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1. Well-posedness and input-output stability

2. Asymptotic behaviour
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Well-posedness and input-output
stability
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Some background
5 e Confiex

The space H*(Cp, W) consist of all the analytic functions
G : Cy — Z for which

sup ||G(s)||lw < 0.

seCy
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Some background
5 7 e Conflex

The space H*(Cp, W) consist of all the analytic functions
G : Cy — Z for which

sup ||G(s)||lw < 0.

seCy

The condition G € H>(Cy, L(U, Y)) is equivalent to the fact that if
u € L?([0, 00); U), then y € L%(]0, 00); Y).

This property is also called
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A system of viscous fluid-structure

7 @ Corflex
We consider the linear model
%-F%:O, (x €€) (1)
% + gﬁ ug;’ —0, (x€&) 2)
h5(t)+% —0 (xeZ) (3)
gi’ % 0 (xel), (4)
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bt.a) — o3 (t,a7) = plt.a) + hs(t) — no(t.a"), (9
bt 67) — n29(E,5%) = p(t b7) + hs(t) — no3(t,b),  (6)
hs(t) = / p(t, x)dx + u(t) (¢ >0). (7)
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Here, we consider a output given

y(t) = hs(t) (t=0). (8)
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7 e Coriflex

Here, we consider a output given

y(t) = hs(t) (t=0). (8)

Our first main result is a following reformulation of the system.
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7 e Conflex
Here, we consider a output given
y(t) = hs(t) (t=>0). (8)

Our first main result is a following reformulation of the system.
Set
X :=Cx HYE&) x >(§) x C x C. (9)
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First main result
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Equations (1)-(8) can be recast as
z=Az+ Bu
y = Cz, (10)

where the components of the vector z(t) are hs(t), h(t,-), q(t, "),
q(t,a) and q(t,b), B isin L(C,X), C isin L(X,C) and A is a

generator of an analytic semigroup on X.
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Equations (1)-(8) define a well-posed linear system with state space
X defined in (9) and input and output spaces U = Y = C.
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e Confiex

Equations (1)-(8) define a well-posed linear system with state space
X defined in (9) and input and output spaces U = Y = C.
Informally, this means: on any time interval [T, t], for any initial
state xp and any input function u, it has a unique state trajectory x
and a unique output function y, both defined on [T, t].
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Second main result r
® Conflex

Theorem
The system described by (1)-(8) is input-output stable.
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Second main result r
® Conflex

The system described by (1)-(8) is input-output stable.

Informally, this means: small input signals produce
correspondingly small output signals.
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Some ideas about the first Theorem

e Confiex

For t > 0, we set q,(t) := q(t, a) and gp(t) := q(t, b). Since (3)
implies that g is a linear function of x on Z, for every t > 0 and
x €T,

hs(£) = _qb(t[)):Za(t)7 (11)

o(t) = (=D) e (i=2). @)
dq ~q(t) — qa(t)

(e, x) = B0 (13)
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We differentiate (4) with respect to x and use (5)-(3) ri Conflex

to arrive at

TB(t,x) = hs(t) (x€T),
p(t.a") = pu(t), p(t.57) = pult),

where

ps(t) :=h(t,a”) — u% (t,a7) — heoi(t) — prhsoi(t),

po(t) == h(t,b") — Hax

9q (t,b%) — heoi(t) — hso(t).

(14)

(15)
(16)
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The first equation in (14) implies that, for every t > 0,

p(t, x) is a second order polynomial in x so that

[ e ax = bl 0} - o)~ o)
2 l2

= p(t b)1 + 66(1) g + (1) 5

where we set | := b — a.
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Combining this with (7) and (11) we deduce that | Conflex
3 3
15t - 1= G e = e+ o
1] . P 2
— [1 — gl q.(t) + [1 + g] an(t) = —p(t, b)I* — lu(t).

Inverting the above linear system, we get

v A el R B
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Considering equation (5)-(6) together with (13) we deduce

p(t.a) = h(t.a") — pod(t,a) — hs(t) + =% (1)

b—a
and
dq g — g,
_ h +\ -1 + —h ) 1
p(tu b) (t7b ) 'uaX(t’b ) S(t) H b—_ 3 ( 9)

G.Vergara-Hermosilla Conclusions on fluid-structure interactions 17 / 36



7 @ Conflex
Let X be defined by (9), set

W :=C x H'(&) x H*(§) x C x C,

and denote by z := [h5 h g g, qb] " a generic element of X.
Consider the operator A : D(A) — X defined by

D(A) :={ze W | q(a) = ga, q(b) = a»}, (20)
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T a(b)—q(a) ] ¥ e Conflex

P 2

where

dq
[Rlz] | M) g e = ks
Ryz —h(b*)— d (b+)_h5+uqb s
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We set

Iu lu
2(1+8) 2(1+5)
and we observe that B € L(C, X) and C € L(X,C).

Bu :=[0,0,0, " and Cz:=hs, (22)
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|deas about the second Theorem
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We have the following result where Cy denotes the open right-half
plane
Cp:={se€C : Res>0}. (23)

The resolvent set p(A) contains Cy.
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The transfer function of the system (1)-(8) is given by r; Conflex
1
(L+8)s2+ Csy/T+ s+ pls + 1

G(s) == (s€Co). (24)

Let F be the function defined by

/3
F(s) = (1 12)5 +—s\/1+,us+uls+/ (25)
and let Co be the open right-half plane, as defined in (23). Then
there exists a neighborhood O of Cq such that F is holomorphic on
O. Moreover, F does not vanish on Cy.
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Asymptotic behaviour
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In this work we study the correct version of this model for
vertical displacements of a floating structure, e Conflex
which now reads:

(1 G 3)3) ho(t) = — P - ) s hs(t)

12
— u(b — a) hs(t) — (b — a) hs(t), (26)

where (1 is the viscosity coefficient of the fluid, (b — a) is the width
of the interval Z = [a, b] obtained by projecting the floating object
(supposed symmetric around the axis x = 3(a -+ b)) on the flat
horizontal bottom, and £ = R\ [a, b] denotes the viscous fluid
domain. Moreover, F is the causal distribution with Laplace

transform F(s) = /I + fts.
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Diffusive representation

e Confiex

Consider the original system, set h:= v and z := F « hs,
it can then be viewed as a coupled system

( (14—{—32) Bs-l-Z(t)-l—hs-l-/,Lth:O

v(t) = hs(t) (27)
Orp(t, &) = —§p(t, &) + v(t); ¢(0,§) =0

z(t) = [ g(§)0rp(t,€) A€ + 1v(t).

where

\/ pé —

g(6) : ué" ,

for € >1/p. (28)
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For all (hs,wo) € C?, the solution of the coupled system (27), with
initial condition (hsg,wo,0), satisfies

(h5, hs, gp)(t) — 00 0 n (C2 X /:/,

where

~

f- {90 c LE (Rdg). [ elefasle) < oo} .
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Asymptotic behaviour (special case)
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If all the poles s, of the transfer function lie in the left halfplane
R(s) < —%L, then the asymptotic behaviour of the solution hs of the

system (27) reads

hs(t) ~ Kent 3 as t— +o00.
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Analytical solution

e Confiex

hs(t) = (Cy cos(wgt) + Cosin(wgt)) e, (29)
when B2 < 4Al, where

B R B 5 2_\/4/4/—52
5_ﬂ’ wo—\/;, wd—\/w0—5—T, (30)

are the damping coefficient, the undamped natural angular frequency

and the damped angular frequency, respectively. The constants G

and G, are given by

ho + hod  hoB + 2hoA
W VAAl - B2

Cl = ho, C2 = (31)
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Case > 0
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The solution of the GFDE is given by

hg(t) = exp(—e t) <Z Q& ()\,‘, t)) , (32)

1
2

with constants ©; := r; hy + f; ho.
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Asymptotic behaviour (general case)

e Confiex

We have the following asymptotic equivalents for €, (A, t) as t
reaches +0o0 :

for | arg(A) |< ag,

1. 1 1
Ea (M t) ~ ZXatet (33)
a
for | arg(A) |> a%,
Ea(M\t) ~ =\ 2plma (34)
ar M(1-—a) '
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The case of Proposition 4 is
recovered as a special case, which occurs
if and only if all the roots A; fulfill | arg();) [> .

Otherwise, if but one g lies in the sector | arg()) |< 7, then a
very different asymptotic behaviour is to be found, namely a
purely exponentially decaying one, with decay rate

§ = ¢ — RN(N?) > 0 (it must be positive indeed, since
asymptotic stability has already been proved in Proposition 3).
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I
If there is at least one root with R(\;) > |J()\))| ® Conflex
then the asymptotics is of exponential type, with rate

O(p) =+ —R(N) >0

hs() ~ 3 Gexp((0F — 1)) (35)

or all the four roots lie in | arg(\) |> %, then the asymptotics is
of mixed type,

hs(t) ~ C ¢ exp(—i 0. (36)
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—function R(\)=3())

30N
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(a) (b)
Evolution of the four roots \; in the o-plane, as a function of
. (a): global picture with 4 trajectories. (b): zoom in the right-half
plane ®(o) > 0, 2 trajectories crossing the segment R(A) = |S(N)
for a critical value u€ of the viscosity.
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—— () with angle of root > w/4
—1/u

o8 ‘ ‘ ‘ —— (1) with ang)e of roolt < n/4 n Con‘rleX

Zoom

05115225

Damping rate §(u) = R(\?) — /% as a function of viscosity p
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Thank you !
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Lautaro, leader of the Mapuche resistance.
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