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Overview

1. Well-posedness and input-output stability

2. Asymptotic behaviour
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Well-posedness and input-output
stability
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Some background

The space H∞(C0,W ) consist of all the analytic functions
G : C0 → Z for which

sup
s∈C0

||G (s)||W <∞.

The condition G ∈ H∞(C0, L(U ,Y )) is equivalent to the fact that if
u ∈ L2([0,∞);U), then y ∈ L2([0,∞);Y ).

This property is also called input-output stability.
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A system of viscous fluid-structure

We consider the linear model

∂h

∂t
+
∂q

∂x
= 0, (x ∈ E), (1)

∂q

∂t
+
∂h

∂x
− µ∂

2q

∂x2
= 0, (x ∈ E), (2)

ḣS(t) +
∂q

∂x
= 0 (x ∈ I), (3)

∂q

∂t
+
∂p

∂x
= 0 (x ∈ I), (4)
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h(t, a−)− µ∂q
∂x

(t, a−) = p(t, a+) + hS(t)− µ∂q
∂x

(t, a+), (5)

h(t, b+)− µ∂q
∂x

(t, b+) = p(t, b−) + hS(t)− µ∂q
∂x

(t, b−), (6)

ḧS(t) =

∫ b

a

p(t, x)dx + u(t) (t > 0). (7)
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Here, we consider a output given

y(t) = hS(t) (t ≥ 0). (8)

Our first main result is a following reformulation of the system.
Set

X := C× H1(E)× L2(E)× C× C. (9)
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First main result

Theorem
Equations (1)-(8) can be recast as

ż = Az + Bu
y = Cz ,

(10)

where the components of the vector z(t) are hS(t), h(t, ·), q(t, ·),
q(t, a) and q(t, b), B is in L(C,X ), C is in L(X ,C) and A is a
generator of an analytic semigroup on X .
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Corollary
Equations (1)-(8) define a well-posed linear system with state space
X defined in (9) and input and output spaces U = Y = C.
Informally, this means: on any time interval [T , t], for any initial
state x0 and any input function u, it has a unique state trajectory x
and a unique output function y , both defined on [T , t].
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Second main result

Theorem
The system described by (1)-(8) is input-output stable.
Informally, this means: small input signals produce
correspondingly small output signals.
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Some ideas about the first Theorem

For t ≥ 0, we set qa(t) := q(t, a) and qb(t) := q(t, b). Since (3)
implies that q is a linear function of x on I, for every t ≥ 0 and
x ∈ I,

ḣS(t) = −qb(t)− qa(t)

b − a
, (11)

q(t, x) = qa(t)
(x − b

a − b

)
+ qb(t)

(x − a

b − a

)
, (12)

∂q

∂x
(t, x) =

qb(t)− qa(t)

b − a
. (13)
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We differentiate (4) with respect to x and use (5)-(3)
to arrive at

∂2p
∂x2 (t, x) = ḧS(t) (x ∈ I),
p (t, a+) = pa(t), p (t, b−) = pb(t),

(14)

where

pa(t) := h
(
t, a−

)
− µ∂q

∂x

(
t, a−

)
− hsol(t)− µḣsol(t), (15)

pb(t) := h
(
t, b+

)
− µ∂q

∂x

(
t, b+

)
− hsol(t)− µḣsol(t). (16)
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The first equation in (14) implies that, for every t ≥ 0,
p(t, x) is a second order polynomial in x so that∫ b

a

p(t, x) dx = p(t, a)l − q̇a(t)
l2

3
− q̇b(t)

l2

6

= p(t, b)l + q̇a(t)
l2

6
+ q̇b(t)

l2

3
,

where we set l := b − a.
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Combining this with (7) and (11) we deduce that[
1 +

l3

3

]
q̇a(t)−

[
1− l3

6

]
q̇b(t) = p(t, a)l2 + lu(t),

−
[
1− l3

6

]
q̇a(t) +

[
1 +

l3

3

]
q̇b(t) = −p(t, b)l2 − lu(t).

Inverting the above linear system, we get[
q̇a(t)
q̇b(t)

]
= M

[
p(t, a)
−p(t, b)

]
+

1
l
M

[
u(t)
−u(t)

]
. (17)
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Considering equation (5)-(6) together with (13) we deduce

p(t, a) = h(t, a−)− µ∂q
∂x

(t, a−)− hS(t) + µ
qb − qa
b − a

, (18)

and

p(t, b) = h(t, b+)− µ∂q
∂x

(t, b+)− hS(t) + µ
qb − qa
b − a

. (19)
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Let X be defined by (9), set

W := C× H1(E)× H2(E)× C× C,

and denote by z :=
[
hS h q qa qb

]T a generic element of X .
Consider the operator A : D(A)→ X defined by

D(A) := {z ∈ W | q(a) = qa, q(b) = qb} , (20)
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Az :=


−q(b)−q(a)

b−a
−dq

dx

−dh
dx + µd2q

dx2

R1z
R2z

 , (21)

where [
R1z
R2z

]
:= M

 h(a−)− µdq
dx

(a−)− hS + µqb−qa
b−a

−h(b+)− µdq
dx

(b+)− hS + µqb−qa
b−a

 .
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We set

Bu := [0, 0, 0,
lu

2
(
1 + l3

12

) ,− lu

2
(
1 + l3

12

)]T and Cz := hS , (22)

and we observe that B ∈ L(C,X ) and C ∈ L(X ,C).
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Ideas about the second Theorem

We have the following result where C0 denotes the open right-half
plane

C0 := {s ∈ C : Re s > 0}. (23)

Proposition
The resolvent set ρ(A) contains C0.
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Proposition
The transfer function of the system (1)-(8) is given by

G (s) :=
1(

1 + l3

12

)
s2 + l2

2 s
√
1 + µs + µls + l

(s ∈ C0). (24)

Lemma
Let F be the function defined by

F (s) =

(
1 +

l3

12

)
s2 +

l2

2
s
√

1 + µs + µls + l , (25)

and let C0 be the open right-half plane, as defined in (23). Then
there exists a neighborhood O of C0 such that F is holomorphic on
O. Moreover, F does not vanish on C0.
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Asymptotic behaviour
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In this work we study the correct version of this model for
vertical displacements of a floating structure,
which now reads:(

1 +
(b − a)3

12

)
ḧS(t) = −(b − a)2

2
F ∗ ḣS(t)

− µ(b − a) ḣS(t)− (b − a) hS(t), (26)

where µ is the viscosity coefficient of the fluid, (b − a) is the width
of the interval I = [a, b] obtained by projecting the floating object
(supposed symmetric around the axis x = 1

2(a + b)) on the flat
horizontal bottom, and E = R \ [a, b] denotes the viscous fluid
domain. Moreover, F is the causal distribution with Laplace
transform F̂ (s) =

√
1 + µ s.
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Diffusive representation
Consider the original system, set ḣ := v and z := F ∗ ḣS ,
it can then be viewed as a coupled system

(
1 + l3

12

)
ḧS + z(t) + ḣS + lµhS = 0

v(t) = ḣS(t)
∂tϕ(t, ξ) = −ξϕ(t, ξ) + v(t); ϕ(0, ξ) = 0
z(t) =

∫∞
µ−1 g(ξ)∂tϕ(t, ξ) dξ + 1v(t).

(27)

where

g(ξ) :=
1
π

√
µξ − 1
µξ

, for ξ > 1/µ . (28)
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Proposition
For all (hS ,0, ω0) ∈ C2, the solution of the coupled system (27), with
initial condition (hS ,0, ω0, 0), satisfies

(hS , ḣS , ϕ)(t)→t→∞ 0 in C2 × H̃ ,

where

H̃ =

{
ϕ ∈ L2loc

(
R+, dg

)
,

∫ ∞
0

ξ|ϕ|2dg(ξ) <∞
}
.
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Asymptotic behaviour (special case)

Proposition
If all the poles sk of the transfer function lie in the left halfplane
<(s) < − 1

µ , then the asymptotic behaviour of the solution hS of the
system (27) reads

hS(t) ∼ K e−
t
µ t−3/2 , as t → +∞ .
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Analytical solution
Case µ = 0:

hS(t) = (C1 cos(ωdt) + C2 sin(ωdt)) e−δt , (29)

when B2 < 4Al , where

δ =
B

2A
, ω0 =

√
l

A
, ωd =

√
ω2
0 − δ2 =

√
4Al − B2

2A
, (30)

are the damping coefficient, the undamped natural angular frequency
and the damped angular frequency, respectively. The constants C1
and C2, are given by

C1 = h0, C2 =
ḣ0 + h0δ

ωd
=

h0B + 2ḣ0A√
4Al − B2

. (31)
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Case µ > 0

Theorem
The solution of the GFDE is given by

hS(t) = exp(−ε t)

(
4∑

i=1

Θi E 1
2

(λi , t)

)
, (32)

with constants Θi := ri h0 + ṙi ḣ0.
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Asymptotic behaviour (general case)

Theorem (Matignon 1996)
We have the following asymptotic equivalents for Eα (λ, t) as t
reaches +∞ :

I for | arg(λ) |≤ απ2 ,

Eα (λ, t) ∼ 1
α
λ

1
α−1eλ

1
α t , (33)

I for | arg(λ) |> απ2 ,

Eα (λ, t) ∼ α

Γ(1− α)
λ−2t−1−α. (34)
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I The case of Proposition 4 is
recovered as a special case, which occurs
if and only if all the roots λi fulfill | arg(λi) |> π

4 .

I Otherwise, if but one λ0 lies in the sector | arg(λ) |< π
4 , then a

very different asymptotic behaviour is to be found, namely a
purely exponentially decaying one, with decay rate
δ := ε−<(λ2) > 0 (it must be positive indeed, since
asymptotic stability has already been proved in Proposition 3).
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Theorem
I If there is at least one root with <(λj) > |=(λj)|

then the asymptotics is of exponential type, with rate
δ(µ) := 1

µ −<(λ2) > 0

hS(t) ∼
∑
j

Cj exp((λ2j −
1
µ

) t), (35)

I or all the four roots lie in | arg(λ) |> π
4 , then the asymptotics is

of mixed type,

hS(t) ∼ C t−
3
2 exp(−1

µ
t) . (36)
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(a) (b)

Figure: Evolution of the four roots λi in the σ-plane, as a function of
µ. (a): global picture with 4 trajectories. (b): zoom in the right-half
plane <(σ) > 0, 2 trajectories crossing the segment <(λ) = |=(λ)|
for a critical value µc of the viscosity.
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Figure: Damping rate δ(µ) = <(λ2)− 1
µ as a function of viscosity µ
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Thank you !
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October 12

Day of indigenous resistance

Figure: Lautaro, leader of the Mapuche resistance.
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