mathbf{R}_i & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_i \end{bmatrix} \mathbf{M}_i \begin{bmatrix} V_i \\ W_i \end{bmatrix} \right)}{\left\{ \begin{array}{l} \partial_t y_i + A_i(x) \partial_x y_i \\ +\overline{B}_i(x) y_i = \overline{g}_i(x, y_i) & \text{in } (0, \ell_i) \times (0, T), i \in \mathcal{I} \\ \mathbf{p}_i(\mathbf{x}_i^n, t) = \mathbf{p}_j(\mathbf{x}_j^n, t) & (\overline{R}_i v_i)(\mathbf{x}_i^n, t) = (\overline{R}_j v_j)(\mathbf{x}_j^n, t) & t \in (0, T), i, j \in \mathcal{I}^n, n \in \mathcal{N}_M \\ (\mathbf{R}_i R_i^{\mathsf{T}})(\mathbf{x}_i^n, t) = (\mathbf{R}_j R_j^{\mathsf{T}})(\mathbf{x}_j^n, t) & \sum_{i \in \mathcal{I}^n} \tau_i^n \begin{bmatrix} \mathbf{R}_i \Phi_i \\ \Phi_i \end{bmatrix} (\mathbf{x}_i^n, t) = \mathbf{0} & \sum_{i \in \mathcal{I}^n} \tau_i^n (\overline{R}_i z_i)(\mathbf{x}_i^n, t) = \mathbf{0} & t \in (0, T), n \in \mathcal{N}_M \\ \overline{\tau}_i^n \begin{bmatrix} \Phi_i \\ \Phi_i \end{bmatrix} = q_n & \tau_i^n z_i = q_n & \text{on } \{\mathbf{x}_i^n\} \times (0, T), i \in \mathcal{I}^n, n \in \mathcal{N}_S^z \\ (\mathbf{p}_i, \mathbf{R}_i) = (f_n^p, f_n^{\mathsf{R}}) & v_i = q_n & \text{on } \{\mathbf{x}_i^n\} \times (0, T), i \in \mathcal{I}^n, n \in \mathcal{N}_S^z \\ (\overline{\theta}_i \mathbf{p}_i, \mathbf{R}_i W_i) = (\mathbf{p}_i^1, w_i^0) & y_i = y_i^0 & \text{on } (0, \ell_i) \times \{\mathbf{0}\}, i \in \mathcal{I} \end{cases}$

where $\overline{R}_i = \text{diag}(R_i, R_i)$ $\mathcal{N} = \mathcal{N}_M \cup \mathcal{N}_S^v \cup \mathcal{N}_S^z$

Networks: well-posedness for IGEB

We consider the IGEB model.

At least local in time well-posedness:

- any network
- rewrite as a single system \rightarrow apply previous results (Bastin-Coron, Li)
- key step:
 - write system in diagonal form: new unknown state $r_i = \begin{vmatrix} r_i^- \\ r_i^+ \end{vmatrix}$
 - rule for each node n:

components of r_i corresponding to characteristics *entering* $[0, \ell_i] \times [0, +\infty)$ at this node expressed as a function of the components of r_i corresponding to characteristics *leaving* $[0, \ell_i] \times [0, +\infty)$ at this node

Networks: stabilization for IGEB

 $\mathbf{H}_{x}^{2} := \prod_{i=1}^{N} H^{2}(0, \ell_{i}; \mathbb{R}^{12}).$

Theorem 3

Star-shaped network, velocity feedback controls ($\tau_i^n z_i = -K_n v_i$, with K_n symmetric positive definite) at all simple nodes. Then, the zero steady state of (3–IGEB) is locally H^2 exponentially stable:

 $\exists \varepsilon, \beta, \eta \geq 1 \text{ s.t. } \forall (y_i^0)_{i \in \mathcal{I}} \in \mathbf{H}_x^2 \text{ with } \|y^0\|_{\mathbf{H}_x^2} \leq \varepsilon \text{ and compatibility conditions, } \exists! \text{ solution} \\ y := (y_i)_{i \in \mathcal{I}} \in C^0([0, +\infty); \mathbf{H}_x^2) \text{ to } (3-\text{IGEB}), \text{ and}$

$$\|y(\cdot,t)\|_{\mathbf{H}^2_x} \le \eta e^{-\beta t} \|y^0\|_{\mathbf{H}^2_x}, \qquad \forall t$$

Quadratic Lyapunov functional:

$$\overline{\mathcal{L}} = \sum_{i \in \mathcal{I}} \sum_{k=0}^{2} \int_{0}^{\ell_{i}} \left\langle \partial_{t}^{k} y_{i}, \begin{pmatrix} \rho Q_{i}^{\mathcal{P}} + w_{i} \begin{bmatrix} \mathbf{0} & \mathbf{W}_{i} \\ \mathbf{W}_{i}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \right) \partial_{t}^{k} y_{i} \right\rangle dx$$

Networks: local nodal profile controllability for IGEB

Theorem 4

Let

• $T^* = T^*(A_i, \ell_i) > 0$ large enough and $T > T^*$

• nodal profiles $\overline{y}_1, \overline{y}_2 \in C^1([T^*, T]; \mathbb{R}^{12})$ with small norm + transmission conditions

Then, $\forall (y_i^0)_{i \in \mathcal{I}} \in \prod_{i=1}^N C^1([0, \ell_i]; \mathbb{R}^{12})$ with small norm and compatibility conditions, $\exists q_4, q_5 \in C^1([0, T]; \mathbb{R}^6)$ controls with small norm s.t. the solution $(y_i)_{i \in \mathcal{I}} \in \prod_{i=1}^N C^1([0, \ell_i] \times [0, T]; \mathbb{R}^{12})$ to (3-IGEB) has small norm and satisfies the nodal profiles.

- Zhuang and al. '18 (Saint-Venant)
- construct solution satisfying all conditions + substitute to obtain desired control
- possible because: first-order, hyperbolic, no zero eigenvalues

Networks: corresponding results for GEB

Then,

- invert the transformation between (3-GEB) and (3-IGEB)
- deduce results corresponding to Theorem 4 (stabilization) and Theorem 5 (nodal profile control), for (3-GEB)

References:

- G. Bastin, J.-M. Coron, Stability and boundary stabilization of 1-d hyperbolic systems, 2016.
 For semilinear systems: G. Bastin, J.-M. Coron, Exponential stability of semi-linear one-dimensional balance laws, in Feedback stabilization of controlled dynamical systems, 2017.
- D. H. Hodges, Geometrically exact, intrinsic theory for dynamics of of curved and twisted anisotropic beams. AIAA journal, 2003.
- T. Li, Controllability and observability for quasilinear hyperbolic systems. AIMS Ser. Appl. Math. Am. Inst. Math. Sci., 2010. Extension to nonautonomous systems: Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chinese Ann. Math. Ser. B, 2006.
- E. Reissner. On finite deformations of space-curved beams. ZAMP, 1981
- C. Rodriguez, G. Leugering, Boundary feedback stabilization for the intrinsic geometrically exact beam model. arXiv:1912.02543v3 to appear in SICON.
- C. Rodriguez, Networks of geometrically exact beams: well-posedness and stabilization. Preprint arXiv:2009.07183.
- J. C. Simo, A finite strain formulation The three-dimensional dynamic problem Part I. Methods Appl. Mech. Engrg., 1985.
- K. Zhuang, G. Leugering, T. Li, Exact boundary controllability of nodal profile for Saint-Venant system on a network with loops. J. Math. Pures Appl, 2018.

Thank you for your attention! Questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579.

