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ẋN,k(t) =

1
N

N∑
i=1

K(xN,i(t) − xN,k(t)) +
1

M

M∑
j=1

f(yj(t) − xN,k(t))

ẏm(t) =
1
N

N∑
i=1

g(xN,i(t) − ym(t)) + um(t)

A possible model
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inf
u
ψ
(
xN,1(T ), ..., xN,N (T )

)

A possible model
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It is sensitive to changes in the number of agents.

As N grows, solving optimal control problems associated to this models
becomes computationally unfeasible.

Non-controllable agents are indistinguishable and thus specifying a
goal by means of a cost functional to be optimized is not always possible.
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{
ẋN,k(t) = F̂N (xN (t), y(t))
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Rd

K(ζ − x)dµ(ζ) + 1
M

M∑
m=1

f(ym − x) G[µ](y) =
∫

Rd

g(ζ − y)dµ(ζ).

The mean field approach

5/18 Enrico Sartor Introduction to the problem



{
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P2(Rn) :=
{

µ ∈ P(Rn) :
∫

Rn

∥x∥2
dµ(x) < +∞

}

W2(µ, ν) := inf
γ∈Γ(µ,ν)

({∫
Rn×Rn

∥x − y∥2
dγ(x, y)

}) 1
2

Definition
We say that a function φ : P2(Rn) → R is Wasserstein differentiable at µ if there exists ∇µφ[µ] ∈
L2(Rn,Rn, µ) such that

φ(ν) = φ(µ) +
∫

Rn×Rn

⟨∇µφ[µ](x), y − x⟩dγ(x, y) + o
(
W2(µ, ν)

)
(1)

for every ν ∈ P2(Rd) and every optimal coupling γ ∈ Γo
2(µ, ν). In that case we say that ∇µφ[µ] is a

Wasserstein gradient of φ at µ.

6/18 Enrico Sartor Background material

P2(Rn) and its differentiable structure

6/18 Enrico Sartor Background material



P2(Rn) :=
{

µ ∈ P(Rn) :
∫

Rn

∥x∥2
dµ(x) < +∞

}

W2(µ, ν) := inf
γ∈Γ(µ,ν)

({∫
Rn×Rn

∥x − y∥2
dγ(x, y)

}) 1
2

Definition
We say that a function φ : P2(Rn) → R is Wasserstein differentiable at µ if there exists ∇µφ[µ] ∈
L2(Rn,Rn, µ) such that

φ(ν) = φ(µ) +
∫

Rn×Rn

⟨∇µφ[µ](x), y − x⟩dγ(x, y) + o
(
W2(µ, ν)

)
(1)

for every ν ∈ P2(Rd) and every optimal coupling γ ∈ Γo
2(µ, ν). In that case we say that ∇µφ[µ] is a

Wasserstein gradient of φ at µ.

P2(Rn) and its differentiable structure

6/18 Enrico Sartor Background material



P2(Rn) :=
{

µ ∈ P(Rn) :
∫

Rn

∥x∥2
dµ(x) < +∞

}

W2(µ, ν) := inf
γ∈Γ(µ,ν)

({∫
Rn×Rn

∥x − y∥2
dγ(x, y)

}) 1
2

Definition
We say that a function φ : P2(Rn) → R is Wasserstein differentiable at µ if there exists ∇µφ[µ] ∈
L2(Rn,Rn, µ) such that

φ(ν) = φ(µ) +
∫

Rn×Rn

⟨∇µφ[µ](x), y − x⟩dγ(x, y) + o
(
W2(µ, ν)

)
(1)

for every ν ∈ P2(Rd) and every optimal coupling γ ∈ Γo
2(µ, ν). In that case we say that ∇µφ[µ] is a

Wasserstein gradient of φ at µ.

P2(Rn) and its differentiable structure

6/18 Enrico Sartor Background material



P2(Rn) :=
{

µ ∈ P(Rn) :
∫

Rn

∥x∥2
dµ(x) < +∞

}

W2(µ, ν) := inf
γ∈Γ(µ,ν)

({∫
Rn×Rn

∥x − y∥2
dγ(x, y)

}) 1
2

Definition
We say that a function φ : P2(Rn) → R is Wasserstein differentiable at µ if there exists ∇µφ[µ] ∈
L2(Rn,Rn, µ) such that

φ(ν) = φ(µ) +
∫

Rn×Rn

⟨∇µφ[µ](x), y − x⟩dγ(x, y) + o
(
W2(µ, ν)

)
(1)

for every ν ∈ P2(Rd) and every optimal coupling γ ∈ Γo
2(µ, ν).

In that case we say that ∇µφ[µ] is a
Wasserstein gradient of φ at µ.

P2(Rn) and its differentiable structure

6/18 Enrico Sartor Background material



P2(Rn) :=
{

µ ∈ P(Rn) :
∫

Rn

∥x∥2
dµ(x) < +∞

}

W2(µ, ν) := inf
γ∈Γ(µ,ν)

({∫
Rn×Rn

∥x − y∥2
dγ(x, y)

}) 1
2

Definition
We say that a function φ : P2(Rn) → R is Wasserstein differentiable at µ if there exists ∇µφ[µ] ∈
L2(Rn,Rn, µ) such that

φ(ν) = φ(µ) +
∫

Rn×Rn

⟨∇µφ[µ](x), y − x⟩dγ(x, y) + o
(
W2(µ, ν)

)
(1)

for every ν ∈ P2(Rd) and every optimal coupling γ ∈ Γo
2(µ, ν). In that case we say that ∇µφ[µ] is a

Wasserstein gradient of φ at µ.

P2(Rn) and its differentiable structure

6/18 Enrico Sartor Background material



7/18 Enrico Sartor Background material

Two examples of differentiable functionals

7/18 Enrico Sartor Background material



Theorem (Expected values)
If ψ̂ : Rn → R is sufficiently regular, then the map

µ 7→ ψ[µ] =
∫

Rd

ψ̂(x)dµ(x)

is everywhere Wasserstein differentiable with constant differential

∇µψ[µ] = ∇xψ̂.

Two examples of differentiable functionals
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Theorem (Wasserstein distance)
Let µ̂ ∈ P2(Rd) be a fixed reference probability measure. Then, if µ ∈ P2(Rd) is absolutely continuous
with respect to the Lebesgue measure, the map

1
2W2(·, µ̂)2 : P2(Rd) → R

is Wasserstein differentiable at µ with Wasserstein differential Id − T , where T is the unique optimal
transport map between µ and µ̂.

Two examples of differentiable functionals
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Definition
A non-local continuity equation is a partial differential equation of the form

∂tµ(t) + ∇x ·
(
V [µ(t)]µ(t)

)
= 0,

where the vector field V : [0, T ] × Rn × Pc(Rn) → Rn depends also on the distribution µ. Given
µ0 ∈ Pc(Rn) we say that a continuous curve µ : [0, T ] → Pc(Rn) is a: distributional or Eulerian
solution of the corresponding Cauchy problem if µ(0) = µ0 and for every ξ ∈ C∞

c (Rn) it holds

d

dt

∫
Rn

ξ(x)dµ(t)(x) =
∫

Rd

∇xξ(x) · V [µ(t)](t, x)dµ(x);
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The optimal control problem



{
∂tµ(t) + ∇x ·

(
F [µ(t)](t, y(t), ·)µ(t)

)
= 0

ẏ(t) = G[µ(t)](t, y(t)) + u(t)

Definition
Let u ∈ L1([0, T ], U), µ0 ∈ Pc(Rd) and y0 ∈ RdM be given. We say that t 7→ (µ(t),y(t)) is a solution if
the following conditions hold:

• µ(0) = µ0 and y(0) = y0;
• µ : [0, T ] → Pc(Rd) is a distributional solution of the non-local continuity equation

∂tµ(t) + ∇x ·
(
F [µ(t)](y(t), ·)µ(t)

)
= 0,

• y : [0, T ] → RdM is a Carathéodory solution of

ẏ(t) = G[µ(t)](y(t)) + u(t)
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ẏ(t) = G[µ(t)](t, y(t)) + u(t)

Definition
Let u ∈ L1([0, T ], U), µ0 ∈ Pc(Rd) and y0 ∈ RdM be given.

We say that t 7→ (µ(t),y(t)) is a solution if
the following conditions hold:

• µ(0) = µ0 and y(0) = y0;
• µ : [0, T ] → Pc(Rd) is a distributional solution of the non-local continuity equation

∂tµ(t) + ∇x ·
(
F [µ(t)](y(t), ·)µ(t)

)
= 0,

• y : [0, T ] → RdM is a Carathéodory solution of
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ẏ(t) = G[µ(t)](t, y(t)) + u(t)

Definition
Let u ∈ L1([0, T ], U), µ0 ∈ Pc(Rd) and y0 ∈ RdM be given. We say that t 7→ (µ(t),y(t)) is a solution if
the following conditions hold:

• µ(0) = µ0 and y(0) = y0;

• µ : [0, T ] → Pc(Rd) is a distributional solution of the non-local continuity equation

∂tµ(t) + ∇x ·
(
F [µ(t)](y(t), ·)µ(t)

)
= 0,

• y : [0, T ] → RdM is a Carathéodory solution of
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Theorem
If we assume that:

- F,G are Lipschitz continuous on compact sets;
- there exists C > 0 such that

∥F [µ](t, x, y)∥d ≤ C(1 + ∥x∥d + ∥y∥c + M∞(µ)) and ∥G[µ](t, y)∥c ≤ C(1 + ∥y∥c + M∞(µ))

then
• every Cauchy problem admits a unique solution;
• solutions depend continuously on initial conditions and control laws;
• if moreover F and G are differentiable with respect to each variable with continuous differentials,

we have differentiable dependence on initial conditions.
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U := L1(
[0, T ], U

)

inf
u∈U

J(µ0, y0, u) = inf
u∈U

{
ψ

(
µ(µ0, y0, u;T )

)}
(OCP)

Theorem (Existence of optimal controls)
If ψ : P(Rn) → R is lower semicontinuous, then OCP admits a solution.
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Theorem
Let u∗ be an optimal control for our coupled system and (µ∗,y∗) be the corresponding optimal
trajectory.

If ψ is Wasserstein differentiable at µ∗(T ) with essentially bounded Wasserstein gradient,
then there exist

q∗ : [0, T ] → Rc and ν∗ : [0, T ] → Pc(Rd × Rd)
such that (ν∗,y∗,q∗) solves the non-local adjoint equation on Rd × Rd with boundary conditions

y∗(0) = y0 and π1
∗ν∗(0) = µ0, q∗(T ) = 0 and π2

∗ν∗(T ) = ∇µψ[µ∗(T )]∗µ∗(T ),

and
π1

∗ν∗(t) = µ∗(t),
and in order that the optimality condition

q∗(t) · u∗(t) = min
ω∈U

q∗(t) · ω.
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• needle variations:

uε(t) =
{
ω if t ∈ [τ − ε, τ ]
u∗(t) otherwise

• optimality conditions:
ψ(µε(T )) − ψ(µ∗(T ))

ε
≥ 0∫

Rd

∇µψ[µ∗(T )](Φ∗
τ (T, x)) · w(T, x)dµ∗(τ)(x) ≥ 0

• the adjoint equation property:

t 7→
∫

R2d

p · w(t,Φ∗
τ (t, x))dν∗(t)(x, p) + q∗(t) · v(t),
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The mean-field interpretation
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ψ[µ] :=
∫

Rd

ψ̂(x)dµ(x),

A commutative diagram
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ψ(µN (T ;u)) = 1
N

N∑
n=1

ψ̂(xN,n(T ;u)).

A commutative diagram

13/17 Enrico Sartor Mean-field interpretation



ψ(µN (T ;u)) = 1
N

N∑
n=1

ψ̂(xN,n(T ;u)).

A commutative diagram

13/17 Enrico Sartor Mean-field interpretation



ψ(µN (T ;u)) = 1
N

N∑
n=1

ψ̂(xN,n(T ;u)).

A commutative diagram

13/17 Enrico Sartor Mean-field interpretation



ψ(µN (T ;u)) = 1
N

N∑
n=1

ψ̂(xN,n(T ;u)).

A commutative diagram

13/17 Enrico Sartor Mean-field interpretation



ψ(µN (T ;u)) = 1
N

N∑
n=1

ψ̂(xN,n(T ;u)).

A commutative diagram

13/17 Enrico Sartor Mean-field interpretation



ψ(µN (T ;u)) = 1
N

N∑
n=1

ψ̂(xN,n(T ;u)).

A commutative diagram

13/17 Enrico Sartor Mean-field interpretation



ψ(µN (T )) = inf
γ

∫
Rd×Rd

∥x− y∥2dγ(x, y)
∣∣∣∣
(x1(T ),...,xN (T ))

,

with

γ ∈ Γ
(

1
N

N∑
n=1

δxn , µ̂

)
.

Theorem
If the reference probability measure µ̂ has compact support, u∗ is an optimal control for the coupled
PDE-ODE system and (ν∗,y∗,q∗) is the corresponding optimal trajectory, then

M∑
m=1

qm · um(t) = min
ωm∈U

M∑
m=1

qm(t) · ωm

for almost every t ∈ [0, T ].
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Theorem
If there exists R > 0 such that M∞

(
µN

0
)
,M∞

(
µ∞

0
)

≤ R, then there exists a constant C > 0
depending only on T , the interaction kernels and on R such that, if u∗ is an optimal solution for the
mean-field problem, then

JN (u∗) ≤ inf
u∈U

J∞(u) + CW2(µN
0 , µ

∞
0 )

15/17 Enrico Sartor Mean-field interpretation

Performance guarantees

15/17 Enrico Sartor Mean-field interpretation



Theorem
If there exists R > 0 such that M∞

(
µN

0
)
,M∞

(
µ∞

0
)

≤ R, then there exists a constant C > 0
depending only on T , the interaction kernels and on R such that, if u∗ is an optimal solution for the
mean-field problem, then

JN (u∗) ≤ inf
u∈U

J∞(u) + CW2(µN
0 , µ

∞
0 )

Performance guarantees

15/17 Enrico Sartor Mean-field interpretation



Conclusions



• THE PROBLEM: Optimal control of a system
made of a large number of interacting agents by
controlling only a few of them.

• THE MODEL: A coupled PDE-ODE system which
arises from the mean-field limit of the non-controllable
agents.

• THE RESULT: First order optimality conditions à la
Pontryagin which holds for general non-local continuity
equations coupled with a controlled ODE.
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Our result allow us to use terminal costs with low regularity,
one above all being the Wasserstein distance from a refer-
ence probability distribution, which is one of the most natural
terminal cost choices.

We can work with rather general coupled PDE-ODE systems,
not only those arising as mean-field limits of finite dimensional
ones.

We can keep track of the time evolution of the probability
distributions rather than having to follow each single agent
state and costate.

Optimality conditions are finite dimensional and don’t scale
with the discretization as they depend only on the number of
the controllable agents which is fixed.
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Thank you for the attention!
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