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(… from a Diffusion Modeling Perspective)



Introduction

• Growing consensus: DL is “just” another tool


• … but a pretty neat one


• Unclear how / where to employ



Introduction

• Important to work with uncertainties in simulations


- Inherent randomness of processes & ambiguous 
states (aleatoric)


- Model approximations and errors (epistemic)  


• Here: dealing with aleatoric uncertainties with the 
help of deep learning algorithms and differentiable 
simulations



Diffusion Models

• Quantity of interest  , approximated by NN with weights : 


• Optimize  via 


• Denoising diffusion probabilistic models (DDPMs) introduce Markov chain with 
steps  with increasing Gaussian noise 


• Learn reverse process  such that 


•  are factors determined by noise schedule and 

ȳ = f(x) θ y = fθ(x) ≈ ȳ

θ arg minθ | ȳ − fθ(x) |2

r ∈ 0,…, R

yr−1 = αyr + β fθ(yr, x, r) + z y0 ≈ ȳ

α, β z ∼ 𝒩(0,1)



• Illustrated:

Diffusion Models

Generate data from noise by reversing the perturbation procedure. Source: https://yang-song.net/blog/2021/score/

0 … R

z

z



Known Ground Truth Distribution

• Turbulent NS case with varying 
Reynolds number:


- Heteroscedastic model (blue) works 
but no posterior samples


- Bayesian NN (orange) fares badly


- DDPM (red) captures ground truth 
distribution and can produce actual 
samples…

Liu et. al: Uncertainty of Turbulence Simulations with Denoising Diffusion Probabilistic Models 



Diffusion Models for Temporal Processes

• Temporal stability crucial (iterative / auto-regressive / unrolled predictions)


• Diffusion models also pay off in this context


• Important: conditioning on previous state and global parameters
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Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models 



Transonic Flow Example

• Posterior samples
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Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models 



Transonic Flow Example

• Versus baselines: 
simple U-net , and 
SOTA transformer.

Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models 



Diffusion Models for Temporal Processes

• Summary so far:


- Excellent temporal stability


- Enable posterior sampling


- Increased computational cost

Kohl et. al: Turbulent Flow Simulation using Autoregressive Conditional Diffusion Models 
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Differentiable Simulations in a Nutshell

Discretized PDE   with phase space states 


Learn via gradient 


E.g., with loss  and 


Gradient is 


Requires differentiable physics simulator for 


→ Tight integration of numerical methods and learning process

𝒫 s

(∂𝒫/∂s)T

L s = NN(x |θ)
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Differentiable Simulations - Terminology

Differentiable PDE solver for  = “differentiable physics"


Equivalent:


• Adjoint method / differentiation  

• Reverse-mode / backward differentiation  

• Backpropagation 

D. Kahneman: System 1 & 2
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Turbulence: Spatial Mixing Layer

• Semi-implicit PISO solver 
(2nd order in time) 

• Shear layer with vorticity 
thickness Re = 500


• Evaluate on test set of 
unseen perturbation modes 

List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers



Turbulence: Spatial Mixing Layer
Learned Simulator only:

List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers



Turbulence: Spatial Mixing Layer
Closely matches DNS turbulence statistics (steady state over 2500 steps)

List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers

Energy spectrum

Reaches reference accuracy 

with speed-up of 14.4x

Reynolds stresses



Differentiable Simulations

Successfully applied to:


[ - Turbulence ]


- Control problems


- Chemical reactions


- Plasma simulations


- …


→ Also attractive for diffusion models 



Holzschuh et. al: Solving Inverse Physics Problems with Score Matching

Diffusion Models for Physics Simulations



Diffusion Models for Physics Simulations

Forward evolution via Euler-Maruyama:





Reverse time SDE via score matching formulation:





Differentiable physics simulator , learned score (“correction”)

xt+Δt ≈ xt + Δt 𝒫(xt) + Δt g(t) zt with zt ∼ 𝒩(0,I)

xt ≈ xt+Δt − Δt [𝒫(xt+Δt) + g2(t + Δt) ∇xlog pt+Δt(xt+Δt)] + Δt g(t + Δt) z̃t+Δt

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



1D Example

Toy problems: randomized sign function

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



1D Example

As before, train with back-propagation through multiple simulation steps:

1-Step training:

Noisy & unreliable

Multi-step:

Improved consistence

→ Stable→ Exploding  
     trajectories



Heat Diffusion Case

 Heat equation  with , Gaussian random fields as initial conditions∂u
∂t = αΔu α = 1

Probability flow only�̃�−1 Reverse-time SDE
Ground truth  

at  t = 0.0

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



Navier-Stokes Case

Isotropic turbulence with pre-trained surrogate simulator:

Reconstructed trajectories Evaluation

SMDP SDE

SMDP ODE

Holzschuh et. al: Solving Inverse Physics Problems with Score Matching



Summary & Outlook

Um et. al: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with 



Summary
Differentiable Simulations and Diffusion Models 

as Tools to bridge Physics & Learning 🤗

Physical Systems
Num. 

Methods
 
 

Physics

Deep Learning  
 

D.L.

Turbulence Modeling Time PredictionsScore Matching



Learn from Real-world Observations

[ScalarFlow: A Large-scale Data-set of Real-world Flows, 2019]

Multi-camera capture setup

Reconstructed volumetric motion

→ Reconstruct Measurements via Learning from Differentiable Physics

Reconstruct turbulent 

motions from sparse 
observations?

Plenty of exciting research 
questions left…  👍



Thanks for Listening!
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