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Introduction to
isentropic gas dynamics on networks



Applications

Many problems can be modeled by hyperbolic PDEs on networks:
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Isentropic gas dynamics

Isentropic gas equations

!
∂tρ+ ∂xρu = 0
∂tρu + ∂x(ρu

2 + κργ) = 0
for t, x ,

with density ρ ≥ 0, flow velocity u ∈ R and constants κ > 0, 1 < γ < 3.

The system has several useful properties:

a large class of entropy pairs (η,G) (η convex, G ′ = η′F ′);

globally defined Riemann invariants ω1,2 = u ± aγρ
(γ−1)/2;

a kinetic model.

These properties allow us to use some tools which are not available for general
hyperbolic systems.
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Coupling conditions in the literature

We couple i = 1, . . . , d weak solutions

∂tU
i + ∂xF (U

i ) = 0, t > 0, x > 0,

at the junction x = 0 by a suitable condition.

t 

x UϬ 

Ub 

Physically reasonable: conservation of mass at the junction
d"

i=1

Ai (ρu)i (t, 0) = 0, for a.e. t > 0. (M)

Additional conditions: (to obtain unique solutions)
Equality of dynamic pressure [R. M. Colombo, M. Garavello, 2006]:

(ρu2 + κργ)i (t, 0) = (ρu2 + κργ)j(t, 0) for a.e. t > 0. (PD)

Equality of pressure [M. K. Banda, M. Herty, A. Klar, 2006]:

(ργ)i (t, 0) = (ργ)j(t, 0) for a.e. t > 0. (P)

Equality of stagnation enthalpy [G. A. Reigstad, 2015]:

(
u2

2
+

γκ

γ − 1
ργ−1)i (t, 0) = (

u2

2
+

γκ

γ − 1
ργ−1)j(t, 0) for a.e. t > 0. (H)
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Known results and remarks

A general existence theorem for the generalized Cauchy problem based on
wave-front tracking [R. M. Colombo, M. Herty, V. Sachers, 2008] ensures
existence of solutions with every coupling condition on the last slide.

This result requires subsonic initial data which is close to a stationary solution and
with sufficiently small total variation.

We will use an approach based on completely different methods:

kinetic approach to approximate the solutions;

compensated compactness to pass to the limit in the interior of the domain;

formal derivation of a new coupling condition.

Therefore, we impose initial data with finite total mass and energy and an
L∞-bound.
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A Kinetic BGK model and its relaxation limit



A kinetic BGK model

BGK model for isentropic gas dynamics (F. Bouchut, 1999)

Let !
∂t f

i
0 + ξ∂x f

i
0 = 1

ε
(M0[f

i ]− f i0),

∂t f
i
1 + ξ∂x f

i
1 = 1

ε
(M1[f

i ]− f i1),
for t > 0, x > 0,

with f i = f i (t, x , ξ) ∈ R2, f i0 ≥ 0.

To define the Maxwellian M[f ], we introduce the macroscopic variables
#

ρf
ρf uf

$
=

%

R
f (ξ) dξ.

We define

M[f ](ξ) = M(ρf , uf , ξ) =

#
χ(ρf , ξ − uf )

((1 − θ)uf + θξ)χ(ρf , ξ − uf )

$
,

χ(ρ, ξ) = cγ,κ(a
2
γρ

γ−1 − ξ2)λ+.
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Kinetic and macroscopic entropies

Convex kinetic entropies can be defined by the formula

HS(f , ξ) =

%

R
Φ(f , ξ, v) S(v) dv , for convex S .

(Φ is a positive kernel with an explicit formula).

We obtain a macroscopic entropy pair by

ηS(ρ, u) =

%

R
HS(M(ρ, u, ξ), ξ) dξ,

GS(ρ, u) =

%

R
ξHS(M(ρ, u, ξ), ξ) dξ.

Note: S(v) = v2/2 leads to the physical energy and energy flux.
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Kinetic coupling condition

We couple the kinetic equations by a coupling function

f i (t, x = 0, ξ) = Ψi [f j(t, x = 0,R−), j = 1, ..., d ](ξ), t > 0, ξ > 0.

It is physically reasonable to assume that mass is conserved

d"

i=1

Ai

&% ∞

0
ξΨi

0[g ](ξ) dξ +
% 0

−∞
ξg i

0(ξ) dξ
'
= 0,

and energy is non-increasing

d"

i=1

Ai

&% ∞

0
ξHv2/2(Ψ

i [t, g ](ξ), ξ) dξ +
% 0

−∞
ξHv2/2(g

i (ξ), ξ) dξ
'
≤ 0.

at the junction. Furthermore, we will need a continuity assumption on Ψ.

The existence of solutions to the kinetic model on networks can be shown if the
inital total mass and energy are finite [Y. H., 2020].
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Interior relaxation

Let f iε solve the kinetic BGK model with ε > 0. We aim to justify the limit ε → 0
by the method of compensated compactness.
Therefore, we use the additional assumption

d"

i=1

Ai

&% ∞

0
ξHS(Ψ

i [g ](ξ), ξ) dξ +
% 0

−∞
ξHS(g

i (ξ), ξ) dξ
'
≤ 0,

for every convex S with S(v) = S(−v) and require that the kinetic Riemann
invariants ω1,2(ρf , uf )(x = 0) of the initial data are bounded in L∞.

This leads to the following result.

Theorem (Y. H., 2020)

(ρ, ρu)iε =
(
R f

i
ε dξ are uniformly bounded in L∞

t,x . After passing if necessary to a
subsequence, (ρ, ρu)iε converge a.e. in t, x > 0 to an entropy solution (ρ, ρu)i .

The proof is based on the method of compensated compactness. See [P.-L. Lions,
B. Perthame, P. E. Souganidis, 1996] and [F. Berthelin, F. Bouchut, 2002].
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A maximum energy dissipation principle at the
junction



Kinetic coupling with maximum energy dissipation

Question: Which coupling condition is the physically correct one?

Our approach: We determine the coupling condition which conserves mass and
dissipates as most energy as possible. For given data g(ξ), ξ < 0, we solve

inf
d"

i=1

Ai

% ∞

0
ξHv2/2(Ψ

i (ξ), ξ) dξ

s.t.
d"

i=1

Ai

&% ∞

0
ξΨi

0(ξ) dξ +
% 0

−∞
ξg i

0(ξ) dξ
'
= 0

The solution of this optimization problem is given by

Ψi (ξ) = M(ρ∗, u∗ = 0, ξ),

where ρ∗ > 0 is the unique density which ensures conservation of mass.
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Kinetic coupling with maximum energy dissipation

Proof.
Using the sub-differential inequality

Hv2/2(f , ξ) ≥ Hv2/2(M(ρ, u, ξ), ξ) + η′
v2/2(ρ, u) · (f −M(ρ, u, ξ))

leads to

d"

i=1

Ai

% ∞

0
ξHv2/2(Ψ

i (ξ), ξ) dξ

≥
d"

i=1

Ai

% ∞

0
ξHv2/2(M(ρ∗, 0, ξ), ξ) dξ

+

#
(η′

v2/2(ρ∗, 0))0
0

$
·
#

0)d
i=1 A

i
(∞
0 ξ

*
Ψi

1(ξ)−M1(ρ∗, 0, ξ)
+

dξ

$

=
d"

i=1

Ai

% ∞

0
ξHv2/2(M(ρ∗, 0, ξ), ξ) dξ.
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Formal derivation of a macroscopic coupling condition

Using the sub-differential inequality for HS and assuming that ρε∗ → ρ∗ in L1
loc

allows to prove

GS(ρi , ui )(t, 0)− GS(ρ∗(t), 0)− η′
S(ρ∗(t), 0)

,
F (ρi , ui )(t, 0)− F (ρ∗(t), 0)

-
≤ 0,

for every convex S .

Compare this inequality with

Entropy formulation of boundary conditions [F. Dubois, P. LeFloch, 1988]

For boundary data (ρb(t), ub(t)), we require for every convex S :

GS(ρ, u)(t, 0)−GS(ρ
b(t), ub(t))−η′

S(ρ
b(t), ub(t))

,
F (ρ, u)(t, 0)− F (ρb(t), ub(t))

-
≤ 0 for a.e. t > 0.

Problem: Both conditions do not lead to uniqueness of self-similar Lax solutions to
the generalized Riemann problem.
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How to tackle the non-uniqueness problem?

Possible ways to solve the problem

boundary layer equations produced by different approximation techniques
[K. T. Joseph, P. G. LeFloch, 1999],

using the stronger Riemann problem formulation of boundary conditions.

The attainable boundary states with (ρb, ub) = (1, 0):

Superset of states satisfying the
entropy formulation Riemann problem formulation

We follow the Riemann problem approach and extend it to the network case.
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A new coupling condition

We construct solutions to the generalized Riemann problem in the following way:

1. We consider the self-similar Lax solutions (ρi , ui ) to the Riemann problems
with initial data

(ρi0, u
i
0)(x) =

!
(ρ∗, 0)(x) x < 0
(ρi0, u

i
0)(x) x > 0

2. The artificial density ρ∗ ≥ 0 is chosen such that

d"

i=1

Ai (ρu)i (t, 0+) = 0.

3. We restrict the obtained functions to x > 0 and obtain the desired solutions.

Theorem (Y. H., M. Herty, M. Westdickenberg, 2020)

For every (ρi0, u
i
0) ∈ R+ × R there exists a unique solution (ρi , ui ) to the

generalized Riemann problem.

The proof is based on an extension of methods used by Reigstad (2015).
The idea is to leave out the conservation of mass first. We prove monotonicity of)d

i=1 A
i (ρu)i (t, 0) w.r.t. ρ∗ and conclude with the intermediate value theorem.
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A new coupling condition

The generalized Riemann problem defines implicitly a condition on
(ρi , ui )(t, 0), i = 1, . . . , d . The implicit condition is used to define solutions to the
generalized Cauchy problem.

Existence of solutions to the generalized Cauchy problem in the BV -setting with
subsonic initial data can be shown by applying a general existence result.

The new coupling condition satisfies several (physical) properties:

Existence and uniqueness of solutions to the generalized Riemann problem
holds globally in state space.

Energy is dissipated at the junction.

A maximum principle on the Riemann invariants.

Numerical results regarding the produced wave types (next slide).
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Comparison of the coupling conditions



Comparison of energy dissipation/production at the junction

We consider the behavior of the energy at the junction

d"

i=1

AiGv2/2(ρ
i , ui )(t, 0+)

.
/0

/1

≤ 0 energy dissipation,
= 0 energy conservation,
≥ 0 energy production,

and obtain the following results for the different conditions

Equal
density

energy dissipation
and production possible

Equal
momentum flux

energy dissipation
and production possible

Equal
stagnation enthalpy conservation of energy

Equal
artificial density energy dissipation
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Comparison of numerical results

We choose initial data which lead to a stationary solution to the equal density
coupling condition (conservation of mass + equal density).

pipeline ρ0,k ρ0,ku0,k
1 +1.0000 −1.0000
2 +1.0000 +0.5000
3 +1.0000 +0.5000 Ɛhock 

The different coupling conditions lead to the following qualitative waves types:

pipeline Equal
density

Equal
momentum flux

Equal
stagnation enthalpy

Equal
artificial density

1 no waves rarefaction wave rarefaction wave shock
2 no waves shock shock rarefaction wave
3 no waves shock shock rarefaction wave
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Comparison of numerical results

We obtain the following numerical results for the traces at the junction:

Equal
density

Equal
momentum

flux

Equal
stagnation
enthalpy

Equal
artificial
density

pipeline ρ̄k ρ̄k ūk ρ̄k ρ̄k ūk ρ̄k ρ̄k ūk ρ̄k ρ̄k ūk
1 +1.000 −1.000 +0.896 −1.198 +0.852 −1.267 +1.178 −0.542
2 +1.000 +0.500 +1.027 +0.600 +1.036 +0.634 +0.935 +0.271
3 +1.000 +0.500 +1.027 +0.600 +1.036 +0.634 +0.935 +0.271

Energy
production/
dissipation

−7.500 × 10−2 −1.725 × 10−2 ≈ 0 −1.385 × 10−1
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Thank you for your attention!



Comparison of level sets

The different coupling conditions produce the following level-sets in the state space.

Equal pressure

Equal momentum flux

Equal stagnation enthalpy

Artificial density
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