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Improved image quality

Shorter scans

Motion

Time resolved scans

Feng MRM 2016, Stern ISMRM Sedona 2020



MRI data acquisition

Forward problem

Au=f




MRI data acquisition

Forward problem Inverse problem Numerical optimization

Au=f u=A"1f min||Au—f||§




MRI data acqusition: Fourier space

fi(kx, ky) ://Ck(x,y)e_i(kxx+kyy)u(x,y)dxdy

fi (kx, ky) = Z Z ck(x, y)e_i(kxx+kyy)u(x, y)dxdy
f = Au




Image reconstruction

fi(kx, ky) = //Ck(X,y)e_i(kxx+kyy)u(x,y)dxdy

fi (kx, ky) = Z Z ck(x, y)e_i(kxx+kyy)u(x, y)dxdy
f = Au

FOvV




Image reconstruction: Inverse problem

fi(kx, ky) = //Ck(x,y)e_i(kxx+kyy)u(x,y)dxdy

fi (kx, ky) = Z Z ck(x, y)e_i(kxx+kyy)u(x, y)dxdy
f = Au




Parallel Imaging: 1990s to 2000s

fi(kx: ky) = //Ck(X,y)e_i(kxx+kyy)u(x,y)dxdy

min||Au — f||§

Sodickson MRM 1997
Pruessmann MRM 1999
Pruessmann MRM 2001
Griswold MRM 202



Compressed sensing: Late 2000s

p)
min§||Au — f||§ + R(u)

Lustig MRM 2007



Compressed sensing (38ms per frame)

min||Au — f||2 min||Au — f|[5
+ As||Ws(u)l]1
Knoll MRM 2011 + )\t||\llt(u)||1
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Learning a Variational Model for Compressed Sensing MRI Reconstruction [=

Linstitute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria

and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, N
Technology GmbH, Vienna, Austria

Exploiting deep convolutional neural network for fast magnetic resonance imaging
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ISMRM Workshop on
Machine Learning
14-17 MARCH 2018

Chair:
Greg Zaharchuk, M.D., Ph.D., Stanford University, Stanford, CA, USA

Machine Learning for Medical Image M |G
Reconstruction (MLMIR)
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Machine Learning for Medical Image Reconstruction @)

ABSTRACT

Machine leaming and artificial intelligence are expected to play an increasingly important role in our healthcare system, and in particular in imaging. While these
are usually i with that aim to extract diagnostic information from medical images, research activities with the goal of using

‘machine learning for image ion have picked up signif over the last two years. The presentations in this session will cover novel core machine

leamning like model it and learning algorithi as well as ication to MRI and CT reconstruction.

More on!

Organizer and Chair : Dr. Florian Knoll = 4
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Machine Learning
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Chair: Greg Zaharchuk, M.D., Ph.D., Stanford University, Stanford, CA, USA
Vice-Chair: Florian Knoll, Ph.D., New York University School of Medicine,
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Machine Learning for Medical Image Reconstruction (MLMIR)
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Smarter Image: Deep Learning Software
Is Changing the Game In Magnetic
Resonance Imaging

Jay Stowe
December 01, 2020

Mobilizing the power of networks

Conventional

Philips SmartSpeed engine

3D Cartesian
Variable density

PHILIPS

SmartSpeed

Science brief

Coil sensitivity (5)




2022

SubteMR™ is asoftware [EREEIERERM
solution that improves the
quality of faster MRI images

with increased resolution and
denoising.

As Acquired

Shorter scans,
Exceptional quality

A New Breeze to MR Imaging

> Request SwiftMR Demo

MRI scans, in just half the time

TR: 5500 TR: 5500
TE: 146 Sagittal TE: 146 Sagittal
Thk: 1.4mm T2-FLAIR Thk: 1.4mm T2-FLAIR




Back to compressed sensing

L A
Full led Zero-fill R=4 :
ully sample ero-filling mu|n§||Au— f||§—|‘R(U)

Exploit inherent redunancy in images

Sparsifying transform

Nonlinear reconstruction

Lustig MRM 2007



Machine learning for image reconstruction

o A
Full led  Zero-filing R=4 - E
ully sample ero-filling mum_||Au — f||§ + | pi(K;u)
: 1

Separate artifacts from image content

Sparsifying transform — Spatial filter

kernels
: V. H Vy, Kius kixu
Hammernik ISMRM 2016 _ _
Hammernik MRM 2018 L1 norm — Potential functions

Knoll IEEE SPM 2020



Numerical implementation

- |- |- B

reconstruction

0

A
Ur = Ug_—1 — 9 (EHAUt—l — f||§ +R(Ut—1)>

input

Landweber Amer J Math 1951



Learning the numerical optimization

B oo I oo S o st

_ reconstruction
Learn T gradient descent (GD) steps

N
ue = ue1— Y Kol o(Kieue—1) — AeA™ (Augq — f)
input ’




Neural network model for reconstruction

—> GDT
A lf) VY reconstruction
klRE! / _>!k1RE i
IMﬁ ﬂ‘lkllM J
kNREE E kNRE_T"'
kN,Mﬂ :l N.IM

input

N
Ug = U1 — Z K,C,O, t(Kl tUt— 1) )‘tAH(A”t—l - f)

Hammernik MRM 2018



Neural network training

reconstruction error

S O

1 i

— T 2 iy

Lr(Or) = S E :Hus (OR) — urer s||2 IR reference
s=1 L S
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input reconstruction



input Reconstructing new test data  reconstruction

~ N - v

Zero filling initialization

f — GD1 —>




Some reconstruction examples, R=4

Pl PI-CS Learning

F57

Hammernik, MRM 2018



Some reconstruction examples, R=4

Pl PI-CS Learning

Hammernik, ISMRM 2016



Examples from other research sites

Compressed Sensing Deep Learning

Improved Imoaqe Sharpness

Chen Radiology 2018 Slides courtesy of Joseph Cheng (Stanford)



Heatthiners - Dynamic Cardiac MR ﬁ

Zero-filled Ground Truth Variational Network (2D) Variational Network (2D+t)

R 2D 2D+t
8x 0.84 0.97
12x  0.71 0.95

SSIM scores
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2-Shot EPI Diffusion MRl at 7T
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In-plane resolution 1.4 mm3, in-plane acc=3, pf=6/8, 126 diffusion encodings, tacg=15min
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Accelerated MRCP

GRAPPA R=3 SENSE R=6 VN R=6

Recon




Performance at progressive acceleration

normal DNN-based Reconstruction

\

/ 2X 4X 6X 8X 12X 16X 24X 32X 64X 100X \

@@@@@@@@

Zero-filled Reconstructlon

1OOX

Murrel Radiology Al 2022



Performance at progressive acceleration

abnormal DNN-based Reconstruction
( P 4X 6X 8X 12X 16X 24X 32X 64X 100X \
100X }

Zero-filled Reconstruction

Murrel Radiology Al 2022



Performance at progressive acceleration

abnormal DNN-based Reconstruction

Zero-filled Reconstruction

Murrel Radiology Al 2022



Proceedings of the
National Academy of Science Keyword, Author,
of the United States of America

When does it break?

NEW RESEARCH IN Physical Sciences - Social Sciences

PHYSICAL SCIENCES

On instabilities of deep learning in image
reconstruction and the potential costs of Al

Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C. Hansen
PNAS first published May 11, 2020 https://doi.org/10.1073/pnas. 1907377117

Edited by David L. Donoho, Stanford University, Stanford, GA, and approved March 12, 2020 (received for review June 4,
2019)

Original = T+ Ty Original &

(Ar) AM f(A( MED 50 f(Ai) MED 50 f(A(i + 2))

SoA from A(x +ry) SoA from

SoA from A(x)

SoA from A(x +ry)




Reproducibility?

Evaluation

We tested our algorithm on data from|10 clinical patients
per sequence and reconstructed the whole imaged vol-

Evaluation o ata. Cartesian k-space test data (of Fig. 4) were Zhu Nature 2018
acquired from|a healthy volunteer pn a 3T Siemens Trio MRI scanner with a spin-

Hammernik MRM 2018

Evaluation of the trained VI model was The evaluation was done via a 3-fold cross validation, where
performed in the remaining|27 patients| Chen Radiology 2018 |_ : ; Y |
(nine males, 18 females) in comparison for two folds we|train on 7 subjects then test on 3 subjects,
with the PI(’ZS reconstruction and for the remaining fold we train on 6 subjects and test on 4
’ subjects. While the original sequence has size 256 x 256 x T,

Qin IEEE TMI 2018

The aggregated|test error across 10 subjects

Schlemper IEEE TMI 2018



fastMRI| dataset

« MSK (knee)
— Rawdata (fully sampled): 1398 cases

* Neuro (brain)
— Rawdata (fully sampled): 7002 cases
— Challenge Transfer track:
« GE (211 cases)
 Philips (118 cases)

Knoll Radiology Al 2019
fastmri.med.nyu.edu

facebook
Artificial Intelligence Research



Dataset stats

9000 unique visiors per year

NYU Langone & FAIR FastMRI Dataset

biology image processing m m magnetic resonance imaging neurobiology neuroimaging

961 TB of data downloaded per year

Description

This dataset contains deidentified raw k-space data and DICOM image files of over
1,500 knees and 6,970 brains.

Update Frequency

The dataset is estimated to grow annually to include MRI raw data and imaging for Am aZO n AWS p u bI i C d ata Set g ra nt

additional body structures.

License

Documentation

S— Top 10 of all AWS life sciences

Managed By

datasets (use and downloads)

See all datasets managed by FastMRI.

Contact
Florian Knoll



2019/2020 reconstruction challenges

Home Public Leaderboard Challenge Leaderboard v The Dataset Submission Guidelines v

fastMRI

Accelerating MR Imaging with Al

Latest News

09-17-2020 08-18-2|

& Updates

p The 2020 fastMRI challenge opens for FastMRI |

submissions on October 1 acceleraty @ @
Read More Read Mo

What is fastMRl is a collaborative research project To enable the broader research community to

between Facebook Al Research (FAIR) and participate in this important project, NYU
faStM R I? NYU Langone Health. The aim is to investigate Langone Health has released fully anonymized

the use of Al to make MRI scans up to 10 times raw data and image datasets. Visit our github
faster. repository, which contains baseline
reconstruction models and PyTorch data

By producing accurate images from under- loaders for the fastMRI dataset.

sampled data, Al image reconstruction has the
potential to improve the patient’s experience

Kno” MRM 2020 and to make MRIs accessible for more people. chebook
Muckley TMI 2021 : Artificial Intelligence Research



fastMRI reconstruction challenge

Undersampled Reconstruction Reference

—>  Error <




2019 multi coill R=8 results

Philips & LUMC holykspace AM Almsterdam

Groitarcl trarth Avg rank: 1.286 Avg rank: 2.571 Avg rank: 3.000 Avg rank: 3.143

PI-CS reference

Knoll MRM 2020




Bayesian Uncertainty Estimation

Deterministic Stochastic Stochastic
VN recon VN recon: Mean (32) VN recon: Std (32
. / R

Ground truth Zero filling

Narnhofer IEEE TMI 2021



Clinical integration and dissemination

Output

Block ISMRM Sedona 2016
Sriram MICCAI 2020, fastMRI.org




M26: chondral defects, meniscal tear

Axial T2w Coronal PDw Coronal PDw FS Sag PDw Sag T2w FS

<
o
o
<
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Q)
=
O
=
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Learning

100s
Prospective study, 300 patients enrolled, scan times of accelerated sequences shown




Summary

Introduction to MRI recon

From CS to DL recon

Challenges/Validation




