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Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

Let Ω ⊂ Rn be a bounded, open set, and let h : ∂Ω→ R be a non-negative
function. Denoting by ν the exterior unit normal to the boundary of Ω, we
define

Σε = { σ + tν(σ) | σ ∈ ∂Ω, 0 < t < εh(σ) }

and Ωε = Ω ∪ Σε.
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We are interested in problems of the form

inf { Fε(v, h) | v ∈ K, h ∈ H } ,

where K,H are suitable class of functions,

and

Fε(v, h) =

ˆ
Ω
g(v,∇v) dx+ ε

ˆ
Σε

|∇v|2 dx+

ˆ
∂Ωε

q(v) dσ.

We will study this problems by means of Γ-limit.
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For instance, we could take into account the following problem: let u be the
steady-state temperature of the body Ωε such that u is constant inside Ω,
and the heat transfer with the exterior is conveyed by convection.

u ≡ 1

∂u

∂νε
+

β

ε
u = 0

∆u = 0
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We will see some techniques that we can use in order to prove that for small
ε > 0, we can write

min
v∈K
Fε(v, h) = F0(h) + εF (1)(h) +R(Ω, h, ε),

where F0 and F (1) are suitable functionals, and

lim
ε→0+

R(Ω, h, ε)

ε
= 0.

Finally, we will show that, as the intuition suggests, if ε is small enough then
the optimal configuration for the insulating layer concentrates near the
points of ∂Ω where the mean curvature is relatively small.
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We will also see that the "linear" situation (to be intended with respect to
the distance from the boundary ∂Ω) gives hints about the way to approach
the problem.
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Reinforcement problem

In this section we let

Σε = { σ + tν(σ) | σ ∈ ∂Ω, 0 < t < hε(σ) } ,

and we study the functional

Fε(v) =

ˆ
Ω

(
|∇v|2 − 2fv

)
dx+ ε

ˆ
Σε

|∇v|2 dx,

where f ∈ L2(Ω) is fixed, and v ∈W 1,2
0 (Ωε).

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

Reinforcement problem

In this section we let

Σε = { σ + tν(σ) | σ ∈ ∂Ω, 0 < t < hε(σ) } ,

and we study the functional

Fε(v) =

ˆ
Ω

(
|∇v|2 − 2fv

)
dx+ ε

ˆ
Σε

|∇v|2 dx,

where f ∈ L2(Ω) is fixed, and v ∈W 1,2
0 (Ωε).

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

If we let uε be the unique minimizer of Fε, then uε solves in the weak sense

−∆uε = f in Ω,

∆uε = 0 in Σε,

∂u−ε
∂ν

= ε
∂u+ε
∂ν

on ∂Ω

uε = 0 on ∂Ωε.

If we study the Γ-limit of the functional Fε as ε→ 0+, we can prove that uε
converges in L2(Ω) to a function u0 solving{

−∆u0 = f in Ω,

γ(x, u0) = 0 on ∂Ω,

where γ depends on the choice of hε.
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hε << ε ←→

γ(x, u) = u

hε >> ε ←→

γ(x, u) =
∂u

∂ν

lim
ε→0+

hε
ε

= h(x) ←→

γ(x, u) =
∂u

∂ν
+

1

h(x)
u

To understand why this happens, let us assume that uε is a linear function
of the distance from ∂Ω in Σε, namely:

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

hε << ε ←→ γ(x, u) = u

hε >> ε ←→

γ(x, u) =
∂u

∂ν

lim
ε→0+

hε
ε

= h(x) ←→

γ(x, u) =
∂u

∂ν
+

1

h(x)
u

To understand why this happens, let us assume that uε is a linear function
of the distance from ∂Ω in Σε, namely:

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

hε << ε ←→ γ(x, u) = u

hε >> ε ←→ γ(x, u) =
∂u

∂ν

lim
ε→0+

hε
ε

= h(x) ←→

γ(x, u) =
∂u

∂ν
+

1

h(x)
u

To understand why this happens, let us assume that uε is a linear function
of the distance from ∂Ω in Σε, namely:

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

hε << ε ←→ γ(x, u) = u

hε >> ε ←→ γ(x, u) =
∂u

∂ν

lim
ε→0+

hε
ε

= h(x) ←→ γ(x, u) =
∂u

∂ν
+

1

h(x)
u

To understand why this happens, let us assume that uε is a linear function
of the distance from ∂Ω in Σε, namely:

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

hε << ε ←→ γ(x, u) = u

hε >> ε ←→ γ(x, u) =
∂u

∂ν

lim
ε→0+

hε
ε

= h(x) ←→ γ(x, u) =
∂u

∂ν
+

1

h(x)
u

To understand why this happens, let us assume that uε is a linear function
of the distance from ∂Ω in Σε, namely:

Paolo Acampora (Unina) Thin insulating layer 16/03/2023



Introduction Reinforcement Thermal Insulation First Order Approximation Sketch of the proof Conclusion

0 σ σ + hε(σ)

uε(σ)
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0 σ σ + hε(σ)

− ∂u−

∂ν

∂u+

∂νuε(σ)
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0 σ σ + hε(σ)

−hε ∂u
+

∂ν

− ∂u−

∂ν

∂u+

∂νuε(σ)
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0 σ σ + hε(σ)

−hε ∂u
+

∂ν

− ∂u−

∂ν

∂u+

∂νuε(σ)

Transmission
Conition

∂u−
ε

∂ν = ε∂u
+
ε

∂ν = − ε
hε
uε
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Passing to the limit, assuming that lim
ε→0+

uε = u0, we get

∂u0
∂ν

= −u0 lim
ε→0+

ε

hε
,

which gives

hε << ε ←→

Dirichlet boundary condition

hε >> ε ←→

Neumann boundary condition

lim
ε→0+

hε
ε

= h(x) ←→

Robin boundary condition with β(x) = 1
h(x)

From now on, we will focus our interest in the case hε(x) = εh(x).
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Theorem (Acerbi, Buttazzo, Ann. Inst. H. Poincaré Anal. Non Linéaire
- 1986)

Let Ω ⊂ Rn be a bounded, open set with C1,1 boundary, and fix a positive
Lispchitz function h : ∂Ω→ R.

Then Fε(·, h) Γ-converges, as ε→ 0+, in
the strong L2(Rn) topology, to the functional

F0(v, h) =

ˆ
Ω

(
|∇v|2 − 2fv

)
dx+

ˆ
∂Ω

v

h
dHn−1

It is worth mentioning that this theorem turns to be a particular case of the
more general results in E. Acerbi and G. Buttazzo (1986) [ “Reinforcement
problems in the calculus of variations”, Annales de l’I.H.P. Analyse non
linéaire. ]
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This kind of problem is often referred to as reinforcement problem because if
f ≡ 1, we have that

min
{
Fε(v, h)

∣∣∣ v ∈W 1,2
0 (Ωε), h ∈ H

}
is equivalent to maximize the torsional rigidity with a thin reinforcement
layer with density εh(x):

max
h∈H

T (Ωε)
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Thermal Insulation problem

In this section we let

Σε = { σ + tν(σ) | σ ∈ ∂Ω, 0 < t < εh(σ) } ,

and we study the functional

Fε(v) =

ˆ
Ω

(
|∇v|2 − 2fv

)
dx+ ε

ˆ
Σε

|∇v|2 dx+ β

ˆ
∂Ωε

v2 dHn−1,

where f ∈ L2(Ω) is fixed, and v ∈W 1,2(Ωε).
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As before, if we let uε be the unique minimizer of Fε, then uε solves in the
weak sense 

−∆uε = f in Ω,

∆uε = 0 in Σε,

∂u−ε
∂ν

= ε
∂u+ε
∂ν

on ∂Ω

∂uε
∂νε

+
β

ε
uε = 0 on ∂Ωε.
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Again, we can prove that uε converges in L2(Ω) to a function u0 solving
−∆u0 = f in Ω,

∂u0
∂ν

+
β

1 + βh
u0 = 0 on ∂Ω.

We can gather information by the linear approximation in this case as well:
let us assume that for x ∈ Σε, and approximate νε ∼ ν (where νε is the
outer unit normal to Ωε)
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0 σ σ + εh(σ)

uε(σ)
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∂u+
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β
∂u+

∂ν
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− ∂u−

∂ν
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β
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Condition
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0 σ σ + εh(σ)

−εh∂u+
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− ε
β
∂u+

∂ν

uε(σ)

− ∂u−

∂ν

∂u+

∂ν

Transmission
Condition

∂u−
ε

∂ν = ε∂u
+
ε

∂ν

uε(σ) = −1+βh
β

∂u−
ε

∂ν
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Theorem (Della Pietra, Nitsch, Scala, Trombetti, Comm. Partial
Differential Equations - 2020)

Let Ω ⊂ Rn be a bounded, open set with C1,1 boundary, and fix a positive
Lispchitz function h : ∂Ω→ R.

Then Fε(·, h) Γ-converges, as ε→ 0+, in
the strong L2(Rn) topology, to the functional

F0(v, h) =

ˆ
Ω

(
|∇v|2 − 2fv

)
dx+

ˆ
∂Ω

βv

1 + βh
dHn−1

If we are interested in studying the problem

inf
{
F0(v, h)

∣∣ v ∈W 1,2(Ωε), h ∈ H
}
,

we may try to solve
inf

v∈W 1,2(Ω)
inf
h∈H
F0.
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inf
{
F0(v, h)

∣∣ v ∈W 1,2(Ωε), h ∈ H
}
,

we may try to solve
inf

v∈W 1,2(Ω)
inf
h∈H
F0.
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This approach leads to

Theorem (Della Pietra, Nitsch, Scala, Trombetti, Comm. Partial
Differential Equations - 2020)
Let β,m > 0, and let

K = W 1,2(Ω) H =

{
h ∈ L2(∂Ω)

∣∣∣∣ ˆ
∂Ω

h dHn−1 ≤ m

}
.

Then there exists a couple (u0, h) ∈ K ×H minimizing F0. Moreover,

h(σ) =


1

β

(
u0(σ)

cu
− 1

)
if u0(σ) ≥ cu,

0 otherwise,

where cu is the unique positive constant such that
´
∂Ω h dHn−1 = m.

Finally, if Ω is connected, then (u0, h) is the unique solution minimizing F0.
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Here we can note some properties of the solution (u0, h) we have found:
it gives an idea on how we should distribute the insulating material (the
higher the temperature u0, the higher the density h);

there could be areas of ∂Ω that are meant to be left uncovered;
it helps with studying the problem when we let Ω vary;
if, for instance, we assume that u ≡ 1 on ∂Ω, then h has to be
constant for every Ω, independently of its shape. Moreover, the best h
is the one that saturates the mass constraint.

The previous approximation result is a quite powerful tool to gather
information about the non-approximated functional Fε. Nevertheless, it fails
in other directions.
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For instance, let h be constant, and define

Iβ(Ω, h) = inf
v∈W 1,2(Ωε)
v≥1 in Ω

{ˆ
Ωε

|∇v|2 dx+
β

ε

ˆ
∂Ωε

v2 dHn−1

}
,

then we have

Theorem (Della Pietra, Nitsch, Trombetti, Mathematische Annalen -
2022)
Let Ω = BR(0) ⊂ Rn. If

β

ε
<

n− 1

R
,

and 0 < m ≤ m0(ε,R), then

Iβ(BR, h) > Iβ(BR, 0).
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Thermal insulation: first order approximation

In this last section we let

Σε = { σ + tν(σ) | σ ∈ ∂Ω, 0 < t < εh(σ) } ,
Kε =

{
v ∈ H1(Ωε) : v = 1 in Ω

}
,

and we study the functional

Fε(v, h) =


ε

ˆ
Σε

|∇v|2 dx+ β

ˆ
∂Ωε

v2 dHn−1 if v ∈ Kε,

+∞ if v ∈ L2(Rn) \Kε.
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we then let
K0 =

{
v ∈ L2(Rn) : v = 1 in Ω

}
,

and

F0(v, h) =


β

ˆ
∂Ω

1

1 + βh
dHn−1 if v ∈ K0,

+∞ if v ∈ L2(Rn) \K0,

Following the arguments in F. Della Pietra, C. Nitsch, R. Scala, and
C. Trombetti (2021) [ “An optimization problem in thermal insulation with
Robin boundary conditions”, Communications in Partial Differential
Equations. ] we have

Theorem 1 (A., Cristoforoni, Nitsch, Trombetti, In preparation - 2023)

Let Ω ⊂ Rn be a bounded, open set with C1,1 boundary, and fix a positive
Lispchitz function h : ∂Ω→ R. Then Fε(·, h) Γ-converges, as ε→ 0+, in
the strong L2(Rn) topology, to the functional F0(·, h).
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We now state the main result in A., E. Cristoforoni, C. Nitsch, and
C. Trombetti (2023) [ “On the optimal shape of a thin insulating layer”, In
preparation. ] let

δFε(v, h) =
Fε(v, h)−F0(h)

ε
,

and let

F (1)(v, h) =


β

ˆ
∂Ω

Hh(2 + βh)

2(1 + βh)2
dHn−1 if v ∈ K0,

+∞ if v ∈ L2(Rn) \K0.
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Theorem 2 (A., Cristoforoni, Nitsch, Trombetti, In preparation - 2023)

Let Ω ⊂ Rn be a bounded, open set with C3 boundary, and fix a positive
C2 function h : ∂Ω→ R. Then δFε(·, h) Γ-converges, as ε→ 0+, in the
strong L2(Rn) topology, to the functional F (1)(·, h).

The proof of the theorem relies on finding suitable supersolution and
subsolution to the Euler-Lagrange equation, in order to approximate the
linear function (with respect to the distance) satisfying the Robin condition.
This theorem allows us to approximate

min
v∈Kε

Fε(v, h) ∼ F0(h) + εF (1)(h)
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We now focus on the functional

Gε(Ω, h) = β

ˆ
∂Ω

(
1

1 + βh
+ εH

h(2 + βh)

2(1 + βh)2

)
dHn−1.

In particular, we are interested in the problem

min

{
Gε(h)

∣∣∣∣ h ∈ L1(∂Ω), h ≥ 0,

ˆ
∂Ω

h dHn−1 ≤ m

}
. (1)

We want to find minimizers to (1). For every k ∈ (0, k0), with k0 = k0(Ω),
we can define functions µk ∈ L1(∂Ω) as

µk(σ) =


1

β
(yk(σ)− 1) if H(σ) < 1− k.

0 if H(σ) ≥ 1− k,

where yk(σ) is the root of a suitable polynomial (depending on σ).
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Theorem 3 (A., Cristoforoni, Nitsch, Trombetti - In preparation (2023))
Assume that

εH

β
≤ 2

3
,

then, for every m > 0 there exists a unique k = km such that the function
µk is the unique minimizer to (1).

The constant km is defined as the unique constant such that
ˆ
∂Ω

µk dHn−1 = m.
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For the limiting problem we have various interesting properties:
µk(σ) = 0 whenever H(σ) > (1−km)β

ε ;

µk(σ1) ≥ µk(σ2) if and only if H(σ1) ≤ H(σ2);
if

ε infH

β
≥ 2,

we can prove that the best configuration is given by µ ≡ 0;
the approximation gives a better solution for annuli and disjoint balls;
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the functional Gε is coherent with the results in F. Della Pietra,
C. Nitsch, and C. Trombetti (2022) [ “An optimal insulation problem”,
Math. Ann.. ] if β/ε < (n− 1)/R, then

Gε(BR, h) > Gε(BR, 0);

the minimizer may be helpful to the study of the shape optimization
problems of the kind

inf { Gε(Ω, h) | (Ω, h) ∈ K ×H } ,

where K and H are suitable classes of sets and functions respectively.
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Let P > 0, m > 0,

and let

KP =

 Ω ⊂ Rn

∣∣∣∣∣∣∣

Ω open and bounded with C1,1 boundary,

HΩ ≥ 0,

P (Ω) = P.

 ,

and

Hm =

{
h ∈ L1(∂Ω)

∣∣∣∣ h ≥ 0,

ˆ
∂Ω

h dHn−1 ≤ m

}
.

Consider the problem

inf { Gε(Ω, h) | (Ω, h) ∈ KP ×Hm } . (2)

Theorem 4 (A., Cristoforoni, Nitsch, Trombetti - In preparation (2023))
There exists a minimizing sequence (Ωk, µΩk

) to (2) such that Ωk converges
in the Hausdorff sense to the (n− 1)-dimensional disc D for which
2Hn−1(D) = P .
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Coarea formula
Let d : Rn → R be the distance function from ∂Ω, let g : Rn → R be an
L1(Rn) function, and let U ⊂ Rn be an open set, then

ˆ
U
g(x) dx =

ˆ
R

ˆ
U∩{ d=t }

g(y) dHn−1(y) dt.

Let Ω be an open bounded set with C1 boundary, and for every σ ∈ ∂Ω let
{τ1(σ), . . . , τn−1(σ)} be an orthonormal basis of the tangent plane at ∂Ω in
σ. Let U be an open neighbourhood of ∂Ω, and ϕ : U → Rn a C1 vector
field. We define, for i = 1, . . . , n and j = 1, . . . , n− 1,

(Dτϕ)ij = Dϕi · τj , Jτϕ =
√

det ((Dτϕ)TDτϕ),

divτ ϕ =

n−1∑
j=1

Dϕτj · τj .
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If ν is the normal unit vector at ∂Ω, we define

divτ ν := H.

Area formula on surfaces
Let U ⊆ Rn be a neighbourhood of ∂Ω, let ϕ : U → Rn be a C1 function,
and let g : Rn → R be a positive Borel function. We have that

ˆ
∂Ω

g(ϕ(σ)) JτϕdHn−1 =

ˆ
ϕ(∂Ω)

g(σ) dHn−1.

If we choose ϕ(x) = x+ tX(x), with X extension of ν, we can
appproximate Jτϕ as follows:

Jτϕ(σ) = 1 + tH(σ) + t2R(t, σ).
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Combining coarea formula, area formula, and the approximation of the
jacobian, we get the following fundamental equalities: for every g : Ωε → R
positive Borel function,

ˆ
Σε

g(x) dx =

ˆ
∂Ω

ˆ εh(σ)

0
g(σ+ tν)

(
1 + tH(σ) + ε2R1(σ, t, ε)

)
dt dHn−1,

(3)

andˆ
∂Ωε

g(σ) dHn−1 =

ˆ
∂Ω

g(σ+εhν)
(
1 + εh(σ)H(σ) + ε2R2(σ, ε)

)
dHn−1,

(4)
where R1 and R2 are bounded.
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In general, we can not expect uε to be linear, but we can approach the
problem as follows: we let α ∈ (−α0, α0) \ {0}, and we define functions vε,α
as follows

vε,γ(σ + thν) = 1−
(
t

ε

)1+α βh

(1 + α)(1 + βh)
.

It can be proved that, for positive α, vε,α and vε,−α are respectively a
supersolution and a subsolution for our PDE, and that, if we choose wisely α,
these functions behave like a linear approximation in in the limit for ε→ 0+.
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Further Developments

Adapting these techniques to the case with the heat source −∆u = f
in Ω;

Studying the problem of minimizing Gε with respect to h in the case

ε

β
sup
∂Ω

H >
2

3
;

Studying the problem of minimizing or maximizing Gε with respect both
h and Ω when we replace the constraint on the perimeter (for instance
fixed volume, equi-bounded curvature, quermassintegrals constriant, ...);
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Thank you for your attention!
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