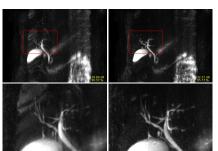
Machine Learning for MR Image Reconstruction: From First Results to Ongoing Challenges

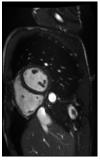
Florian Knoll

Computational Imaging Lab
Department of Artificial Intelligence in Biomedical Engineering
FAU Erlangen-Nuremberg

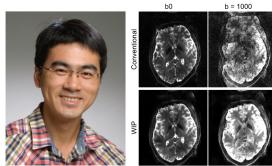
florian.knoll@fau.de https://www.cil.tf.fau.de/

Jinho Kim


Marc Vornehm SIEMENS ...



Nan Lan



Zhengguo Tan

Vanya Saksena

SIEMENS ... Healthineers ...

Soundarya Soundarresan

Jakob Asslaender

Tobias Block Mary Bruno

Hersh Chandarana

Zhengnan Huang

Patricia Johnson

Gene Kim (now at Cornell)

Yvonne Lui

Ali Radmanesh

Michael Recht

Dan Sodickson

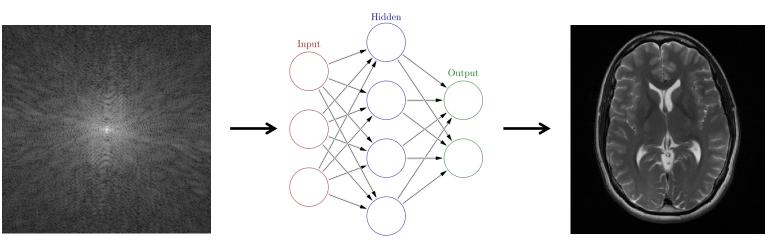
Rouxun Xi

Kerstin Hammernik (now at TUM) Dominik Narnhofer

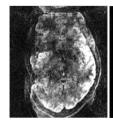
Thomas Pock

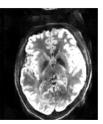
Rizwan Ahmad Orlando Simonetti

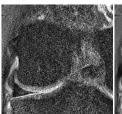
Thomas Benkert
Christian Geppert
Daniel Giese
Gregor Thoermer
Thomas Vahle
Rebecca Ramb



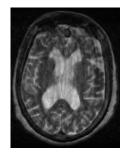
Matt Muckley
Tullie Murell
Anuroop Sriram
Nafissa Yakubova
Jure Zbontar
Larry Zitnick

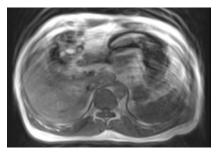



NIH R01 EB024532 NIH P41 EB017183 NIH R21 EB027241 Amazon



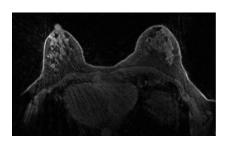
Improved image quality



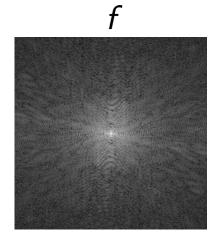


Tan (WIP), Hammernik 2016

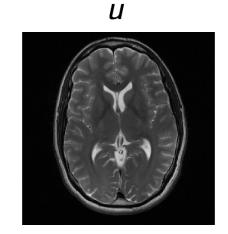
Shorter scans



Nyberg AJNR 2013, Lavdas MRI 2012, Zhuo RG 2006


Time resolved scans

Feng MRM 2016, Stern ISMRM Sedona 2020


MRI data acquisition

Forward problem

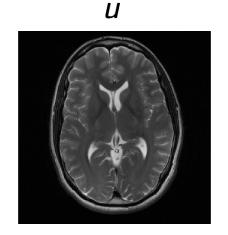
$$Au = f$$

MRI data acquisition

Forward problem

$$Au = f$$

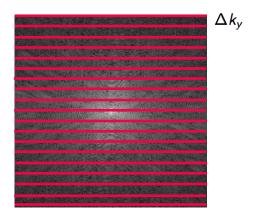
Inverse problem


$$u = A^{-1}f$$

Numerical optimization

$$min||Au - f||_2^2$$

$$\stackrel{A^{-1}}{\longrightarrow}$$



MRI data acqusition: Fourier space

$$f_k(k_x, k_y) = \int \int c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dx dy$$

$$f_k(k_x, k_y) = \sum \sum c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dx dy$$

$$f = Au$$

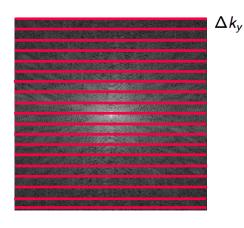
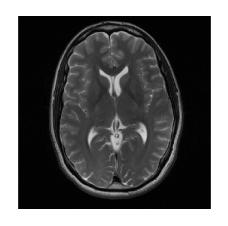


Image reconstruction


$$f_k(k_x, k_y) = \int \int c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dx dy$$

$$f_k(k_x, k_y) = \sum \sum c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dx dy$$

$$f = Au$$

$$u = A^{-1}f$$


FOV

Image reconstruction: Inverse problem

$$f_k(k_x, k_y) = \int \int c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dxdy$$

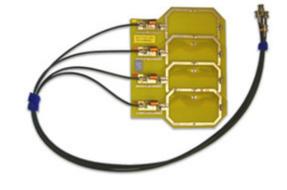
$$f_k(k_x, k_y) = \sum \sum c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dxdy$$

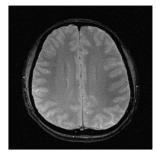
$$f = Au$$

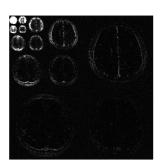
$$u = A^{-1}f$$

 $\frac{FOV}{2}$

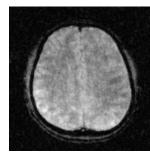

Parallel Imaging: 1990s to 2000s


$$f_k(k_x, k_y) = \int \int c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dx dy$$

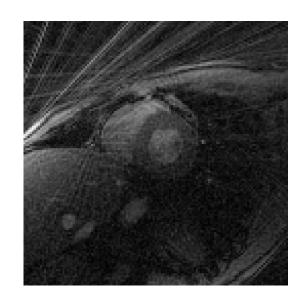



$$min||Au - f||_2^2$$

Sodickson MRM 1997 Pruessmann MRM 1999 Pruessmann MRM 2001 Griswold MRM 202

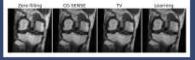

Compressed sensing: Late 2000s


$$\min_{u} \frac{\lambda}{2} ||Au - f||_2^2 + \mathcal{R}(u)$$



Compressed sensing (38ms per frame)

 $min||Au - f||_2^2$

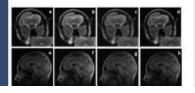


 $min||Au - f||_{2}^{2} + \lambda_{s}||\Psi_{s}(u)||_{1} + \lambda_{t}||\Psi_{t}(u)||_{1}$

ISMRM 2016

08:00

magna cum laude 1088.



Learning a Variational Model for Compressed Sensing MRI Reconstruction 🔼

Kerstin Hammernik¹, Florian Knoll², Daniel K Sodickson², and Thomas Pock^{1,3}

¹Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, NY, Technology GmbH, Vienna, Austria

1778.

Exploiting deep convolutional neural network for fast magnetic resonance imaging

Shanshan Wang¹, Zhenghang Su^{1,2}, Leslie Ying³, Xi Peng¹, and Dong Liang¹

¹Shenzhen Institutes of Advanced Technologies, Shenzhen, China, People's Republic of, ²School of Ir Guangzhou, China, People's Republic of, ³Department of Biomedical Engineering and Department o United States

1801.

<u>Learning-based Reconstruction using Artificial Neural Network for Higher Acceleration</u>

Kinam Kwon¹, Dongchan Kim¹, Hyunseok Seo¹, Jaejin Cho¹, Byungjai Kim¹, and HyunWook Park¹ ¹KAIST, Daejeon, Korea, Republic of

ISMRM 2017

Improving the PI+CS Reconstruction for Highly

Undersampled Multi-contrast MRI using Local Deep

Network

Enhao Gong¹, Greg Zaharchuk², and John Pauly¹

A Study of Simulated Training Data for Image

Reconstruction from Subsampled MR Data using Artificial

Neural Network

kinam kwon¹, Jaejin Cho¹, Seohee So¹, Byungjai Kim¹, Yoonmee Lee¹, kyungtak Min¹, and HyunWook Park¹

ccelerated knee imaging using a deep learning based

Neural Network MR Image Reconstruction with AUTOMAP:

Automated Transform by Manifold Approximation

econstruction

ian Knoll^{1,2}, Kerstin Hammernik³, Elisabeth Garwood^{1,2}, Anna Hirschmann⁴, Leon Rybak^{1,2}, Mary Bruno^{1,2}, Tobias Block^{1,2}, ies Babb^{1,2}. Thomas Pock^{3,5}, Daniel K Sodickson^{1,2}, and Michael P Recht^{1,2}

Bo Zhu^{1,2,3}, Jeremiah Z. Liu^{1,4}, Bruce R. Rosen^{1,2}, and Matthew S. Rosen^{1,2,3}

Undersampling trajectory design for fast MRI with super-

resolution convolutional neural network

Deep learning for fast MR Fingerprinting Reconstruction

Shanshan Wang¹, Taohui Xiao^{1,2}, Sha Tan^{1,3}, Yuanyuan Liu¹, Leslie Ying⁴, and Dong Liang¹

Ouri Cohen^{1,2}, Bo Zhu^{1,2}, and Matthew S. Rosen^{1,3}

Accelerated Projection Reconstru

Deep Residual Learning

Yo Seob Han¹, Dongwook Lee¹, Jaelun Yoo¹, and Jong Chi. 0644

A Deep Cascade of Convolutional Neura

Image Reconstruction

Io Schlemper¹, Iose Caballero, Ioseph V. Hainal², Anthony Price², and Daniel Rueckert³

ng Pattern Design on

Cascaded Convolutional Neural Network (CNN) for

Reconstruction of Undersampled Magnetic Resonance

(MR) Images

Taejoon Eo1, Yohan Jun1, Taeseong Kim1, Jinseong Jang1, and Dosik Hwang1

L2 or not L2: Impact of Loss Function Design for Deep

Learning MRI Reconstruction

learning

Kerstin Hammernik¹, Florian Knoll^{2,3}, Daniel K Sodickson^{2,3}, and Thomas Pock^{1,4}

1D Partial Fourier Parallel MR imaging with

struction

and Thomas Pock1,

Compressed sensing and Parall convolutional neural network

Shanshan Wang¹, Ningbo Huang^{1,2}, Tao Zhao^{1,3}, Yong Yang², Leslie Ying⁴, and Dong Liang¹

Deep Convolutional Neural Network for Acceleration of Magnetic Resonance Angiography (MRA)

Yohan Jun¹, Taejoon Eo¹, Taeseong Kim¹, Jinseong Jang¹, and Dosik Hwang

Feasibility of Multi-contrast MR imaging via deep learning

Shanshan Wang¹, Tao Zhao^{1,2}, Ningbo Huang^{1,3}, Sha Tan^{1,4}, Yuanyuan Liu¹, Leslie Ying⁵, and Dong Liang¹

ISMRM Workshop on

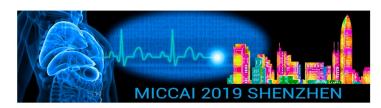
Machine Learning

14-17 MARCH 2018

Chair:

Greg Zaharchuk, M.D., Ph.D., Stanford University, Stanford, CA, USA

Machine Learning for Medical Image Reconstruction (MLMIR)



ISMRM Workshop on

Machine Learning

25-28 October 2018 —

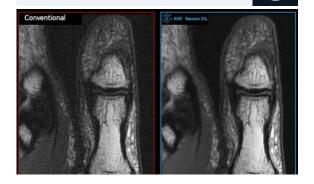
Chair: Greg Zaharchuk, M.D., Ph.D., Stanford University, Stanford, CA, USA Vice-Chair: Florian Knoll, Ph.D., New York University School of Medicine, New York. NY. USA

Machine Learning for Medical Image Reconstruction (MLMIR)

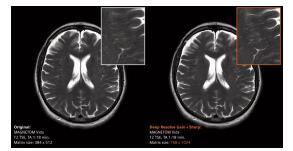
ISMRM Workshop on

Data Sampling & Image Reconstruction

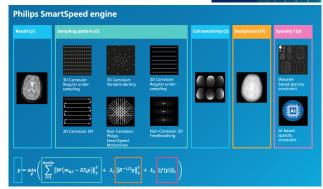
26-29 January 2020 • Enchantment Resort, Sedona, AZ, USA

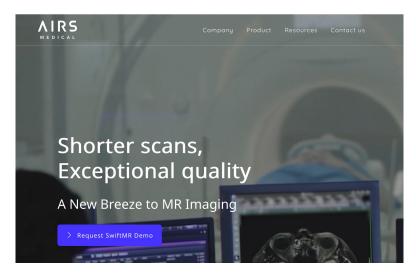

Session 3: Machine Learning		
Moderators: Mariya Daseva, Ph. D., Floriso Roell, Ph. D. & Michael Luxtig, Ph. D.		
16:00	Basics of Machine Learning for Image Reconstruction	Kerstin Hammernik, Ph.D. Imperial College London London, England, UK
16:20	Learning Image Reconstruction with MR Physics Knowledge	Mehmer Akcakaya, Ph.D. University of Minnesota Minnespolis, MN, USA
16:30	Image Enhancement	Daniel Rueckert, Ph.D. Imperial College London London, England, UK
16:40	16:40 Panel Discussion	
Proffered Papers - Oral Session		
17:00	2.Minutac Comprehensive Brain Exam Using Multi-Shot EPI with Synergistic Model-Based & Deep Learning Reconstruction	Wei-Ching Lo, M.Sc. Siemens Medical Solutions Malvern, PA, USA
17:10	Unsupervised Image Reconstruction Using Deep Generative Adversarial Networks	Elizabeth Cole, M.Sc. Stanford University Stanford, CA, USA

2022

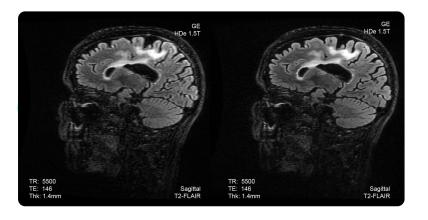

HEALTHCARE

Smarter Image: Deep Learning Software Is Changing the Game In Magnetic Resonance Imaging


Jay Stowe
December 01, 2020



2022

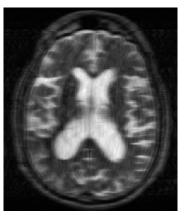


MRI scans, in just half the time

SubtleMRTM is a software solution that improves the quality of faster MRI images with increased resolution and denoising.

As Acquired

SubtleMR Enhanced

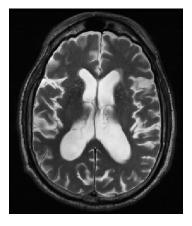


Back to compressed sensing

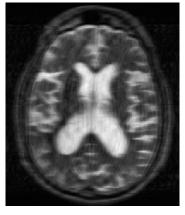
Fully sampled

Zero-filling R=4

$$\min_{u} \frac{\lambda}{2} ||Au - f||_2^2 + \mathcal{R}(u)$$


Exploit inherent redunancy in images

Sparsifying transform


Nonlinear reconstruction

Machine learning for image reconstruction

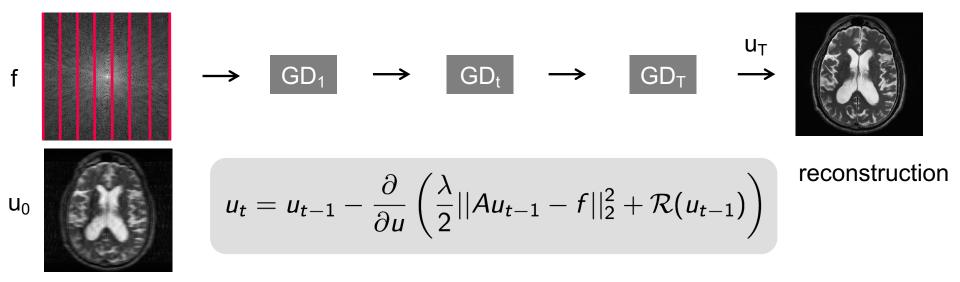
Fully sampled

Zero-filling R=4

$$\min_{u} \frac{\lambda}{2} ||Au - f||_2^2 + \sum_{i} \rho_i(K_i u)$$

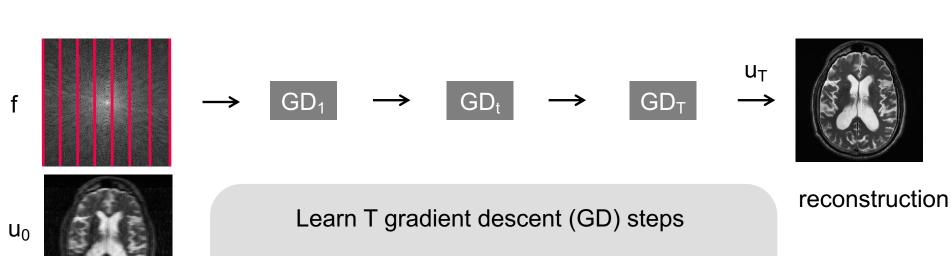
Separate artifacts from image content

Sparsifying transform → Spatial filter kernels



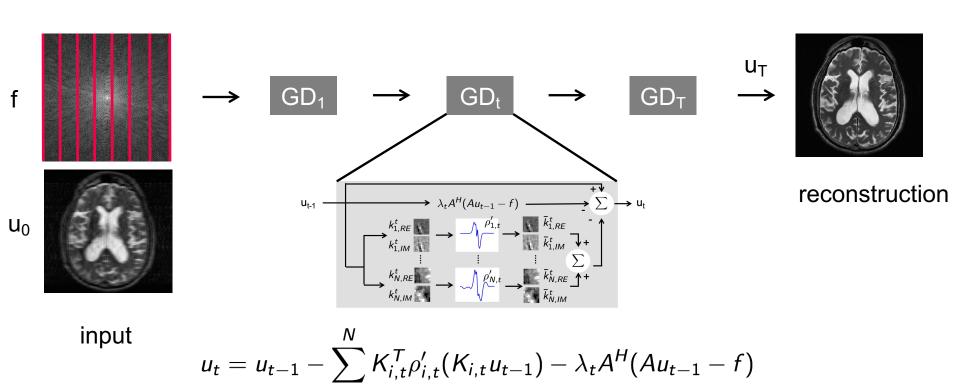
Hammernik ISMRM 2016 Hammernik MRM 2018 Knoll IEEE SPM 2020

L1 norm \rightarrow Potential functions

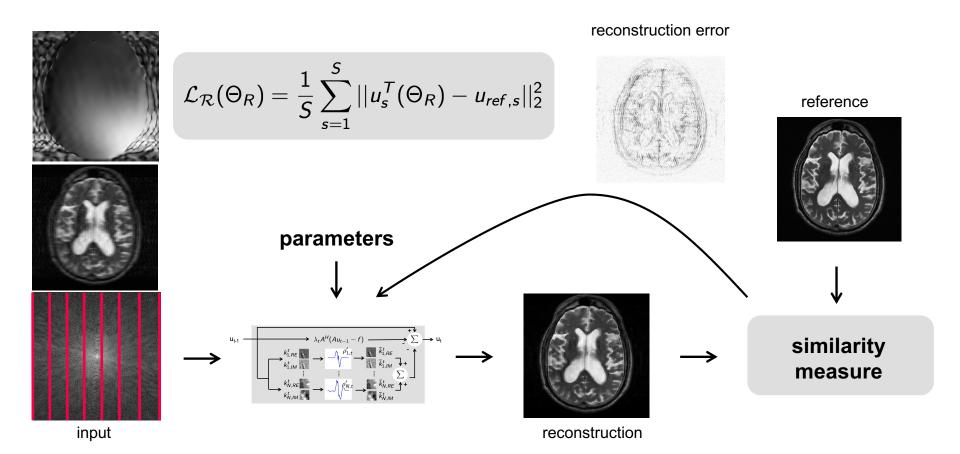

Numerical implementation

Landweber Amer J Math 1951

input


Learning the numerical optimization

input


 $u_{t} = u_{t-1} - \sum_{i}^{N} K_{i,t}^{T} \rho_{i,t}'(K_{i,t} u_{t-1}) - \lambda_{t} A^{H} (A u_{t-1} - f)$

Neural network model for reconstruction

Hammernik MRM 2018

Neural network training

input

Reconstructing new test data

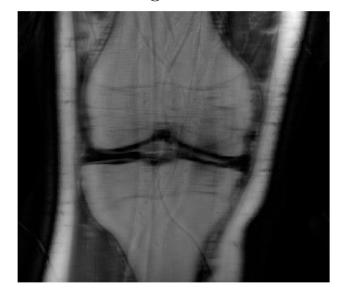
reconstruction

 $f \rightarrow$

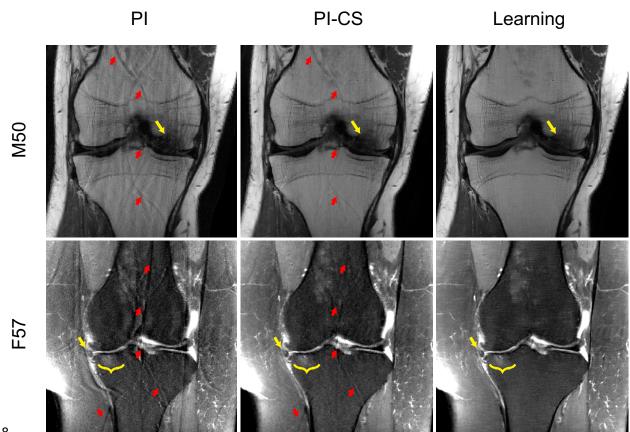
 GD_1

 \longrightarrow

 GD_t



 GD_T


 \longrightarrow U_T

Zero filling initialization

Some reconstruction examples, R=4

Hammernik, MRM 2018

Some reconstruction examples, R=4

PI-CS Learning PI

Examples from other research sites

Slides courtesy of Joseph Cheng (Stanford)

Dynamic Cardiac MR

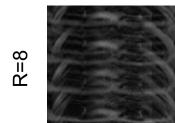
2D+t

0.97

0.95

R

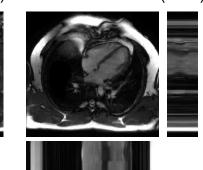
8x

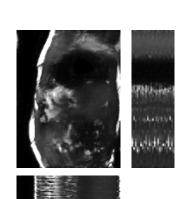

12x

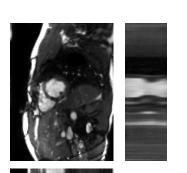
2D

0.84

0.71

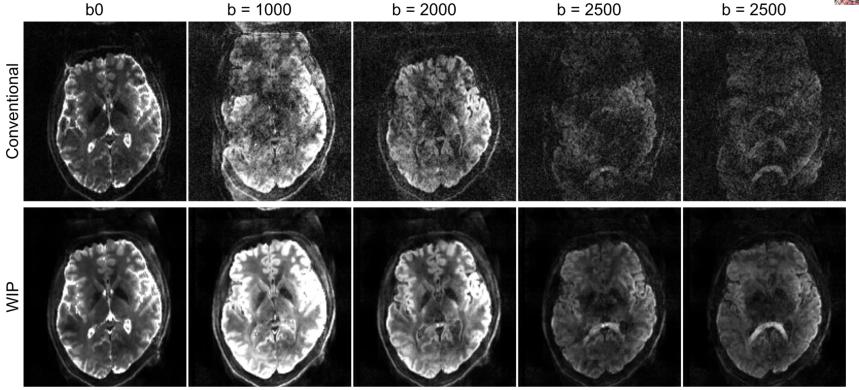

SSIM scores




Zero-filled

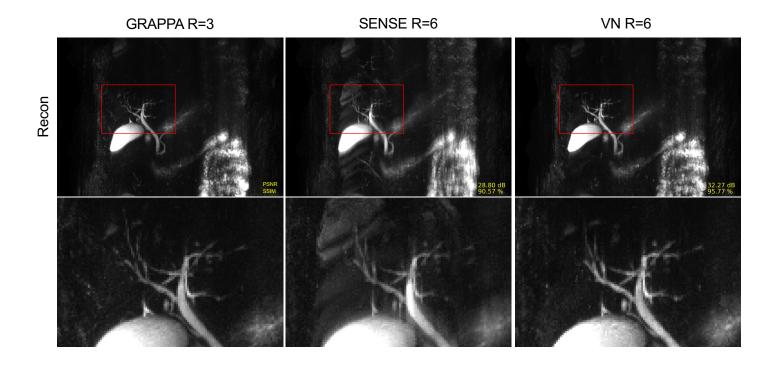
Ground Truth

Variational Network (2D) Variational Network (2D+t)

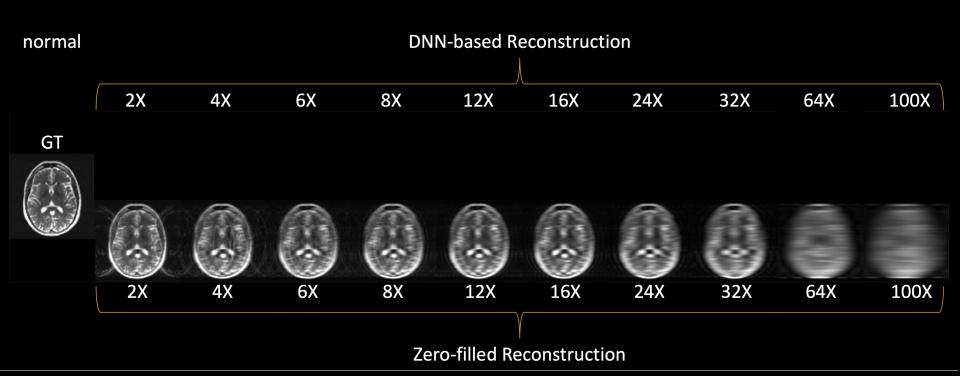


R=12

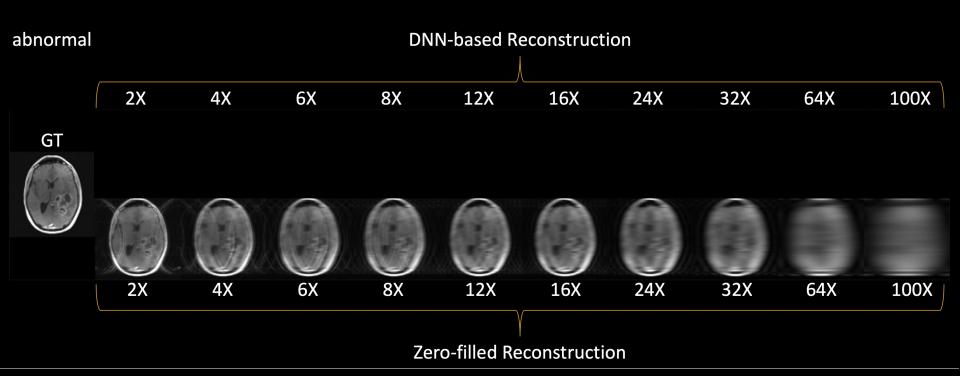
2-Shot EPI Diffusion MRI at 7T

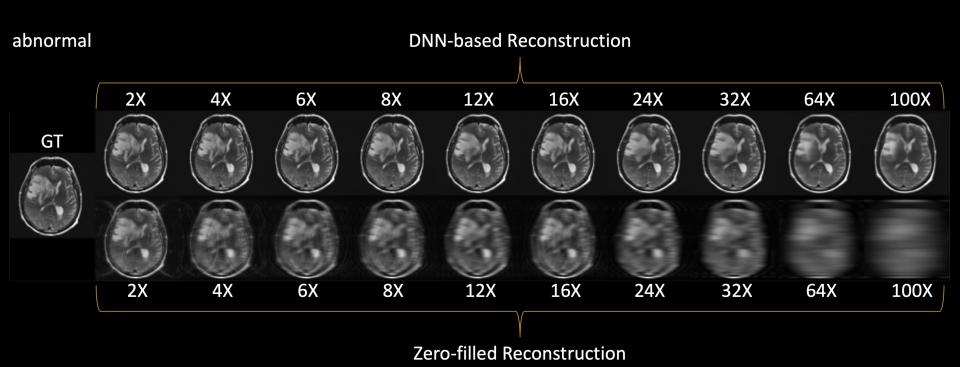


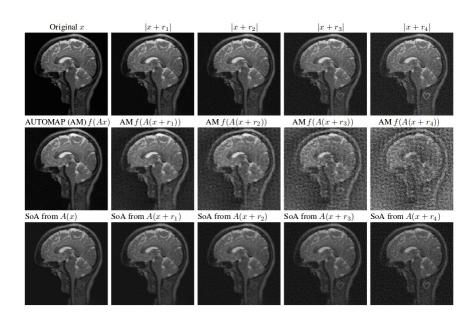
In-plane resolution 1.4 mm³, in-plane acc=3, pf=6/8, 126 diffusion encodings, t_{acq}=15min



Accelerated MRCP

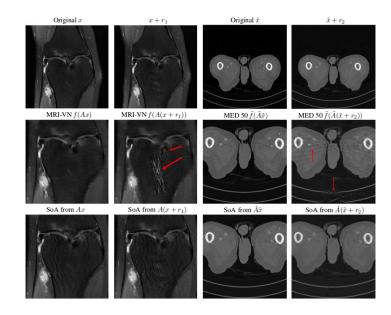



Performance at progressive acceleration


Performance at progressive acceleration

Performance at progressive acceleration

When does it break?



reconstruction and the potential costs of Al

Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C. Hansen PNAS first published May 11, 2020 https://doi.org/10.1073/pnas.1907377117

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved March 12, 2020 (received for review June 4,

Reproducibility?

Evaluation

We tested our algorithm on data from 10 clinical patients per sequence and reconstructed the whole imaged volHammernik MRM 2018

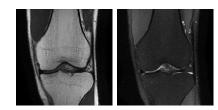
Evaluation on raw MRI scanner data. Cartesian *k*-space test data (of Fig. 4) were acquired from a healthy volunteer on a 3T Siemens Trio MRI scanner with a spin-

Zhu Nature 2018

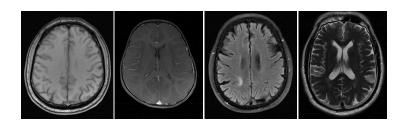
Evaluation of the trained VN model was performed in the remaining 27 patients (nine males, 18 females) in comparison with the PICS reconstruction.

Chen Radiology 2018

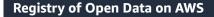
The evaluation was done via a 3-fold cross validation, where for two folds we train on 7 subjects then test on 3 subjects, and for the remaining fold we train on 6 subjects and test on 4 subjects. While the original sequence has size $256 \times 256 \times T$,


Qin IEEE TMI 2018

The aggregated test error across 10 subjects


Schlemper IEEE TMI 2018

fastMRI dataset


- MSK (knee)
 - Rawdata (fully sampled): 1398 cases

- Neuro (brain)
 - Rawdata (fully sampled): 7002 cases
 - Challenge Transfer track:
 - GE (211 cases)
 - Philips (118 cases)

Dataset stats

NYU Langone & FAIR FastMRI Dataset

health

imaging

life sciences magnetic resonance imaging

eurobiology

neuroimaging

Description

This dataset contains deidentified raw k-space data and DICOM image files of over 1.500 knees and 6.970 brains.

Update Frequency

The dataset is estimated to grow annually to include MRI raw data and imaging for additional body structures.

License

MIT License

Documentation

https://fastmri.med.nyu.edu/

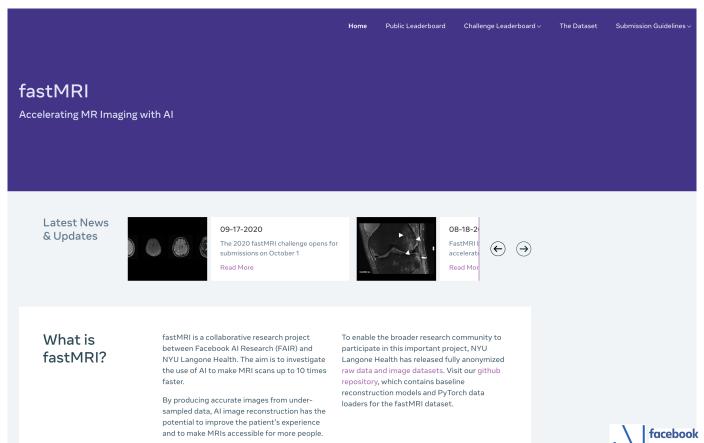
Managed By

FastMRI

See all datasets managed by FastMRI.

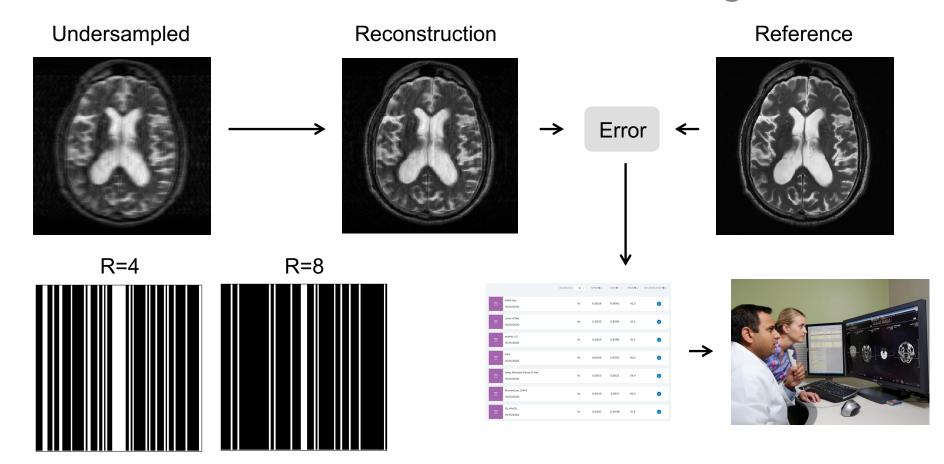
Contact

Florian Knoll

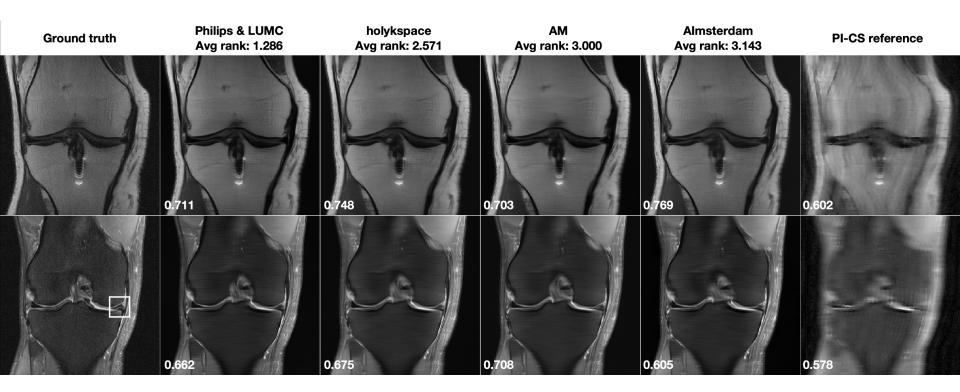

9000 unique visitors per year

961 TB of data downloaded per year

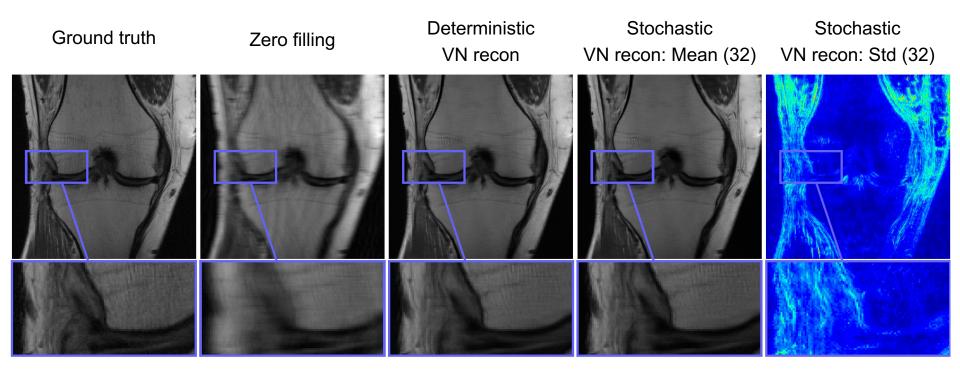
Amazon AWS public dataset grant

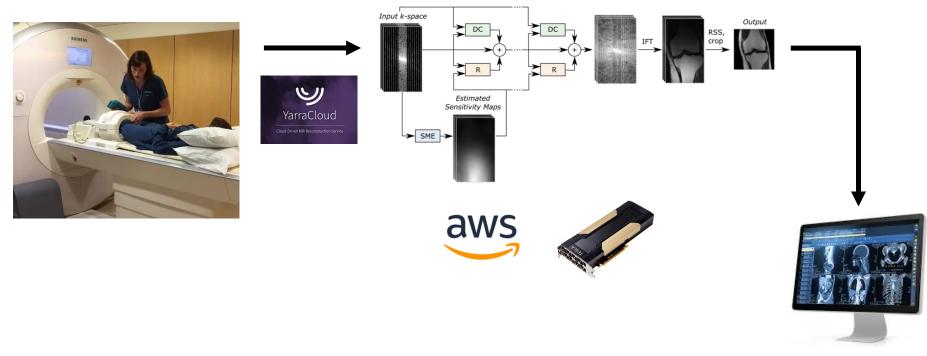

Top 10 of all AWS life sciences datasets (use and downloads)

2019/2020 reconstruction challenges

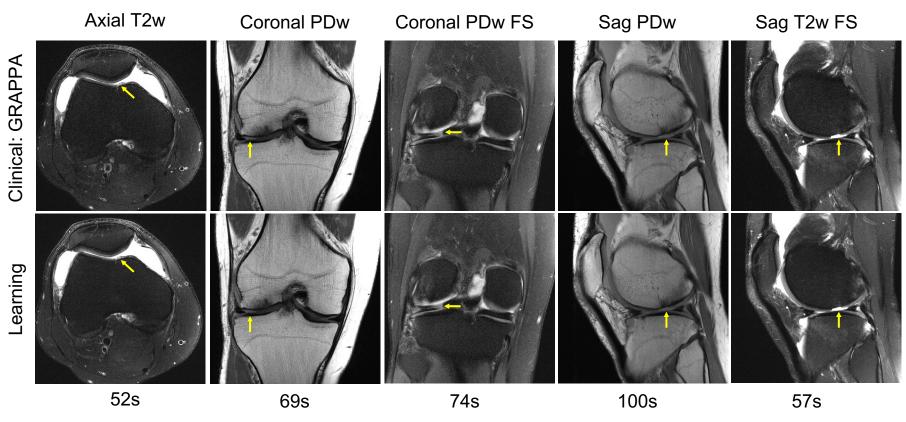


Knoll MRM 2020 Muckley TMI 2021


fastMRI reconstruction challenge

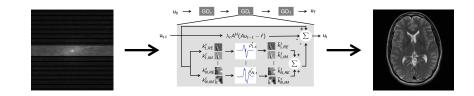

2019 multi coil R=8 results

Bayesian Uncertainty Estimation


Clinical integration and dissemination

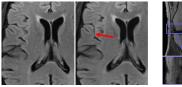
Block ISMRM Sedona 2016 Sriram MICCAI 2020, fastMRI.org

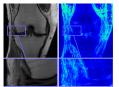
PACS


M26: chondral defects, meniscal tear

Prospective study, 300 patients enrolled, scan times of accelerated sequences shown

Summary


Introduction to MRI recon



From CS to DL recon

Challenges/Validation

