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* In machine learning one seeks to find the global minimum of
a loss function (non-convex, high dimensional)
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Non-convex optimization is an NP-hard problem!



Gradient or Gradient free

* The most popular method is the
stochastic gradient descent e PR R R o
method which needs to take the st deseet 0 sm 2 ey
gradient (along a few randomly >t LR L

. . . radienl  dlesedul: ]m\
selected spatial directions at each "
iteration)

* Often the loss function Is not a
good function to take Its gradient,
or the function i1s known only In
discrete set of data

* Alternative gradient-free
numerical methods are of great
interest




Gradient-free optimization methods: metaheuristics

* Simulated annealing: Kirkpatrick (‘83)

* Genetic algorithms:  Holland ('75)
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Swarming intelligence

a population of simple agents interacting with
each other, and the collective behavior exhibits
“Intelligence” not known by individuals--better
way to get out of local extrema compared to
simulated annealing

Examples:
particle swarming optimization (PSO):
Kennedy, Eberhart and Shi (‘95-'98)
ant colony optimization (ACO):
Moyson Manderick (‘88)
artificial bee colony optimization (ABC):
Karaboga ('05)
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About metaheuristics: from wikipedia

Most literature on metaheuristics i1s experimental in nature,
describing empirical results based on computer experiments with
the algorithms. === . While the field also features high-quality
research, many of the publications have been of poor quality; flaws
iInclude vagueness, lack of conceptual eIaborationL[l:)oor
experiments, and ignorance of previous literature.Z

Sorensen, Kenneth (2015). "Metaheuristics—the metaphor exposed" . /nternational
[ransactions in Operational Research. 22: 3—18.

We develop an interacting particle system with proven convergence toward the
global minimum for general non-convex, high dimensional functions



* Pinnau-Totzeck-Tse-Martin (M3AS '17)
* Carrillo-Choi-Totzeck-Tse (M3AS "18)
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For sufficiently large 3 the particles form consensus--converge to the
global minimum of L exponentially fast but the drift rate is dimension
sensitive!
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Laplace principle

for any probability measure p € p(ﬂ?d) compactly supported with x, € supp(p), then

1 _,
;3151910 (_8 log (/I}?d eﬁL(m)dp(;rO) = L(z™) > 0. (1.5)

Therefore, if L attains its minimum at a single point x* € supp(p), then the suitably

normalized measure e=?L(*) 5 assigns most of its mass to a small region around z* and

hence we expect it approximates a Dirac distribution dz+ for large 5 > 1. Consequently.

the first moment of the normalized measure e #L(*) p. and thus. the discrete counterpart

average r*, should provide a good estimate of the point at which the global minimum

1s attained, r* = argmin L.



Our improvement: a dimension-independent model!
(with J. Carrillo, Oxford; Lel Li, SJTU and Yuhua Zhu, Stanford)

* Use geometric Brownian motion

dX7 = — (X T dt—kaz de €l

* Random Batch to compute L:

L

where b is a random index subset of {1,--- ,n} containing m elements.

* Random Batch to evaluate : B randomly selected mini-batch
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Heuristics:

Consider the case: = q

For particles to form a consensus:

PTTM model %[E(X —a)? = 2\E(X —a)* + o* Zd; E|X —al* = (=2A + 0*d)E(X — a)?
2\ > do?. |
Our model. %[E(X —a)? = —2)\E(X — a)® + o? Zd: E(X —a)] = (—2A + 0H)E(X — a)?
| i=1
2\ > o

our model is dimension insensitive!
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Convergence proof

Via mean-field limit; Carrillo-Choi- Totzeck-Tse; Carrillo-Jin-Li-Zhu

Formally, taking N — oo in the model (2.2) with full batch (or alternatively, v — 0
and N — oo in Algorithm 2.1 with full batch), the mean field limit of the model is
formally given by the following stochastic differential equation for X = X (t):

d
dX = —MX = 2)dt + 0y &(X — 27 )dWi, (3.1)
=1

where

F(X e BLX)
7+ = ELXe ). (3.2)
E(e—PLX))

The law p(-,t) of the process X (t) follows the nonlinear Fokker-Planck equation

g re L&) (2. t) da
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Convergence analysis for fully discrete particle systems
(with Seung-yeal Ha, SNU,; Doheon Kim, KIAS)

Next, we consider time-discrete analogue of (1.1). For this, we set
h:: Atq an = X(nh), n:O,].,"' )

Then the discrete scheme reads as follows:

i d
7l7l+1 = XIII - A/(X; - X*) il Z(I;?l . _*‘1)7751/61’ 20, =1y~ an
L) < S 1X7 —BL(X
X = @y oy )= JN ;
i Z}: e—BL(X3)

where the random variables {1}, are i.i.d. with

(1.3) E[n] =0, E[n.P]=¢% n=1,---, I=1,---,d.

* Differenty and 5! correspond to different schemes (explicit, semi-implicit, exponential
Integrator, etc which leads to different numerical stability condition)




Euler-Maruyama method

e Model A: Consider the first-order Euler type discrete model in [14]:

d
-:i-—l—l = X;] o Ah(X:Ez _ X:) o Z(B:ZQZ o ;T?;:’Z)O'\/EZ,E]Q[? n > 0 i = 1 o :j\’ra
=1

where the random variables {Z!}, ; are i.i.d standard normal distributions, i.e. Z! ~ A(0,12). If
we set

(2.3) v:=Ah and 7' :=oVhZl.

Then, the above setting clearly satisfies the relations (2.2) with { = oV h.



A predictor-corrector method

e Model B: Consider a predictor-corrector type discrete model in [4].

(2.4)

(X! = X!+ e M(X) — X)),

7 X .
n+l1l — X-n. o Z(

il — 2 DovhZle, n>0,i=1,---,N.

n

We substitute (2.4); into (2.4), and use an addition-subtraction trick to see that

If we set

(25)

d
v =X - (=X - X0 =Y (@ —a e MoV Ze, n>0,i=1.-- N

=1

vi=1— e_)‘h and nfl L= e_)‘ha\/ngp

then (2.4) reduces to the special case of (2.1) - (2.2) with ¢ = e *'oV/h.



An exponential integrator method

freeze Tj in a time-step interval.

e Model C: Consider one of discrete optimization model proposed in [4]:

d
, _ _ -
(2.6) X541 =X+ E (! — ) [eXP (— ()\+ §UZ> h + U\/EZ;,)] e, n>0,i=1,--- N,
(=1

Again, the R.H.S. of (2.6) can be rewritten as
d

. : , _ . 1 .
el =X, — (1 - e_)‘h)(Xfl — X)) - Z(;Bﬁ;i — ;T:.:_’I)e_)‘h’ [exp (—gazh — Ux/EZ;;) - 1] el.
=1
We set
1.
(2.7) vi=1—e ™M and gl = [exp (—502/? + aﬁZi) — 1] .

Then, we use the elementary facts [7]:

X ~ Lognormal(a, 8%) = EX =¢*T7 and EX?2 =202

to see that (2.7) satisfies moment relations (2.2) with ¢ = e=*'\/eo®h — 1.



e (Question A): Does the N-state ensemble { X } exhibit a global consensus? i.e., does
X, —X) >0 as n—oo, tj=1,---,N in suitable sense?
e (Question B): If the answer to the first problem is positive, then under what conditions on
system parameters and initial data, does there exist a global consensus state X, such that

X' = X, foralli, asmn — oo, suchthat L(Xs) ~ 111%11 L(X).

/



Emergence of global consensus:
Answer to question A

Theorem 2.1. Let {AX,,} be a solution process to (2.1). Then, the following three global consensus
results hold.

(1) Suppose that system parameters satisfy
7v—1l <1 and 0<( < oo.

Then, E[X! — X3 tends to zero asymptotically:
. i i . %
lim E[X; — X]]=0, Vij=1,---,N.

n—oo
(2) Suppose that system parameters v and ¢ satisfy
2 2
=L +g <1
then, L? and almost-sure global consensus emerge asymptotically: for a.s. w € S,

. . P ¥ . i 1 1 2 - -l ) . .
lim E|X: — XI2=0, |z& — ol <|zy’ — k' [Pe ™=@, 4,i=1,...,N, I=1,---,d,

A )1
n—oo

where Y is a random variable satisfying

lim Viw)=1-(y=12%=¢*>0, asweQ, I=1,---,d

n—oo



For the three specific numerical models:

Corollary 2.1. The following assertions hold.
(1) Suppose that system parameters satisfy

o? 2\ — o2
)\>?, 0<]?_.-<T¢

then, Model A admits L? and almost sure global consensus.

(2) Suppose that system parameters satisfy
(1+o?h)e M < 1,
then, Model B admits L? and almost sure global consensus. .

(3) Suppose that system parameters satisfy

02

213 A > —.
(2.13) >

then, Model C admits L* and almost sure global consensus, for any h > 0.

* Remark: Models B and C are unconditional!



Main idea of proof:

* Previous work of Carrillo-Choi-Totzeck-Tse used L_2 norm of
the particles thus obtain exponential growing term using
Granwall inequality

* \We estimate the diameter:

D(X;) := max '|X,f — X;’| X, = (X}, .X,;\') c RN
1<i,j<A R



Convergence analysis and error estimates:
Answer to Question B

Consensus does not mean particles approach a fixed a common fixed state x__
e (Q1): What is a sufficient framework leading to the common asymptotic state:

X'(B) = Xo(B), asn—socforalli=1,--- ,N?

e (Q2): If the above question is resolved, then how close is the asymptotic state X, to the
eglobal minimum X,,, of L if the latter exists?



Emergence of a common consensus

Theorem 3.1. Suppose that system parameters satisfy
(1—7)+¢ <1,

and let {X'}1<i<n be a solution to (2.1). Then, there exists a common constant state Xoo =
(l .- - 2L ) such that

o0 o0

lim X! = X a.s., 1 <i < N.

n—oo



Error estimates

Some assumptions

e (Al): Let L = L(x) be a C%-objective function satisfying the following relations:

Ly, := min L(z) >0 and Cp := sup ||[V2L(x)[]s < oo.
J"EH‘Q'Ir rcRd

where || - |2 denotes the spectral norm.

e (A2): Let X. be the unique global minimum point of L in R? satisfying the local convexity
relation:

det (VZL(X,)) > 0.

o (A3): Let X;, be a reference random variable with a law which is absolutely continuous
with respect to the Lebesgue measure, and let f be the probability density function of X;,
satisfying the following conditions:

f is compactly supported, continuous at X, and f(X,) > 0.



Answer to question B

Theorem 3.2. Suppose that the framework (A1) — (A3) holds, and system parameters 3,7,¢ and
the initial data { X} satisfy

B3>0, (v=12+<1, X,:iid, Xi~ X,
(1 - ey [e-PL0t]

(3.3) |
200y (1+ (1 - )2+ () (12 + (2) feBLm 4 (

>
- 1 — e-1-G-D>=¢7 2

il —i\2
E max (x5 — T
& 1§£§_.-‘\-’( 0 U) ’

for some 0 < e < 1. Then for a solution {X) }1<i<n to (1.1), one has the following error estimate:

- (_f log 3

(3.4) <5

ssinf L(X ) — L(X,
essin L(Xx) — L(Xy)

+ E(8),

L @) A QY — 1
for some function E(3) = O (7)

: log {
Remarks: 1) error proportional to (51 03'3

2) initial data quite restrictive-close to X. and support of initial distribution
contains y,




* Convergence analysis can even include Random
Batch approximation: Ko-Ha-Jin-Kim (M3AS to

appear)



An example

f(l‘ qu) _ 65111(2:132) + —(I’ — Gy —

Objective function (4.2)




1
o SG D Lhal = T — E Z V;pf(l?;;, ;f?.f_)._

v=0.0l, m= 1043 n = 20

« CBO N =100, ,M =20, o=25,3=30,

SGD Algorithm 2.1

Success rate 18% 98%




Rastrigin function of 20 dimensions:

L(x) =

SLI»—\

B = argmin L(x), C =minL(z).

100 ~
80 -
sl A A 2 |
40 |

20

oo
¥

zd: [(:cz ~10cos (2n(x; — B)) + 10] L



PTTM algorithm

TABLE 2. Rastrigin function in d = 20 with a = 30.

our algorithm

Rastrigin function in d = 20 with @ = 30

N
T 50 100 200
0 success rate 34.% 61.1% 62.2%
LE[lvf(T) — z.|?] || 3.12e7! 247e™! 2.42¢7!
1 success rate 34.5%  57.1% 61.6%
FEllvs(T) — 2.|°] || 3.09e~" 2.52e~! 0.244e”"
2 success rate 35.5%  54.8% 62.4%
LE[|lvf(T) — z.|%] || 3.06e™! 2.5le™! 2.44e!

N=50,M=40 |[N=100,M=70 |N=200,M=100
o=5.15 o=25.1 o=>5.1
x* = 0, success rate 98% 99% 98%
x*=0, éIE [lzg — =*||°] 6.13E-04 5.03E-04 9.71E-04
X* = 1, success rate 98% 929% 95%
x* =1, oK [la3 — 2" 1E-03 4.95E-04 3E-03
x* = 2, success rate 95% 100% 92%
x* =2, éE [l — =] 2.6E-03 8.06E-06 4E-03
Computing time saved 22.03% 30.11% 36.14%
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F1GURE 4. Temporal evolution of state configuration for t = 0,1,2,10 (o = 2).
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Ficure 5. Graph of log |.ri1'1 - ,r;f)'l| for o =10,1,2.
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MNIST dataset

The MNIST data is a set of pictures for numbers from 0 to 9. The input data is
a vector of dimension 728, it records the Grayscale of each pixel. We use the Neural
Network without hidden layer to model this classification problem,

flw,z) =a(RelLu(fx + B)), w=(6,B),

where z; € R™,0 € RI"™ B € RY. ReLu(r) = 21,0 is an activation function,

while a(x) is an activation function called softmaz, which reads,

The objective function to be minimized is the following,

10

Liw) = = S U ). W) = =3 v los(fy) (1.2)
i=1

j=1

10

where y € {e;};—; is a vector of dimension 10 with only the j-th element 1.
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Figure 7: Comparison of our new CBO algorithm and SGD.



Some popular methods used in machine learning optimization

0" = arg min f(#)
PR

pitl = gt — aVf(6) e GD

t+1 _ pt t
" =60"—m,

m! =~ym!™t + aV,yf(0")

* momentum

ot

Qt—l—l _ Qt — m
\/ﬁqLe’ .
t - . ,\ ", Adam
m :/Blm +(1_61)vf9(9 )a my = 7
1 =0 0 < Br.fy < 1
Ut

vl = Bov' ™t 4 (1 — Bo) (Ve f(01)2, o =

gt
1 1



CBO-adaptive momentum estimation method (CBO-Adam)
- - joint with Jingrur Chen, Liyao Lv

MEH = 51M§ +(1- ﬁl)(Xf - 1) A t+1 = M /(1= 5);
tz+1 = (aVy + +(1 - 52)(){% - 5’3*)2 t+1 = I/%:—l/( )

M;
L= XA 10! Y @y 2 is a random variable,

V? R

Linear stability shows that the dynamical system converges
to the global equilibrium with the rate g, If

_K A
u+1 </ <iq =7



The Rastrigin function

Adam-CBO Adam-CBO
a1 N M NO. 1) TU(-1,1) N M N, 1) TU(-1,1)

100 | 1000 | 5 7% 39% 5000 | 5 100% 84

100 | 1000 | 10 94% 60% 5000 | 10 100% 100%
100 | 1000 | 20 87% 49% 5000 | 20 100% 100%
100 | 1000 | 25 7% 53% 5000 | 25 100% 100%
100 | 1000 | 50 45% 8% 5000 | 50 100% 100%
100 | 1000 | 100 2% 0% 5000 | 100 | 100% 100%

TABLE 2. Comparison of success rates for different batch
numbers when the dimension is 100, A\ = 0.1, and ¢! =

0.9937 .




Adam-CBO

N M mT O Ta=
1000 | 8000 | 50 | 92% 20%
1000 | 10000 | 50 | 100% 28%
1000 | 12000 | 50 | 100% 28%
1000 | 14000 | 50 | 100% 32%
1000 | 16000 | 50 | 100% 32%
TABLE 3. Comparison of success rates for different numbers
of patrticles when the dimension is 1000, A = 0.1, and o! =
0.9920.




Solving PDEs with low regularity use

-V (A(z)Vu) Zé ) reQ=[-1,1
u(z) = g(x) z € 90
with
(23)
(38) Ax) =
(23)3

The exact solution u(x) = Zle \:1:1\% One can see that the solution is only
in H'/2(Q) and has singularities when evaluating its derivative at z; = 0.
The loss function in DRM reads as
(39)
1 oy
I[u] = f ~(Vu) " A(2)Vu(z)da+» f §(i)u(z)da+n f (u(z)—g(x))*da,
02 — /o 9

02

where 17 = 500 is the penalty parameter for the boundary condition.

Deep-Ritz (E and Yu)
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FIGURE 6. Training process of Adam and Adam-CBO meth-
ods for (37) when the dimension is 4. (a) L™ error; (b) L?

error.



Conclusions

* gradient-free consensus-based interacting particle systems are
iIntroduced for high dimensional non-convex optimization

* Rigorous mathematical convergence results for CBO provided for
pooth the fully time-discrete particle system and (its mean-field
Imit) under dimension-independent conditions on the coefficients

* Initial data quite restrictive: close to global minimum

* Although the convergence rate does not depend on the
dimension, the error does

* CBO-Adam works better in higher dimension but theory is lacking
* Further research include: mean-field limit;
more computational tests and applications
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