Discovering scaling laws for heat transport using convex optimization

Giovanni Fantuzzi

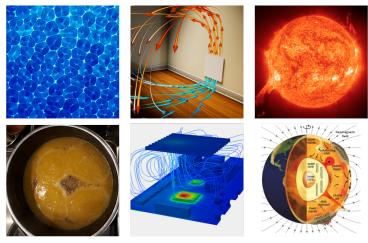
Chair for Dynamics, Control and Numerics Department of Data Science FAU Erlangen–Nürnberg giovanni.fantuzzi@fau.de

Joint work with: Ali Arslan, John Craske, Andy Wynn (*Imperial College*) Anuj Kumar (*UC Santa Cruz*)

Introduction	
000000	

Results 000 Extensions 00000 Conclusion O

Why heat transport?



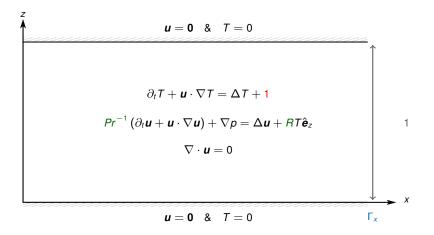
Surface tension

Boundary-driven

Internal heating

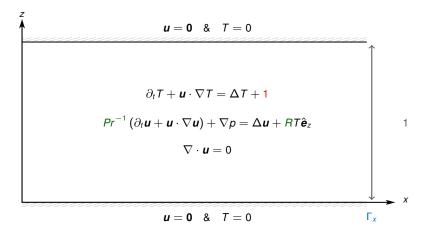
Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
00000	00000	000	00000	0

A periodic layer with cool and sticky boundaries



Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
00000	00000	000	00000	0

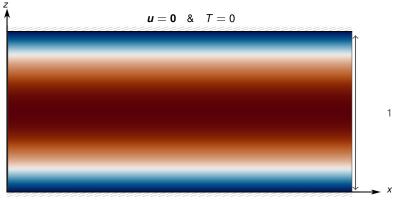
A periodic layer with cool and sticky boundaries



Which fraction of the heat input exists through the top vs the bottom? How do these fractions depend on R (heating strength) and Pr (fluid's inertia)?

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
00000	00000	000	00000	0

Weak heating (small *R*) = no flow



 $\boldsymbol{u} = \boldsymbol{0} \quad \& \quad T = \boldsymbol{0} \qquad \qquad \boldsymbol{\Gamma}_{\boldsymbol{x}}$

$$\mathcal{F}_{top} = rac{1}{2}$$
 $\mathcal{F}_{bot} = rac{1}{2} \left(= 1 - \mathcal{F}_{top}\right)$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Strong heating (large *R*) = turbulence

Video courtesy of John Craske

$$\mathcal{F}_{top} > rac{1}{2}$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Strong heating (large *R*) = turbulence

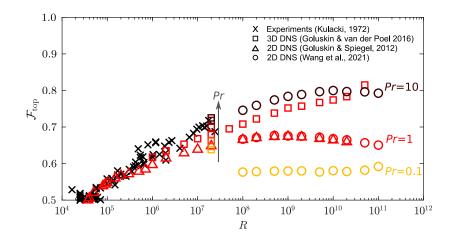
Video courtesy of John Craske

$$\mathcal{F}_{top} > \frac{1}{2}$$

Theorem (Goluskin & Spiegel, 2012): $\frac{1}{2} \leq \mathcal{F}_{top} \leq 1$ independently of *R* and *Pr*.

Introduction	Estimates via convex optimization	Results 000	Extensions 00000	Conclusion O

Simulations tell a different story!



Introduction	Estimates via convex optimization	Results 000	Extensions 00000	Conclusion O

Plan for today

- 1. Estimating \mathcal{F}_{top} via infinite-dimensional convex optimization
- 2. Results from numerical approximation
- 3. From numerics to proofs
- 4. Extensions and open problems (depending on time!)

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000		000	00000	O

Basic identities

$$\mathcal{F}_{\text{top}} = rac{1}{2} + rac{1}{R} \overline{\langle | \nabla \boldsymbol{u} |^2
angle}$$

 \sim kinetic energy dissipation

Notation:

- w = vertical velocity of the fluid
- T = temperature
- $\langle \cdot \rangle$ = space average
- $\overline{\cdot}$ = infinite-time average

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000		000	00000	O

Basic identities

$$\mathcal{F}_{top} = \frac{1}{2} + \frac{1}{R} \overline{\langle |\nabla \boldsymbol{u}|^2 \rangle}$$
$$= \frac{1}{2} + \overline{\langle \boldsymbol{w}T \rangle}$$

 \sim kinetic energy dissipation

vertical convective heat flux

Notation:

- w = vertical velocity of the fluid
- T = temperature
- $\langle \cdot \rangle$ = space average
- $\overline{\cdot}$ = infinite-time average

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000		000	00000	O

Basic identities

$$\mathcal{F}_{top} = \frac{1}{2} + \frac{1}{R} \overline{\langle |\nabla \boldsymbol{u}|^2 \rangle}$$
$$= \frac{1}{2} + \overline{\langle \boldsymbol{w}T \rangle}$$

÷

 \sim kinetic energy dissipation

vertical convective heat flux

Notation:

- w = vertical velocity of the fluid
- T = temperature
- $\langle \cdot \rangle$ = space average
 - = infinite-time average

Question: Can we prove that

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - f(R, Pr)$$

for some positive function f?

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000		000	00000	O

Bounding time averages

Observation: If \mathcal{V} { \boldsymbol{u} , \mathcal{T} } remains uniformly bounded along solutions,

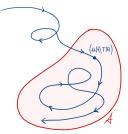
$$\frac{\frac{d}{dt}\mathcal{V}\{\boldsymbol{u}(t),T(t)\}}{t} = \limsup_{t\to\infty} \frac{\mathcal{V}\{\boldsymbol{u}(t),T(t)\} - \mathcal{V}\{\boldsymbol{u}_0,T_0\}}{t} = 0$$

Then,

$$\overline{\langle w(t)T(t)\rangle} = \overline{\langle w(t)T(t)\rangle + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{V}\{u(t),T(t)\}}$$

 $=\overline{\langle w(t)T(t)\rangle + \mathscr{L}\mathcal{V}\{u(t),T(t)\}}$

$$\leq \inf_{\mathcal{V}} \sup_{(\boldsymbol{u}, T) \in \mathscr{A}} \left\{ \langle wT \rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u}, T\} \right\}$$



Tobasco et al (2018) + Rosa & Temam (2020): The strategy is sharp for well-posed ODEs/PDEs with compact absorbing sets.

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000		000	00000	O

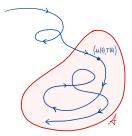
Bounding time averages

Observation: If \mathcal{V} {u, T} remains uniformly bounded along solutions,

$$\frac{\frac{d}{dt}\mathcal{V}\{\boldsymbol{u}(t),\mathcal{T}(t)\}}{t} = \limsup_{t \to \infty} \frac{\mathcal{V}\{\boldsymbol{u}(t),\mathcal{T}(t)\} - \mathcal{V}\{\boldsymbol{u}_0,\mathcal{T}_0\}}{t} = 0$$

Then,

$$\overline{\langle \boldsymbol{w}(t)\boldsymbol{\mathcal{T}}(t)\rangle} = \overline{\langle \boldsymbol{w}(t)\boldsymbol{\mathcal{T}}(t)\rangle + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{V}\{\boldsymbol{u}(t),\boldsymbol{\mathcal{T}}(t)\}}$$
$$= \overline{\langle \boldsymbol{w}(t)\boldsymbol{\mathcal{T}}(t)\rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u}(t),\boldsymbol{\mathcal{T}}(t)\}}$$
$$\leq \inf_{\mathcal{V}} \sup_{(\boldsymbol{u},\boldsymbol{\mathcal{T}})\in\mathscr{A}} \left\{ \langle \boldsymbol{w}\boldsymbol{\mathcal{T}} \rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u},\boldsymbol{\mathcal{T}}\} \right\}$$



Tobasco et al (2018) + Rosa & Temam (2020): The strategy is sharp for well-posed ODEs/PDEs with compact absorbing sets.

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000		000	00000	O

Bounding time averages

Observation: If \mathcal{V} { \boldsymbol{u} , \mathcal{T} } remains uniformly bounded along solutions,

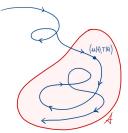
$$\frac{\frac{d}{dt}\mathcal{V}\{\boldsymbol{u}(t), T(t)\}}{t} = \limsup_{t \to \infty} \frac{\mathcal{V}\{\boldsymbol{u}(t), T(t)\} - \mathcal{V}\{\boldsymbol{u}_0, T_0\}}{t} = 0$$

Then,

$$\overline{\langle \boldsymbol{w}(t)\boldsymbol{\mathcal{T}}(t)\rangle} = \overline{\langle \boldsymbol{w}(t)\boldsymbol{\mathcal{T}}(t)\rangle + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{V}\{\boldsymbol{u}(t),\boldsymbol{\mathcal{T}}(t)\}}$$
$$= \overline{\langle \boldsymbol{w}(t)\boldsymbol{\mathcal{T}}(t)\rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u}(t),\boldsymbol{\mathcal{T}}(t)\}}$$

(

$$\leq \inf_{\mathcal{V}} \sup_{(\boldsymbol{u}, T) \in \mathscr{A}} \left\{ \langle \boldsymbol{w} T \rangle + \mathscr{L} \mathcal{V} \{ \boldsymbol{u}, T \} \right\}$$



Tobasco et al (2018) + Rosa & Temam (2020): The strategy is **sharp** for well-posed ODEs/PDEs with **compact** absorbing sets.

How should one choose $\mathcal{V}\textbf{?}$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Consider

$$\mathcal{V}\{\boldsymbol{u},T\} = \frac{\beta_1}{2PrR} \left\langle \left|\boldsymbol{u}\right|^2 \right\rangle + \frac{\beta_2}{2} \left\langle \left|T - \varphi(\boldsymbol{z})\right|^2 \right\rangle$$

where

$$arphi(0)=0 \qquad arphi(1)=0$$

Then,

$$\langle wT \rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u}, T\} = \frac{1}{2} - \langle \tau(\boldsymbol{z}) \rangle - \langle [\tau'(\boldsymbol{z}) + 1 + \beta_2 \boldsymbol{z}] T_{\boldsymbol{z}} \rangle - \langle \beta_1 R^{-1} |\nabla \boldsymbol{u}|^2 + \beta_2 |\nabla T|^2 + [\tau'(\boldsymbol{z}) - \beta_1] wT \rangle$$

- Boundary conditions
- Incompressibility: $\nabla \cdot \boldsymbol{u} = 0$
- Minimum principle: at long times, T ≥ 0 almost everywhere in the fluid domain → introduce a "Lagrange multiplier" λ(z)

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Consider

$$\mathcal{V}\{\boldsymbol{u},T\} = \frac{\beta_1}{2PrR} \left\langle \left|\boldsymbol{u}\right|^2 \right\rangle + \frac{\beta_2}{2} \left\langle \left|T - \frac{\tau(z) + z - 1}{\beta_2}\right|^2 \right\rangle$$

where

$$au(0) = 1$$
 $au(1) = 0$

Then,

$$\langle wT \rangle + \mathscr{L}\mathcal{V}\{u, T\} = \frac{1}{2} - \langle \tau(z) \rangle - \langle [\tau'(z) + 1 + \beta_2 z] T_z \rangle - \langle \beta_1 R^{-1} |\nabla u|^2 + \beta_2 |\nabla T|^2 + [\tau'(z) - \beta_1] wT \rangle$$

- Boundary conditions
- lncompressibility: $\nabla \cdot \boldsymbol{u} = 0$
- Minimum principle: at long times, T ≥ 0 almost everywhere in the fluid domain → introduce a "Lagrange multiplier" λ(z)

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Consider

$$\mathcal{V}\{\boldsymbol{u},T\} = \frac{\beta_1}{2PrR} \left\langle \left|\boldsymbol{u}\right|^2 \right\rangle + \frac{\beta_2}{2} \left\langle \left|T - \frac{\tau(z) + z - 1}{\beta_2}\right|^2 \right\rangle$$

where

$$\tau(0) = 1 \quad \tau(1) = 0$$

Then,

$$\langle wT \rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u}, T\} = \frac{1}{2} - \langle \tau(\boldsymbol{z}) \rangle - \langle [\tau'(\boldsymbol{z}) + 1 + \beta_2 \boldsymbol{z}] T_{\boldsymbol{z}} \rangle - \langle \beta_1 R^{-1} |\nabla \boldsymbol{u}|^2 + \beta_2 |\nabla T|^2 + [\tau'(\boldsymbol{z}) - \beta_1] wT \rangle$$

- Boundary conditions
- Incompressibility: $\nabla \cdot \boldsymbol{u} = 0$
- Minimum principle: at long times, T ≥ 0 almost everywhere in the fluid domain → introduce a "Lagrange multiplier" λ(z)

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Consider

$$\mathcal{V}\{\boldsymbol{u},T\} = \frac{\beta_1}{2PrR} \left\langle |\boldsymbol{u}|^2 \right\rangle + \frac{\beta_2}{2} \left\langle \left| T - \frac{\tau(z) + z - 1}{\beta_2} \right|^2 \right\rangle$$

where

$$\tau(0) = 1$$
 $\tau(1) = 0$

Then,

$$\langle wT \rangle + \mathscr{L}\mathcal{V}\{\boldsymbol{u}, T\} = \frac{1}{2} - \langle \tau(\boldsymbol{z}) \rangle - \langle [\tau'(\boldsymbol{z}) + 1 + \beta_2 \boldsymbol{z}] T_{\boldsymbol{z}} \rangle - \langle \beta_1 R^{-1} |\nabla \boldsymbol{u}|^2 + \beta_2 |\nabla T|^2 + [\tau'(\boldsymbol{z}) - \beta_1] wT \rangle$$

- Boundary conditions
- Incompressibility: $\nabla \cdot \boldsymbol{u} = 0$
- Minimum principle: at long times, $T \ge 0$ almost everywhere in the fluid domain \rightsquigarrow introduce a "Lagrange multiplier" $\lambda(z)$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \, \mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \, \mathrm{d}z$$

provided that

$$\tau(0) = 1$$

$$\tau(1) = 0$$

$$\int_{0}^{1} \lambda(z) dz = -1$$

 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(z) - \beta_1 \right] wT \right\rangle \ge 0$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \, \mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \, \mathrm{d}z$$

provided that

$$au(0) = 1$$

 $au(1) = 0$
 $\int_0^1 \lambda(z) \, dz = -1$
 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(\boldsymbol{z}) - \beta_1 \right] \boldsymbol{w} T \right\rangle \ge 0$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \, \mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \, \mathrm{d}z$$

provided that

$$au(0) = 1$$

 $au(1) = 0$
 $\int_0^1 \lambda(z) dz = -1$
 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(\boldsymbol{z}) - \beta_1 \right] \boldsymbol{w} T \right\rangle \ge 0$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \, \mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \, \mathrm{d}z$$

provided that

$$au(0) = 1$$

 $au(1) = 0$
 $\int_0^1 \lambda(z) \, dz = -1$
 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(\boldsymbol{z}) - \beta_1 \right] \boldsymbol{w} T \right\rangle \geq 0$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \,\mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \,\mathrm{d}z$$

provided that

$$au(0) = 1$$

 $au(1) = 0$
 $\int_0^1 \lambda(z) \, \mathrm{d}z = -1$
 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(\boldsymbol{z}) - \beta_1 \right] \boldsymbol{w} T \right\rangle \ge 0$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	0000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \, \mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \, \mathrm{d}z$$

provided that

$$au(0) = 1$$

 $au(1) = 0$
 $\int_0^1 \lambda(z) \, \mathrm{d}z = -1$
 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(\boldsymbol{z}) - \beta_1 \right] \boldsymbol{w} T \right\rangle \geq 0$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	0000	000	00000	0

The mean vertical convective heat flux satisfies

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - \int_0^1 \tau(z) \, \mathrm{d}z + \frac{1}{4\beta_2} \int_0^1 \left| \tau'(z) - \lambda(z) + \beta_2 z - \frac{1}{2}\beta_2 \right|^2 \, \mathrm{d}z$$

provided that

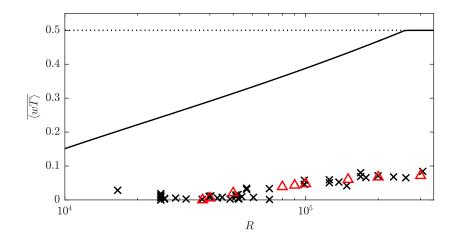
$$au(0) = 1$$

 $au(1) = 0$
 $\int_0^1 \lambda(z) \, \mathrm{d}z = -1$
 λ is non-decreasing

$$\left\langle \beta_1 R^{-1} \left| \nabla \boldsymbol{u} \right|^2 + \beta_2 \left| \nabla T \right|^2 + \left[\tau'(\boldsymbol{z}) - \beta_1 \right] \boldsymbol{w} T \right\rangle \geq 0$$

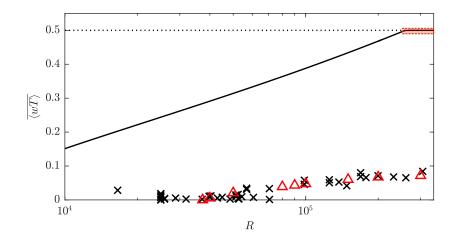
Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	●00	00000	0

Numerically optimized bounds



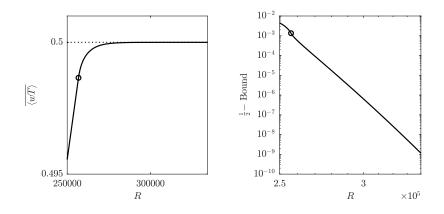
Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	●00	00000	0

Numerically optimized bounds



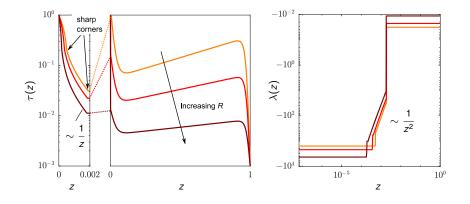
Introduction Estimates via convex optimization Results Extensions Conclus 000000 000000 000000 000000 0 0		Estimates via convex optimization			Conclusion O
---	--	-----------------------------------	--	--	-----------------

Numerically optimized bounds



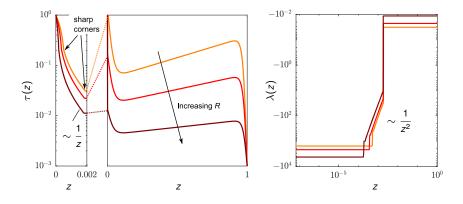
000000 00000 000 00000 0

Optimizers



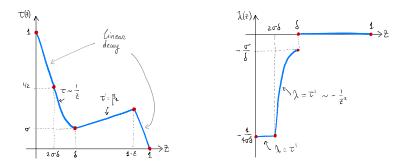
000000 00000 000 00000 0		a convex optimization Results	Extensions 00000	Conclusion O
---------------------------------	--	-------------------------------	---------------------	-----------------

Optimizers



 $au'(z) pprox \lambda(z)$ near z = 0

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

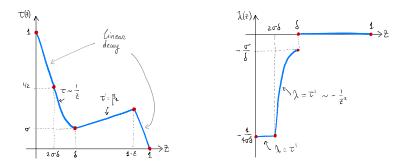


$$\overline{\langle wT \rangle} \leq \frac{1}{2} - \sigma \delta \ln\left(\frac{1}{\sigma}\right) + O(\sigma \delta R^{\frac{3}{5}})$$

provided that

$$\langle \beta_1 R^{-1} | \nabla \boldsymbol{u} |^2 + \beta_2 | \nabla T |^2 + [\boldsymbol{\tau}'(\boldsymbol{z}) - \beta_1] \boldsymbol{w} T \rangle \geq 0$$
Key estimate: $\langle (\boldsymbol{z} + \sigma \delta)^{-2} \boldsymbol{w} T \rangle \lesssim \langle | \nabla \boldsymbol{u} |^2 + | \nabla T |^2 \rangle$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0



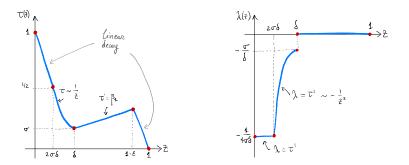
$$\overline{\langle wT \rangle} \leq \frac{1}{2} - \sigma \delta \ln\left(\frac{1}{\sigma}\right) + O(\sigma \delta R^{\frac{3}{5}})$$

provided that

$$\langle \beta_1 R^{-1} | \nabla \boldsymbol{u} |^2 + \beta_2 | \nabla T |^2 + [\tau'(\boldsymbol{z}) - \beta_1] \boldsymbol{w} T \rangle \ge 0$$

Key estimate: $\langle (\boldsymbol{z} + \sigma \delta)^{-2} \boldsymbol{w} T \rangle \lesssim \langle | \nabla \boldsymbol{u} |^2 + | \nabla T |^2 \rangle$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

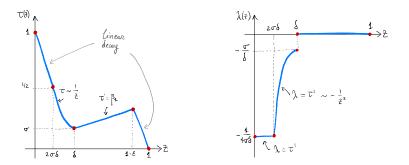


Theorem (Kumar, Arslan, F, Craske, Wynn, JFM2021)

There exist positive constants c_1 and c_2 such that, for any value of Pr and sufficiently large R,

$$\overline{\langle wT \rangle} \leq \frac{1}{2} - c_1 R^{\frac{1}{5}} \exp\left(-c_2 R^{\frac{3}{5}}\right)$$

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0



Theorem (Kumar, Arslan, F, Craske, Wynn, JFM2021)

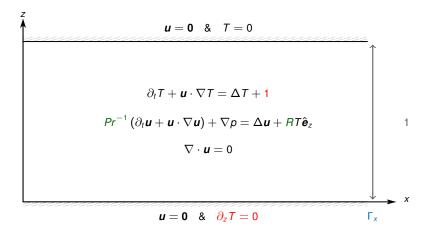
There exist positive constants c_1 and c_2 such that, for any value of Pr and sufficiently large R,

$$\mathcal{F}_{top} \leq 1 - c_1 R^{rac{1}{5}} \exp\left(-c_2 R^{rac{3}{5}}
ight)$$

Extensions

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	0000	0

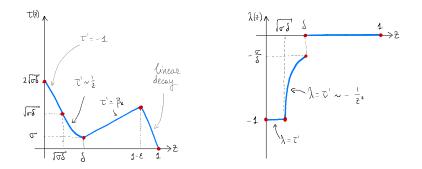
Extension 1: Insulating bottom boundary



 $\overline{\langle \textit{wT} \rangle} = \textit{R}^{-1} \overline{\langle |\nabla \textit{u}|^2 \rangle} \sim$ mean dissipation of kinetic energy

Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	0000	0

Similar result, different exponent



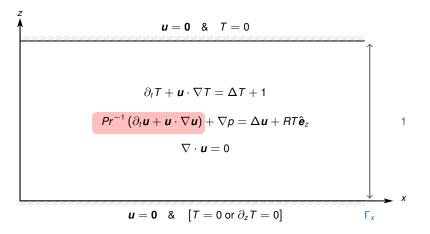
Theorem (Kumar, Arslan, F, Craske, Wynn, JFM2021)

There exist positive constants c_1 and c_2 such that, for any value of Pr and sufficiently large R,

$$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{-\frac{1}{5}} \exp\left(-c_2 R^{\frac{3}{5}}\right)$$

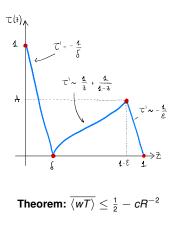
Introduction	Estimates via convex optimization	Results	Extensions	Conclusion
000000	00000	000	00000	0

Extension 2: "Thick" fluids with $Pr=\infty$

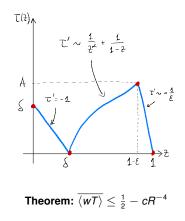


Much better bounds!¹

Cool bottom (T = 0)



Insulating bottom ($\partial_z T = 0$)



¹Arslan, F, Craske & Wynn, arXiv:2205.03175 (2022)

Introduction 000000		Estimates via convex optimization	Results 000	Extensions 00000	Conclusion
Summa	ary				
	Model	Arbitrary flui	ds	"Thick" fluids ($\textit{Pr}=\infty$)	
	T = 0 $T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{\frac{1}{5}}$	e ^{-c₂R³/5}	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-2}$	
	$T = 0$ $\partial_z T = 0$	$\overline{\langle wT \rangle} \leq \frac{1}{2} - c_1 R^{-\frac{1}{2}}$	$e^{-c_2 R^{\frac{3}{5}}}$	$\overline{\langle \textit{wT} \rangle} \leq \frac{1}{2} - \textit{cR}^{-4}$	

Introduction		Estimates via convex optimization	Results 000	Extensions 00000	Conclusion
Summa	ary				
	Model	Arbitrary fluids	"Th	ick" fluids ($\textit{Pr}=\infty$)	
	T = 0 $T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{\frac{1}{5}} e^{-t}$	c ₂ R ³ 5	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-2}$	
	$T = 0$ $\partial_z T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{-\frac{1}{5}} e^{-\frac{1}{5}} e^{-$	- c ₂ R ³ 5	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-4}$	

Introduction 000000		Estimates via convex optimization	Results 000	Extensions 00000	Conclusion
Summa	ary				
	Model	Arbitrary fluid	S	"Thick" fluids ($\textit{Pr}=\infty$)	
	T = 0	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{\frac{1}{5}} e^{\frac{1}{5}}$	$-c_2 R^{\frac{3}{5}}$	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-2}$	
	<u> </u>	$(WI) \geq \frac{1}{2} - c_1 \Lambda^3 \theta$			
	T = 0	$\overline{(-\pi)} < 1$ $p = \frac{1}{2}$	$-\infty R^{\frac{3}{5}}$	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-4}$	
	$\partial_z T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{-\frac{1}{5}}$	9 2/12	$\langle W I \rangle \geq \frac{1}{2} - CH$	

Introduction 000000		Estimates via convex optimization	Results 000	Extensions 00000	Conclusion
Summa	ary				
	Model	Arbitrary fluid	S	"Thick" fluids ($\textit{Pr}=\infty$)	
	T = 0	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{\frac{1}{5}} e^{\frac{1}{5}}$	$-c_2 R^{\frac{3}{5}}$	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-2}$	
	<u> </u>	$(WI) \geq \frac{1}{2} - c_1 \Lambda^3 \theta$			
	$\overline{T=0}$	$\overline{(-\pi)} < 1$ $p = \frac{1}{2}$	$-\infty R^{\frac{3}{5}}$	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-4}$	
	$\partial_z T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{-\frac{1}{5}}$	9 2/12	$\langle W I \rangle \geq \frac{1}{2} - CH$	

Introduction		Estimates via convex optimization	Results 000	Extensions 00000	Conclusion
Summa	ary				
	Madal	Autoine as filei	-		
	Model	Arbitrary flui	as	"Thick" fluids ($Pr = \infty$)	
	T = 0 $T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{\frac{1}{5}}$	$e^{-c_2 R^{\frac{3}{5}}}$	$\overline{\langle \textit{wT} \rangle} \leq \frac{1}{2} - \textit{cR}^{-2}$	
	$T = 0$ $\partial_z T = 0$	$\overline{\langle wT\rangle} \leq \frac{1}{2} - c_1 R^{-\frac{1}{2}}$	$\frac{1}{5}e^{-c_2R^{\frac{3}{5}}}$	$\overline{\langle wT \rangle} \leq \frac{1}{2} - cR^{-4}$	