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Why heat transport?
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A periodic layer with cool and sticky boundaries

∂t T + u · ∇T = ∆T + 1

Pr−1 (∂t u + u · ∇u) +∇p = ∆u + RT êz

∇ · u = 0

u = 0 & T = 0

u = 0 & T = 0 Γx

x

z

1

Which fraction of the heat input exists through the top vs the bottom?
How do these fractions depend on R (heating strength) and Pr (fluid’s inertia)?
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Weak heating (small R) = no flow

u = 0 & T = 0

u = 0 & T = 0 Γx

x

z

1

Ftop =
1
2

Fbot =
1
2
(= 1 −Ftop)
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Strong heating (large R) = turbulence

Video courtesy of John Craske

Ftop >
1
2

Theorem (Goluskin & Spiegel, 2012): 1
2 ≤ Ftop ≤ 1 independently of R and Pr .
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Simulations tell a different story!
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Plan for today

1. Estimating Ftop via infinite-dimensional convex optimization

2. Results from numerical approximation

3. From numerics to proofs

4. Extensions and open problems (depending on time!)
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Basic identities

Ftop =
1
2
+

1
R
⟨|∇u|2⟩ ∼ kinetic energy dissipation

=
1
2
+ ⟨wT ⟩ vertical convective heat flux

Notation:
w = vertical velocity of the fluid
T = temperature
⟨·⟩ = space average
· = infinite-time average

Question: Can we prove that

⟨wT ⟩ ≤ 1
2
− f (R,Pr)

for some positive function f?
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Bounding time averages

Observation: If V{u, T} remains uniformly bounded along solutions,

d
dt V{u(t), T (t)} = lim sup

t→∞

V{u(t), T (t)} − V{u0, T0}
t

= 0

Then,

⟨w(t)T (t)⟩ = ⟨w(t)T (t)⟩+ d
dt V{u(t), T (t)}

= ⟨w(t)T (t)⟩+ L V{u(t), T (t)}

≤ inf
V

sup
(u,T )∈A

{
⟨wT ⟩+ L V{u, T}

}

Tobasco et al (2018) + Rosa & Temam (2020): The strategy is sharp for well-posed
ODEs/PDEs with compact absorbing sets.
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How should one choose V?
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The Doering & Constantin way (1994+)

Consider

V{u, T} =
β1

2Pr R

〈
|u|2

〉
+

β2

2

〈
|T − φ(z)|2

〉
where

φ(0) = 0 φ(1) = 0

Then,

⟨wT ⟩+ L V{u, T} = 1
2 − ⟨τ(z)⟩
−

〈[
τ ′(z) + 1 + β2z

]
Tz
〉

−
〈
β1R−1 |∇u|2 + β2 |∇T |2 +

[
τ ′(z)− β1

]
wT

〉
Maximize over the absorbing set A defined using

▶ Boundary conditions
▶ Incompressibility: ∇ · u = 0
▶ Minimum principle: at long times, T ≥ 0 almost everywhere in the fluid domain
⇝ introduce a “Lagrange multiplier” λ(z)
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An explicit convex optimization problem

The mean vertical convective heat flux satisfies

⟨wT ⟩ ≤ 1
2
−
ˆ 1

0
τ(z) dz +

1
4β2

ˆ 1

0

∣∣τ ′(z)− λ(z) + β2z − 1
2β2

∣∣2
dz

provided that

τ(0) = 1

τ(1) = 0ˆ 1

0
λ(z) dz = −1

λ is non-decreasing

and, for all u and T satisfying ∇ · u = 0 and the flow’s boundary condition,

〈
β1R−1 |∇u|2 + β2 |∇T |2 +

[
τ ′(z)− β1

]
wT

〉
≥ 0
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Numerically optimized bounds
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Numerically optimized bounds
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Numerically optimized bounds
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Optimizers

z z z

τ
(z
)

λ
(z
)

∼
1

z2
∼

1

z

τ ′(z) ≈ λ(z) near z = 0
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Turning numerical results into rigorous proofs

⟨wT ⟩ ≤ 1
2 − σδ ln

(
1
σ

)
+ O(σδR

3
5 )

provided that 〈
β1R−1 |∇u|2 + β2 |∇T |2 +

[
τ ′(z)− β1

]
wT

〉
≥ 0

Key estimate:
〈
(z + σδ)−2wT

〉
≲

〈
|∇u|2 + |∇T |2

〉
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Turning numerical results into rigorous proofs

Theorem (Kumar, Arslan, F, Craske, Wynn, JFM2021)

There exist positive constants c1 and c2 such that, for any value of Pr and sufficiently
large R,

⟨wT ⟩ ≤ 1
2
− c1R

1
5 exp

(
−c2R

3
5

)
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Theorem (Kumar, Arslan, F, Craske, Wynn, JFM2021)
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5 exp
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3
5
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Extensions
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Extension 1: Insulating bottom boundary

∂t T + u · ∇T = ∆T + 1

Pr−1 (∂t u + u · ∇u) +∇p = ∆u + RT êz

∇ · u = 0

u = 0 & T = 0

u = 0 & ∂zT = 0 Γx

x

z

1

⟨wT ⟩ = R−1⟨|∇u|2⟩ ∼ mean dissipation of kinetic energy
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Similar result, different exponent

Theorem (Kumar, Arslan, F, Craske, Wynn, JFM2021)

There exist positive constants c1 and c2 such that, for any value of Pr and sufficiently
large R,

⟨wT ⟩ ≤ 1
2
− c1R− 1

5 exp
(
−c2R

3
5

)
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Extension 2: “Thick” fluids with Pr = ∞

∂t T + u · ∇T = ∆T + 1

Pr−1 (∂t u + u · ∇u) +∇p = ∆u + RT êz

∇ · u = 0

u = 0 & T = 0

u = 0 & [T = 0 or ∂zT = 0] Γx

x

z

1
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Much better bounds!1

Cool bottom (T = 0) Insulating bottom (∂zT = 0)

Theorem: ⟨wT ⟩ ≤ 1
2 − cR−2 Theorem: ⟨wT ⟩ ≤ 1

2 − cR−4

1Arslan, F, Craske & Wynn, arXiv:2205.03175 (2022)

http://arxiv.org/abs/2205.03175
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Summary

Model Arbitrary fluids “Thick” fluids (Pr = ∞)

T = 0

T = 0

⟨wT ⟩≤ 1
2−c1R

1
5 e−c2R

3
5 ⟨wT ⟩≤ 1

2−cR−2

∂z T = 0

T = 0

⟨wT ⟩≤ 1
2−c1R− 1

5 e−c2R
3
5 ⟨wT ⟩≤ 1

2−cR−4

However:

Are the constructions leading to these bounds optimal?
Are the bounds sharp for convective flows?

Which flows optimize ⟨wT ⟩? Are they perhaps steady?
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