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My Research
Distributed control of network systems with applications to science and technology

Basic goals

Understand mechanisms that make complex networks function

Use knowledge to enable reliable engineering design w/ predictable behavior

Sample questions

Architectures for coordination and decision making

Interplay between network structure, dynamics, and function

Dynamically-sound understanding of network mechanisms

Understanding what is doable with available resources

Information: access, value, uncertainty

Theoretical guarantees on correctness and robustness
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Today: Role of Structure in Network Function

How does network structure shape network behavior?

What mechanisms explain the way networks function?

How to “fix” a network or enhance its function?

Two sample problems:

1 Benefits of time-invariant versus time-varying actuation in complex systems

E. Nozari, F. Pasqualetti, and J. Cortés. Heterogeneity of central nodes explains the bene-
fits of time-varying control scheduling in complex dynamical networks. Journal of Complex
Networks, 7(5):659–701, 2019

2 Goal-driven selective attention in the brain

E. Nozari and J. Cortés. Hierarchical selective recruitment in linear-threshold brain networks.
Part I: Intra-layer dynamics and selective inhibition. IEEE Transactions on Automatic Control,
66(3):949–964, 2021

E. Nozari and J. Cortés. Hierarchical selective recruitment in linear-threshold brain networks.
Part II: Inter-layer dynamics and top-down recruitment. IEEE Transactions on Automatic
Control, 66(3):965–980, 2021
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Outline

1 Motivation

2 Time-Invariant versus Time-Varying Actuation
controllability of linear dynamical networks
2k-communicability as node centrality
networks that benefit from time-varying actuation

3 Goal-driven Selective Attention
hierarchical linear-threshold networks
selective inhibition
top-down recruitment
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Time-Invariant versus Time-Varying Actuation
A Case in Point: Tips on Moving Heavy Furniture by Yourself

https://youtu.be/PhA9sv-Iu4w
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How About for Large-Scale Networks?

✓ Closed-form solutions

✓ Numerical tests

✓ Combinatorial methods

✓ Accurate parameters
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Linear Complex Dynamical Networks

x =


x1
x2
...
xn



x(k + 1) = Ax(k) + B(k)u(k), k ∈ Z≥0

(static)
interconnection

each column vector
∈ {e1, . . . , en}

control
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Network Controllability

Controllability [Kalman et. al., 1963]

Network is controllable at time K if it is possible to steer its state x from any
x(0) = x0 to any x(K) = xf using u(0), . . . , u(K − 1) ∈ Rm

Deciding controllability: network is controllable at time K iff Gramian is nonsingular

WK ≜
K−1∑
k=0

AkB(K−1−k)B(K−1−k)T (AT )k
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Network is controllable at time K if it is possible to steer its state x from any
x(0) = x0 to any x(K) = xf using u(0), . . . , u(K − 1) ∈ Rm

Deciding controllability: How does network topology impact controllability? Dynamics-
based framework for

structural controllability (N. J. Cowan et al, PLoS ONE 12)

degree distribution (Y. Liu, J. Slotine, and A. Barabási, Nature 2011)

how many input nodes (A. Olshevsky, IEEE TAC 14)

special structure: e.g., consensus-type linear networks (A. Rahmani, M. Ji, M.

Mesbahi, and M. Egerstedt, SIAM JCO, 09, C. Aguilar and B.

Gharesifard, IEEE TAC 15)
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Network Controllability

Controllability [Kalman et. al., 1963]

Network is controllable at time K if it is possible to steer its state x from any
x(0) = x0 to any x(K) = xf using u(0), . . . , u(K − 1) ∈ Rm

Minimum energy control: if network is controllable at time K ,

u∗(k) = B(k)T (AT )K−1−kW−1
K xf , k ∈ {0, . . . ,K − 1}

with energy Emin = xT
f W−1

K xf

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 8 / 40



Network Controllability

Controllability [Kalman et. al., 1963]

Network is controllable at time K if it is possible to steer its state x from any
x(0) = x0 to any x(K) = xf using u(0), . . . , u(K − 1) ∈ Rm

Controllability metrics: dynamics-based framework for

how much energy required to steer the network (G. Yan et al, PRL 12)

regularity properties, asymptotic behavior, impact of network topology and input
location (F. Pasqualetti, S. Zampieri, and F. Bullo, IEEE TCNS 14, T.
H. Summers, F. L. Cortesi, and J. Lygeros, IEEE TCNS 16)

explaining structural controllability of brain networks (Gu et al, Nature Comm

15):

average, modal, boundary controllabilities
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Optimal Actuator Selection/Placement

How to choose B(0),B(1), . . . ,B(K − 1) such that
network controllability is maximized?

More controllability ≡ smaller xT
f W−1

K xf ≡ larger WK

λmin(WK ): controllability in the most difficult direction

tr(W−1
K )−1: average control energy over random xf

det(WK ): volume of reachability ellipsoid

tr(WK ): related to average control energy
over random xf

[Image attribution: Ag2gaeh]
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Problem Statement
Time-Invariant vs Time-Varying Actuation

Literature focuses on time-invariant control schedules (TICS):
B(0) = B(1) = · · · = B(K − 1)

Time-varying schedules (TVCS) useful when

✓ sizable activation energy due to dead-zone

✓ only small number simultaneously operated b/c
bandwidth limitations

✓ actuator interference due to proximity

✓ difficult precise coordination of geographically
disperse actuators

But more costly in terms of hardware&complexity

u(0)

u(1)

u(2)

When is TV scheduling worth the cost?
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What is Relative Benefit of TVCS over TICS?

f TImax = max
TI

f (WK ) f TVmax = max
TV

f (WK )

Small-scale example with 5 nodes, 1 actuator, time horizon 10

f f TImax f TVmax Rel. Improv.
tr 5 5 0

tr(−1)−1 0.2 0.2 0
det 1 1 0
λmin 1 1 0

Small-scale example with 5 nodes, 1 actuator, time horizon 10

f f TImax f TVmax Rel. Improv.
tr 2.00 2.70 0.35

tr(−1)−1 1.26×10−7 8.22×10−4 6.5×103

det 9.90×10−11 7.42×10−10 6.49
λmin 1.27×10−7 1.10×10−4 8.7×102
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How About Large-Scale Networks?

Air transportation network among busiest US airports Social network of students at UC Irvine

Which networks do/which networks do not benefit from TVCS?
How can one distinguish between them?
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2k-Communicability: Node Centrality Tied to Dynamics

For simplicity, single input (m = 1) case from here on

tr(WK ) = tr
( K−1∑

k=0

Akb(K−1−k)b(K−1−k)T (AT )k
)

=
K−1∑
k=0

b(K−1−k)T︸ ︷︷ ︸
eTik

(Ak)TAk b(K−1−k)︸ ︷︷ ︸
eik

=
K−1∑
k=0

((Ak)TAk)ik ik

Maximization is decoupled across time steps

max
i0,...,iK−1

tr(WK ) =
K−1∑
k=0

max
iK−1−k

((Ak)TAk)ik ik

=
K−1∑
k=0

max
iK−1−k

Rik (k)

2k-communicability of node i : Ri (k) ≜ ((Ak)TAk)ii
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2k-Communicability: Interpretation

At time K − k − 1, actuate node with largest 2k-communicability

Ri (k) ≜ ((Ak)TAk)ii

Ri (k) is sum of squares of total number of paths of length k from i to i :

2-communicability ∼ local
(out-degree centrality if weights homogeneous)

∞-communicability ∼ global
(same ordering as eigenvector centrality)

#switches in argmaxi Ri (k) = O(n3) < ∞

20-node network w/ heterogeneous weights
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Main Insight

At time K − k − 1, actuate node with largest 2k-communicability

Optimal scheduling involves

application of u(0) to node r(K − 1) w/ highest global centrality

gradually moving control node, until u(K − 2) applied to node r(1) w/
highest local centrality

Intuition is simple

at k = 0, control input has enough time to propagate through the network
(hence highest globally-central node)

as we approach control horizon K , control input has only a few time steps to
disseminate through the network (hence locally-central nodes)
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Optimal TI Schedules < Optimal TV Schedules

Theorem (2k-Communicability as Litmus Test)

Assume adjacency matrix A is irreducible,
aperiodic, and diagonalizable. If

argmaxi∈{1,...,n} Ri (1) ∩ argmaxi∈{1,...,n} Ri (∞) = ∅,

then optimal actuator schedule is TV for
sufficiently large K

irreducible ⇔ strongly
connected network

aperiodic automatically
satisfied w/ self-loops

set of non-diagonalizable
matrices has measure zero

Not the same node
with maximum
2-communicability
(local) and
∞-communicability
(global)
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Assume adjacency matrix A is irreducible,
aperiodic, and diagonalizable. If

argmaxi∈{1,...,n} Ri (1) ∩ argmaxi∈{1,...,n} Ri (∞) = ∅,

then optimal actuator schedule is TV for
sufficiently large K

irreducible ⇔ strongly
connected network

aperiodic automatically
satisfied w/ self-loops

set of non-diagonalizable
matrices has measure zero
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with maximum
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(global)
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What is Relative Benefit for Large-Scale Networks?

Air transportation network among busiest US airports Social network of students at UC Irvine

Legend (m = 1 actuator, time horizon K = 10)

Color intensity of nodes represent value of Ri (1)

Size of nodes represent value of Ri (K − 1)
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Optimal TI Schedules < Optimal TV Schedules: Examples

Deterministic:

Stochastic:

➢ Networks with strong subnetworks

➢ Watts-Strogatz
small world

P
ro
b
ab
ili
ty

of
at

le
as
t
1
sw

it
ch
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Optimal TI Schedules = Optimal TV Schedules

Theorem (Undirected&Normal Networks)

If any of the following holds:

(i)
1−v2

11

v2
11

≤ |λ1|−|λ2|
|λ1|−|λn| ,

(ii) v2
11 + v2

12 = 1,

(iii) ≤ 3 nonzero eigenvalues with different
absolute values and 1 ∈ argmaxi Ri (1),

then

Optimal TV schedule = Optimal TI schedule

Networks where there is
a sufficiently distinct
authority and network
dynamics are dominated
by λ1

Networks where the
centrality of all nodes is
determined by the
weight of the link to the
most central nodeComplete bipartite networks and

connected strongly regular networks with
a distinct authority
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Optimal TI Schedules = Optimal TV Schedules: Examples

Deterministic:

Stochastic:

a a a a a
a

aa
a

a

a
a a

a

a
aa

a

a
a

a

➢ Barabási-Albert
scale-free

➢ Erdös-Rényi
random network

P
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b
ab
ili
ty

of
at

le
as
t
1
sw

it
ch
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Outline

1 Motivation

2 Time-Invariant versus Time-Varying Actuation
controllability of linear dynamical networks
2k-communicability as node centrality
networks that benefit from time-varying actuation

3 Goal-driven Selective Attention
hierarchical linear-threshold networks
selective inhibition
top-down recruitment
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Goal-Driven Selective Attention (GDSA): An Experiment

https://youtu.be/PhA9sv-Iu4w
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How Does Brain Achieve Control of Attention?

selective listening selective taste/smell selective memory recall
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How Does Brain Achieve Control of Attention?

Highly complex dynamical system with selective population activity
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Experimental Observations: General Brain Organization
(First-order approximations to full complexity of brain organization)

1 Sensory information processing
pathways

2 Timescale hierarchy

[Murray et al, Nat Neurosci, 2014]

3 Disjoint population
representations

Stimulus A
(white team)

Stimulus B
(gorilla)

... [Levie et al, 2017]

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 24 / 40



Experimental Observations: General Brain Organization
(First-order approximations to full complexity of brain organization)

1 Sensory information processing
pathways

2 Timescale hierarchy

[Murray et al, Nat Neurosci, 2014]

3 Disjoint population
representations

Stimulus A
(white team)

Stimulus B
(gorilla)

... [Levie et al, 2017]

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 24 / 40



Experimental Observations: Specific to Selective Attention

4. Inhibitory Control of x
0
i

In
cr
ea
se
d

A
tt
en
ti
o
n

Distractor

Adapted from [Rees et al, Science, 1997]

5. Recruitment Control of x
1
i

Relevant
Stimulus :

Attention: None Low High

Adapted from [Pinsk et al, J Neurophys, 2004]

⇒ Population activity is
selective (sparse)

? However, spontaneous
network activity is not
selective!

t
Task 1 Task 2 Task 3

t
t = 1 t = 2 t = 3 t = 4

What happens at the level of
network dynamics?
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Modeling Brain Activity
Mesoscale Models: Rate Dynamics

Information mostly encoded
in firing rate (#spikes/s)

xi (t) = firing rate
of neuron i

Simplifying assumptions:

1. Poisson spiking

2a. For constant input Iin,i

xi = σ(Iin,i )

2b. For time-varying input Iin,i (t)

τ ẋi (t) = −xi (t) + σ(Iin,i (t))

σ(·)
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Brain Network Dynamics


x1
x2
...
xn

 = xp
{

W =


+ + · · · −
+ + · · · −
...

...
. . .

...
+ + · · · −



Node = population of neurons

State = average firing rate

Network dynamics (mean-field approximation):

τ ẋ(t) = −x(t) + σ
(
Wx(t) + p(t)

)
σ(·)
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Approximating the Sigmoidal Nonlinearity

✓ Kuramoto: Cubic approximation in xi , linearization in {Wij},
change to polar coordinates

θ̇i = ωi +
∑
j

Kij sin(θj − θi )

→ For weakly-coupled oscillators, explicit phase dynamics, n
2

states, smooth

✓ Linear-Threshold: Piecewise-linearization of σ(·)

τi ẋi = −xi +
[∑

j
Wijxj + pi

]mi

0

→ For arbitrary dynamics, implicit phase and amplitude
(oscillations), switched-affine

[ · ]m0
m
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Encoding General Experimental Observations

...

...

x1

x2

xi

xN

Sensory
Input

x
0
i x

1
i

Each layer:

τi ẋi (t) = −xi (t) + [Wi,ixi (t) + pi (t)]
m
0

1. Sensory information processing pathways:

pi (t) = Biui (t) +Wi,i−1xi−1(t) +Wi,i+1xi+1(t) + ci

2. Timescale hierarchy:

τ1 ≫ τ2 ≫ · · · ≫ τi ≫ · · · ≫ τN

3. Disjoint population representation:

xi =

[
x
0
i

x
1
i

]
, Wi,j =

[
W

00
i,j W

01
i,j

W
10
i,j W

11
i,j

]
task-irrelevant

task-relevant
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Inhibitory Control of Task-Irrelevant Nodes

xN−1 xN−1uN

WN,N−1

B
0
N

Layer N − 1

x
1
Nx

0
N

cN

Hypothesis: stabilization of x
0
i to origin by xi−1

Start from the simplest layer: layer N

τN ẋN = −xN + [WN,NxN + pN(t)]
mN
0

pN(t) = BNuN(t) +WN,N−1xN−1(t) + cN

Separate inhibitory/recruitment control inputs

BN=

[
B
0
N

0

]
, B

0
N ≤ 0

WN,N−1= 0

? How does uN(t) stabilize xN(t) to

x∗N =

[
0

x∗
1

N (cN)

]
?

? Conditions for stability?

? How many equilibria?
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Network Dynamics as Switched Affine System

τi ẋi = −xi +
[ ∑

j
Wijxj + pi︸ ︷︷ ︸
Iin,i

]mi

0

✓ Dynamics of each node i can be in 3 modes ⇒ 3n switching regions

τi ẋi = −xi if Iin,i ≤ 0

τi ẋi = −xi + Iin,i if 0 ≤ Iin,i ≤ mi

τi ẋi = −xi +mi if mi ≤ Iin,i

✓ Switched affine system:
τ ẋ = (−I+Σℓ

σ(x)W)x+Σℓ
σ(x)p+Σs

σ(x)m, σ(x) ∈ {0, ℓ, s}n

✓ Rich nonlinearity: mono- and multi-stability, limit cycles, bifurcations, chaos

0 2x1

0

2

x
2

u = [-1; -1]

0 2x1

0

2

x
2

u = [0; -1]
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τ ẋ = (−I+Σℓ

σ(x)W)x+Σℓ
σ(x)p+Σs

σ(x)m, σ(x) ∈ {0, ℓ, s}n

✓ Rich nonlinearity: mono- and multi-stability, limit cycles, bifurcations, chaos

0 2x1

0

2

x
2

u = [-1; -1]

0 2x1

0

2

x
2

u = [0; -1]

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 31 / 40



Network Dynamics as Switched Affine System
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Stability of State-Dependent Switched Systems is Tricky...

Mode 1 Mode 2
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Relevant Network Structures

A matrix W ∈ Rn×n is

absolutely Schur stable if ρ(|W|) < 1

totally L-stable (W ∈ L) if ∃P = PT > 0 such that ∀σ ∈ {0, 1}n

(−I+WT diag(σ))P+ P(−I+ diag(σ)W) < 0

totally Hurwitz (W ∈ H) if all its principal submatrices are Hurwitz

a P-matrix (W ∈ P) if all its principal minors are positive

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 33 / 40



Relevant Network Structures

A matrix W ∈ Rn×n is

absolutely Schur stable if ρ(|W|) < 1

totally L-stable (W ∈ L) if ∃P = PT > 0 such that ∀σ ∈ {0, 1}n

(−I+WT diag(σ))P+ P(−I+ diag(σ)W) < 0

totally Hurwitz (W ∈ H) if all its principal submatrices are Hurwitz

a P-matrix (W ∈ P) if all its principal minors are positive

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 33 / 40



Stability as a Function of Structure

Characterized equilibria and stability of linear-threshold networks, e.g.

I−W ∈ P ⇔ EUE W ∈ L or ρ(|W|) < 1 ⇒ GES −I+W ∈ H ⇔ LAS

−I+W ∈ H ⇐ GES

The stronger or larger a network, the more unstable it becomes

How can brain networks

be very large but not deeply unstable?
become stronger during learning without losing stability?
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Inhibitory Control of Task-Irrelevant Nodes – revisited

? Recall: How uN(t) stabilizes xN(t) to x∗N = (0, x∗
1

N (cN))?

Assume dim(uN) ≥ dim(x
0
N)

Feedforward inhibition
∃uN(t) ≡ ūN such that:

xN dynamics becomes GES
towards x∗N = (0, x∗

1
N )

⇕
x
1
N sub-dynamics is intrinsically

GES

Feedback inhibition
∃uN(t) = KxN(t) such that:

1 I− (WN,N + BNK) ∈ P ⇔ I−W
11
N,N ∈ P

2 −I+(WN,N+BNK) ∈ H ⇔ −I+W
11
N,N ∈ H

3 WN,N + BNK ∈ L ⇔ W
11
N,N ∈ L

4 ρ(|WN,N + BNK|) < 1 ⇔ ρ(|W11
N,N |) < 1

⇒ Intrinsic properties of W
11

are sole determiner of dynamical properties
achievable via inhibitory selective stabilization
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Implications for the Brain – revisited

The stronger or larger a network, the more unstable it becomes

Hypothesis: at any given time, the active subnetwork is sufficiently small
& weak to prevent (strong) instability

✓Supported by 2 observations in neuroscience:

1 Homeostasis:
[Turrigiano, 2012]

2 Attention capacity: [Lavie & de Fockert, 2003]

“ ... distractor processing depends on the extent to which high perceptual load

exhausts attention in relevant processing ... ”
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Recruitment Control of Task-Relevant Nodes

Layer N, now WN,N−1 ̸= 0, no task-irrelevant nodes (xN = x
1
N)

Hypothesis: xN(t) → f (xN−1(t)) (tracking)

? f (·)
? Conditions for xN(t) → f (xN−1(t))

1 Equilibria: solutions of xN =[WN,NxN+cN ]
+

are

hWN,N (cN)={(I−ΣWN,N)
−1ΣcN |

(2Σ− I)(I−WN,NΣ)cN ≥0}

2 h is globally Lipschitz

If (i) xN−1(t) is bounded

(ii) ẋN = −xN + [WN,NxN + cN ]
+ is GES

then xN(t) → hWN,N (WN,N−1xN−1(t) + cN) as
τN

τN−1
→ 0 (practically ∼ 1

2
)

Stim:

Attention: None Low High

Adapted from [Pinsk et. al.,
J. Neurophys., 2004]
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Recruitment Control: Multiple Layers

xi−1

xi

xi+1

...

...

✓ Still no task-irrelevant nodes at any layers (xi = x
1
i )

✓ Due to time-scale separation, relative to xi

xi−1 is almost constant
xi+1 is almost at equilibrium f (xi )

✓ Starting from hN = hWN,N , let hi (ci ) be the solution of

xi = [Wi,i+1 hi+1(Wi+1,ixi + ci+1)︸ ︷︷ ︸
xi+1

+Wi,ixi + ci ]
+

1 ∀i , hi has piecewise-affine form

hi (xi−1) = Fi,λxi−1 + fi,λ, ∀xi−1 ∈ Ψi,λ, λ ∈ Λi

where Λi ,Fi,λ, fi,λ,Ψi,λ have recursive expressions

2 ∀i , hi is globally Lipschitz

Let F̄i ≜ maxλ∈Λi |Fi,λ|. ∀i , xi is GES if

ρ(|Wi ,i | + |Wi ,i+1|F̄i+1|Wi+1,i |) < 1
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Putting Everything Together
Hierarchical Selective Recruitment

Inhibitory and Recruitment Control

If GES conditions across hierarchy (ρ
(
|W11

i,i |+ |W11
i,i+1|F̄i+1|W

11
i+1,i |

)
< 1, ∀i),

there exists ui (t) = Kixi (t) + ūi (t) such that, as τi/τi−1 → 0,

x
0
i (t) → 0 (inhibition)

x
1
i (t) → hi (W

11
i,i−1x

1
i−1(t) + c

1
i ) (recruitment)

Technical approach

Piecewise affine set-valued equilibria maps

Layer interconnection ensuring GES of coupled systems

Converse Lyapunov theorem for GES state-dependent switched affine systems

Recursive application of singular perturbation theory

J. Cortés (UCSD) Understanding the Role of Network Structure June 14, 2023 39 / 40



Summary and Outlook

Interplay between network structure and dynamics

time-invariant versus time-varying actuation
2K-communicability as measure of node centrality
scale-heterogeneity of central nodes explains benefits of TVCS
synthetic and real-world networks

hierarchical selective recruitment
multilayer linear-threshold networks
selective inhibition and top-down recruitment of subnetworks
analytical support for selective attention in brain dynamics

Challenging, exciting problems

thalamocortical networks
role of thalamus, general interconnection topologies, impact
on control magnitude, speed of convergence, robustness

oscillations, bifurcations, and spatio-temporal patterns
interconnections of Wilson-Cowan oscillators, 1 in-
hibitory+arbitrary excitatory, purely inhibitory networks

interventions to control oscillation containtment & spreading
modify interconnection structure so that desired set of nodes
is/is not oscillatory
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Case Study: Selective Listening in Rats

Task:

2 simultaneous stimuli
(S) (possibly conflicting)
2 rules (R)
Rewarded if correct
choice (relevant S)

Data:

Spike times of individual neurons
2 regions: PFC (control) & A1 (auditory)
∼ 100 neurons in each region

Original Findings:

PFC neurons ∼ R, A1 neurons ∼ S
Disrupting PFC ⇒ error ↑
PFC activity leads (causes?) A1 activity

⇒ PFC (seems to be) controling A1

S1 S2

R1 Attend Ignore

R2 Ignore Attend

PFC
A1

[Rodgers & DeWeese, “Neural correlates of task switching in prefrontal cortex and primary
auditory cortex in a novel stimulus selection task for rodents.” Neuron 82 (5): 1157-1170,
2014]
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PFC neurons ∼ R, A1 neurons ∼ S
Disrupting PFC ⇒ error ↑
PFC activity leads (causes?) A1 activity

⇒ PFC (seems to be) controling A1

S1 S2

R1 Attend Ignore

R2 Ignore Attend

PFC
A1

[Rodgers & DeWeese, “Neural correlates of task switching in prefrontal cortex and primary
auditory cortex in a novel stimulus selection task for rodents.” Neuron 82 (5): 1157-1170,
2014]
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