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Tim De Ryck (ETH Zürich) FAU DCN-AvH 20 April 2023 1 / 20



Neural networks

A feedforward (artificial) neural network of depth L is a map of the
form

uθ : Rn0 → RnL : x 7→ (AL ◦ ρL−1 ◦ · · · ◦ ρ1 ◦ A1)(x)

where

Aℓ : Rnℓ−1 → Rnℓ are affine linear maps,

ρℓ are activation functions,

θ are all parameters (weights and biases).

A feedforward NN is called a tanh NN when

tanh : R → R : x 7→ ex−e−x

ex+e−x ,

ρℓ(x) = (tanh(x1), . . . , tanh(xnℓ)) for ℓ = 1, 2, . . . , L− 1,

Network has depth L, width maxℓ nℓ and
∑

ℓ nℓ neurons
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Setting

Given T > 0 and D ⊂ Rd compact, consider PDE (with parameter a):

La(u)(t, x) = 0 and u(x , 0) = u0 (Bu = 0) ∀(t, x) ∈ [0,T ]× D,

e.g. heat equation La = ∂t − a ·∆x

We are interested in:

Task 1: approximate function u for fixed u0 and a

To do: find NN uθ such that u ≈ uθ

Task 2: approximate operator G : X → Y : v 7→ u, where v ∈ {u0, a}
To do: find NN operator Gθ such that G ≈ Gθ

Why neural networks?
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Task 1: supervised learning

Goal: find NN uθ such that ∥u − uθ∥L2 is small

Supervised learning consists of

select (grid) points yi and use PDE solver to approximate u(yi )

training set S = {(y1, u(y1)), . . . (yN , u(yN))} ⊂ D × u(D),

approach: minimize 1
N

∑N
n=1 ∥u(yn)− uθ(yn)∥2,

problem: generating training data can be expensive,

Tim De Ryck (ETH Zürich) FAU DCN-AvH 20 April 2023 4 / 20



Task 1: physics-informed learning

Goal: find NN uθ such that ∥u − uθ∥L2 is small

Problem: generating training data can be expensive

Recall Lu = Bu = 0 ⇒ idea: minimize residuals ∥L(uθ)∥L2 + λ∥B(uθ)∥L2

Physics informed (unsupervised) learning consists of

e.g. [Lagaris et al., 2000; Raissi et al., 2019],

select (grid) points xi ∈ D and yi ∈ ∂D

training sets {x1, . . . xN} ⊂ D and {y1, . . . yM} ⊂ ∂D are free
→ no data generation necessary,

approach: minimize 1
N

∑N
n=1 ∥L(uθ)(xn)∥+ λ

M

∑M
m=1 ∥B(uθ)(ym)∥.
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Task 1: physics-informed learning

Goal: find NN uθ such that ∥u − uθ∥L2 is small

Du = Bu = 0 ⇒ idea: minimize PINN residual ∥L(uθ)∥L2 + λ∥B(uθ)∥L2
Physics informed (unsupervised) learning consists of

training sets {x1, . . . xN} ⊂ D and {y1, . . . yM} ⊂ D,

approach: minimize 1
N

∑N
n=1 ∥L(uθ)(xn)∥+ λ

M

∑M
m=1 ∥B(uθ)(ym)∥.

Questions
1 Existence: Is there uθ such that ∥Duθ∥L2 + λ∥Buθ∥L2 is small? If

yes, what is the size of uθ?

2 Stability: If ∥Duθ∥L2 + λ∥Buθ∥L2 is small, will ∥u − uθ∥L2 be small as
well?

3 Generalization: Does small training error imply small generalization
error?
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Approximation PDEs with NNs

What needs to be minimized?

Supervised learning: training data needed
Physics-informed learning: no training data needed

motivation: L(u) = 0 so find uθ with L(uθ) ≈ 0

Operator learning: multiple architectures, e.g.

Deep Operator Network (DeepONet)

Fourier Neural Operator (FNO)

J (θ) supervised learning physics-informed learning

Task 1 (function) ∥u − uθ∥L2(D×[0,T ]) ∥L(uθ)∥L2(D×[0,T ])

Task 2 (operator) ∥G − Gθ∥L2(X×D×[0,T ]) ∥L(Gθ)∥L2(X×D×[0,T ])
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Neural network approximation theory

Focus on (1): How large should my NN be such that J (θ) < ε?

Find bounds on width, depth, weights . . .

Curse of dimensionality (CoD) overcome if size is O(pol(dε−1))

Are there any theoretical results?

Vanilla NN (supervised learning): yes, fairly easy, case-by-case

emulate FEM / FDS / FVM / MC / iterative method with NNs

Physics-informed NN:

Low-dimensional and regular: yes, general bounds
High-dimensional: more difficult, case-by-case

Operator learning: limited results, case-by-case

Physics-informed operator learning: no results
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Main message of paper
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Generic bounds

Neural network (fixed time)��u(T )� u✓(T )
��

Lq(D)
< "

Assumed to be known

FNO
kG � G✓kL2(X⇥D) < "

Theorem 3.6

DeepONet
kG � G✓kL2(X⇥D) < "

Corollary 3.7

Neural network (space-time)
ku� u✓kLq([0,T ]⇥D) < "

Theorem 3.4

PINN��L(u✓)
��

Lq([0,T ]⇥D)
< "

Theorem 3.4

Physics-informed FNO��L(G✓)
��

L2(X⇥⌦)
< "

Theorem 3.8

Physics-informed DeepONet��L(G✓)
��

L2(X⇥⌦)
< "

Theorem 3.8 & 3.9

A

B

B B

C

C

D

D

Figure 1: Flowchart of the structure of the results in this paper, with q 2 {2,1}. The letters reflect
the techniques used in the proofs: A uses Taylor approximations (Section 3.1), B is based on finite
difference approximations (Section 3.1), C uses trigonometric polynomial interpolation (Section 3.2)
and D uses the connection between FNOs and DeepONets (Section 3.2).

[33, 59, 9]. For " > 0, we denote by U" an operator that for any t 2 [0, T ] maps any initial
condition/parameter function v 2 X to a neural network U"(v, t) that approximates the PDE solution
G(v)(·, t) = u(·, t) at time t, as specified below. Moreover, we will assume that we know how its
size depends on the accuracy ".
Assumption 3.1. Let q 2 {2,1}. For any B, " > 0, ` 2 N, t 2 [0, T ] and any v 2 X with
kvkC`  B there exist a neural network U"(v, t) : D ! R and a constant CB

",` > 0 s.t.
��U"(v, t)� G(v)(·, t)

��
Lq(D)

 " and max
t2[0,T ]

��U"(v, t)
��

W `,q(D)
 CB

",`. (3.1)

Under this assumption, we prove the existence of space-time neural networks and PINNs that
efficiently approximate the PDE solution (Section 3.1), as well as FNOs and DeepONets (Section
3.2) and physics-informed FNOs and DeepONets (Section 3.3).

3.1 Estimates for (physics-informed) neural networks

We will construct a space-time neural network u✓ for which both ku✓ � ukLq([0,T ]⇥D) and the PINN
loss kL(u✓)kLq([0,T ]⇥D) are small. To accurately approximate the time derivatives of u we emulate
Taylor expansions, whereas for the spatial derivatives, we employ finite difference (FD) operators
in our proofs. Depending on whether forward, backward or central differences are used, a FD
operator might not be defined on the whole domain D, e.g. for f 2 C([0, 1]) the (forward) operator
�+

h [f ] := f(x + h)� f(x) is not well-defined for x 2 (1� h, 1]. This can be solved by resorting
to piecewise-defined FD operators, e.g. a forward operator on [0, 0.5] and a backward operator on
(0.5, 1]. In a general domain ⌦ one can find a well-defined piecewise FD operator if ⌦ satisfies the
following assumption, which is satisfied by many domains (e.g. rectangular, smooth).
Assumption 3.2. There exists a finite partition P of ⌦ such that for all P 2 P there exists "P > 0 and
vP 2 B1

1 = {x 2 Rdim(⌦) : kxk1  1} such that for all x 2 P it holds that x+"P (vP +B1
1) ⇢ ⌦.

Additionally, we need to assume that the PINN error can be bounded in terms of the errors related to
all relevant partial derivatives, denoted by D(k,↵) := Dk

t D↵
x := @k

t @
↵1
x1

. . . @↵d
xd

, for (k,↵) 2 Nd+1
0 .

Assumption 3.3. Let k, ` 2 N, C > 0 be independent from d. It holds for all v 2 X that,
��L(G✓(v))

��
Lq([0,T ]⇥D)

 C · poly(d) ·
X

(k0,↵)2Nd+1
0

k0k,k↵k1`

���D(k0,↵)(G � G✓)
���

Lq([0,T ]⇥D)
. (3.2)

In this setting, we prove the following approximation result for space-time networks and PINNs.

4

Figure: Visualization of how different types of error estimates can be obtained
from one another. The letters reflect the techniques used in the proofs.
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Assumptions

Assumption (1 - Fixed-time NN)

For every t, v there is a NN Uε(v , t) that approximates u to accuracy ε.
Moreover, there is an upper bound on the derivatives of the NN.

Assumption (2 - Domain)

Domain D is rectangular or smooth. (simplified)

Assumption (3 - Derivatives)

∥L(uθ)∥Lq([0,T ]×D) ≤ C ·∑ (k ′,α)∈Nd+1
0

k ′≤k,∥α∥1≤ℓ

∥∥∥D(k ′,α)(u − uθ)
∥∥∥
Lq([0,T ]×D)

e.g. for heat equation L(uθ) = ∂tuθ − ∂2
xuθ we get:

∥L(uθ)∥Lq = ∥L(uθ)− L(u)∥Lq ≤ ∥∂t(u − uθ)∥Lq +
∥∥∂2

x (u − uθ)
∥∥
Lq
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Assumptions

Assumption (1 - Fixed-time NN)

For every t, u0 there is a NN Uε(u0, t) that approximates u to accuracy ε.
Moreover, there is an upper bound on the derivatives of the NN.

Assumption (2 - Domain)

Domain D is rectangular or smooth. (simplified)

Assumption (3 - Derivatives)

∥L(uθ)∥Lq([0,T ]×D) ≤ C ·∑ (k ′,α)∈Nd+1
0

k ′≤k,∥α∥1≤ℓ

∥∥∥D(k ′,α)(u − uθ)
∥∥∥
Lq([0,T ]×D)

Assumption (4 - Stability)
∥∥Uε(u0,T )− Uε(u′0,T )

∥∥
L2

≤ C ε
stab

∥∥u0 − u′0
∥∥
Lp
. (1)
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Results

Informal summary of our results:

Theorem

If there is an approximation result for X that satisfies Y , then we can
prove an approximation result for Z , with X + Y ⇒ Z being,

Fixed-time NN + Ass. 1 ⇒ space-time NN

Fixed-time NN + Ass. 1,2,3 ⇒ PINN

Operator learning + Ass. 2,4 ⇒ physics-informed operator learning

Fixed-time NN + Ass. 1,3,4 ⇒ (physics-informed) operator learning

Moreover,

FNO ⇒ DeepONet [Lanthaler, Mishra, Karniadakis; 2022]

Smooth operator + Ass. 4 ⇒ operator learning.
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Example

Theorem

Let r , s ∈ N, let u ∈ C (s,r)([0,T ]× D) be the solution of the PDE and let
Assumption 1 be satisfied. There exists a constant C (s, r) > 0 such that
for every M ∈ N and ε, h > 0 there exists a tanh neural network
uθ : [0,T ]× D → R for which it holds that,

∥uθ − u∥Lq([0,T ]×D) ≤ C (∥u∥C (s,0)M−s + ε). (2)

and if additionally Assumption 2 and Assumption 3 hold then,

∥L(uθ)∥L2([0,T ]×D) + ∥uθ − u∥L2(∂([0,T ]×D))

≤ C · poly(d) · lnk(M)(∥u∥C (s,ℓ)Mk−s +M2k(εh−ℓ + CB
ε,ℓh

r−ℓ)).

(3)

Moreover, depth(uθ) ≤ C · depth(Uε) and width(uθ) ≤ CM · width(Uε).
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Applications

Linear Kolmogorov PDEs

PINNs overcome CoD

Nonlinear parabolic PDEs, e.g. Allen-Cahn equation

PINNs overcome CoD

(Physics-informed) operator learning: dimension-independent
convergence rate for smooth functions

First results for physics-informed operator learning

Linear operator: general result

Nonlinear operator: case-by-case
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Are we done now?

Restriction: results only valid for smooth PDE solutions

PDE might only have weak solution
⇒ PINN loss ∥L(u)∥L2 can not be evaluated,

Example: scalar conservation laws: L(u) := ∂tu + ∂x f (u) = 0

Weak solutions: u such that for all test functions φ we have´
R+

´
R (uφt + f (u)φx) dxdt +

´
R u0(x)φ(x , 0)dx = 0

Entropy solutions: weak solution + for every entropy pair (η, q)
must hold that ∂tη(u) + ∂xq(u) ≤ 0 (dist.)

Tim De Ryck (ETH Zürich) FAU DCN-AvH 20 April 2023 16 / 20



Weak PINNs

We can restrict to Kruzkhov entropy pairs: ∂tη(u) + ∂xq(u) ≤ 0 with,

η(u) = |u − c| and,
q(u) = Q[u; c] = sign(u − c)(f (u)− f (c) for all c ∈ R.

Result: u is entropy solution if ∀φ (test functions) and ∀c ∈ R,

0 ≥ R(u, φ, c) := −
ˆ
D

ˆ
[0,T ]

(|u(x , t)− c |∂tφ(x , t) + Q[u(x , t); c]∂xφ(x , t)) dxdt

Idea of weak PINNs: find NN uθ that minimizes

J (uθ; Φ) := sup
c∈R,φ∈Φ

R(uθ, φ, c) + ∥uθ(t = 0)− u0∥L2 + (BC term)
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Weak PINNs experiments
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Theory for weak PINNs

We answer our three initial central questions for physics-informed learning:

1 Existence: for every ε > 0 there exists a NN uθ such that J (uθ) < ε

2 Stability: for every ε > 0 and a set Φε (larger for smaller ε) it holds,

∥uθ(T )− u(T )∥L1 ≲ ε+ J (uθ; Φε)

3 Generalization: for M collocation points we have,

∥uθ(T )− u(T )∥L1 ≲ ε+ (training error) +
1√
M
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Summary

Main points:

Generic error bounds when PDE solutions are sufficiently regular

Hyperbolic conservation laws: wPINNs recover entropy solutions
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