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Differentiable Physics Simulations for Deep Learning

(... from a Diffusion Modeling Perspective)

TUTI

Nils Thuerey



Introduction

e Growing consensus: DL is “just” another tool
e ... but a pretty neat one

* Unclear how / where to employ



Introduction

* Important to work with uncertainties in simulations

- Inherent randomness of processes & ambiguous
states (aleatoric)

- Model approximations and errors (epistemic) / ‘

* Here: dealing with aleatoric uncertainties with the ﬁ
help of deep learning algorithms and differentiable ‘(
simulations \F




Diffusion Models TUT]

Quantity of interest y = f(x) , approximated by NN with weights 0: y = f,(x) = ¥
Optimize O via arg min,, |V — fo(x) |2

Denoising diffusion probabilistic models (DDPMs) introduce Markov chain with
steps r € 0,..., R with increasing Gaussian noise

Learn reverse process y,_; = ay, + f fo(y,,x,r) + zsuch that y, & J

a, [ are factors determined by noise schedule and z ~ 47(0,1)



Diffusion Models

lllustrated:

—— Stochastic process

Generate data from noise by reversing the perturbation procedure. Source: https://yang-song.net/blog/2021/score/



Known Ground Truth Distribution T|_|T|

Turbulent NS case with varying — Ground truth BNN \ — 10—
Reynolds number: --o- DDPM BNN A\ = 1073
- - Heteroscedastic BNN )\ = 102

Heteroscedastic model (blue) works
but no posterior samples 0.150

0.125
Bayesian NN (orange) fares badly

0.100
DDPM (red) captures ground truth Gzo_m_
distribution and can produce actual
samples... 0-0507
0.025]
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Re x 1076

Liu et. al: Uncertainty of Turbulence Simulations with Denoising Diffusion Probabilistic Models



Diffusion Models for Temporal Processes

« Temporal stability crucial (iterative / auto-regressive / unrolled predictions)
 Diffusion models also pay off in this context

e Important: conditioning on previous state and global parameters

Training Inference
T o e N SO >
X q ( Xr | Xr— 1) X

Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models

TLTI




Transonic Flow Example

* Posterior samples P
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Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models
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Transonic Flow Example T|_|T|

* \ersus baselines: 0.3
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Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models



Diffusion Models for Temporal Processes

e Summary so far:
- Excellent temporal stability
- Enable posterior sampling

- Increased computational cost
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Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models




Differentiable Simulations in a Nutshell TuTI

Discretized PDE 2 with phase space states S

1.0 3.2

Learn via gradient (0.2°/0s)’

E.g., with loss L and s = NN(x | 0)

os ot oL T

Gradient is —y
00 0s 0P

Requires differentiable physics simulator for &

— Tight integration of numerical methods and learning process



Differentiable Simulations - Terminology TuTI

Differentiable PDE solver for & = “differentiable physics"

1.0 3.2

Equivalent:

0.8

* Adjoint method / differentiation

o

e Reverse-mode / backward differentiation

0.2

e Backpropagation

0.0

D. Kahneman: System 1 & 2

System 1/ System 1/ System 1/ System 1/ System 1/ System 1/
NN Component NN Component NN Component NN Component NN Component NN Componen

System 2 / ) System 2 / ) System 2 / ) System 2 / ) System 2 / ) System 2 /
Simulation Simulation Simulation Simulation Simulation

Simulation




Turbulence: Spatial Mixing Layer

DNS

« Semi-implicit PISO solver
(2nd order in time)

« Shear layer with vorticity
thickness Re = 500

» Evaluate on test set of NNsoc,
unseen perturbation modes

6 32 64 96 128 160 192

X
List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers
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Turbulence: Spatial Mixing Layer

Learned Simulator only:
Vorticity w OAt 00
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List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers



E(k)

Turbulence: Spatial Mixing Layer TUT

Closely matches DNS turbulence statistics (steady state over 2500 steps)

1073 5
1074 3

1075

k
Energy spectrum

le—2
DNS Reaches reference accuracy
NoModel i
—— NNuo, with speed-up of 14.4X
m— NN30,, .
NNgoe, \ NNgoc,
'i6_1 ' iéo ~32 ~16 0 16 32
}’/Gw;.

Reynolds stresses

List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers



Differentiable Simulations

Successfully applied to:
[ - Turbulence |

~ Control problems
Chemical reactions

Plasma simulations

— Also attractive for diffusion models
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Diffusion Models for Physics Simulations TI.ITI

marginal . Time ¢
likelihood pg Pertt;liiléggoglig;mng >

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



Diffusion Models for Physics Simulations TI.ITI

Forward evolution via Euler-Maruyama:
X ar XX+ AtPX) +\ At g() z,  with z, ~ A(0,])

Reverse time SDE via score matching formulation:

X & Xppar = A [P 0) +]g20+ AD Vog proa(Xipa)] + VAL g+ ADZ,,

, learned score (“correction”)

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



1D Example TuTl

Toy problems: randomized sign function

Score Vy log p:(x)

approximated by sg(x,t)
4 75
0 - Time ¢ 1

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



1D Example TI.ITI

As before, train with back-propagation through multiple simulation steps:

1-Step training: Multi-step:

Noisy & unreliable Improved consistence

— Exploding — Stable
trajectories



Heat equation % = aAu with @ = 1, Gaussian random fields as initial conditions

Ground truth B
att = 0.0 P~ only Probability flow Reverse-time SDE

no correction probability flow

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



Navier-Stokes Case TI.ITI

Isotropic turbulence with pre-trained surrogate simulator:

Reconstructed trajectories Evaluation
WAS \Yae T 0.6
. Learned reverse
L I Josk = step P!
l Simultaneous
I 0.4r - m training of
B n . P! and sa
I X 0.3F
B | l SMDP SDE
. i
m SMDP ODE
MSE Spectral error

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching






Summary TUT]

Differentiable Simulations and Diffusion Models
as Tools to bridge Physics & Learning &

Num.

D.L. Physics
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Learn from Real-world Observations T|_|T|

Reconstruct turbulent
motions from sparse
obser\/at'\ons?

Multi-camera capture setup

P,enty of eXCiﬂﬂg research ﬁ Reconstructed volumetric motion

!

queS’[l'OﬂS ,eﬁ . é 3eal-world Flows, 2019]




Thanks for Listening!

https: //physmsbaseddeeplearn|ng org
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