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General setting ans objectives
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We are given a parameter dependent steady PDE model, e.g.

Specific objective: build a reduced order model (ROM) 
based on a Deep Neural Network (DNN) Φ to approximate the 
parameter-to-solution map

or equivalently the solution manifold

The approximation (minimization) is based on the functional:

Abstract model Full Order Model

General Objective: 

develop a model order reduction strategy for parametrized PDES

• non-intrusive – full decoupling of offline and online steps

• data-driven

• based on a supervised learning

Parameters Solutions

Physical params.

Geometrical params.

𝜇



Idea. Compress the solution manifold using an AutoEncoder (AE)

The DL-ROM approach: main ideas
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Ultimate goal. Build a DNN model       such that .

Obs. Linear methods exploit a representation of the form

• Franco, N.R, Manzoni, A. and Zunino, P., A Deep Learning approach 
to Reduced Order Modelling of Parameter Dependent Partial 
Differential Equations, arXiv:2103.06183 [math.NA], to appear on 
Math. Comp. 2022.

• Fresca, S., Manzoni, A. and Dede, L., A comprehensive deep 
learning-based approach to reduced order modeling of nonlinear
time-dependent parametrized PDEs, Journal of Scientific Computing, 
87(2), 1-36 (2021). 

• Fresca, S., and Manzoni, A., POD-DL-ROM: enhancing deep learning-
based reduced or- der models for nonlinear parametrized PDEs by 
proper orthogonal decomposition, Computer Methods in Applied 
Mechanics and Engineering, 388: 114181 (2022). 

This is a low dimensional 
representation of the 
solution manifold…

how about the parameter 
to solution map?



Training (1)

Discrete model: Nh d.o.f

Full order 
model 
(FOM)
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Reduced state n << Nh

Parameters to 
reduced state map

Training (2)

Reduced 
order model 

(DL-ROM)

DL-ROM
• Non intrusive ROM

• Nonlinear trial manifold 
learning

• Extended to time 
dependent problems

S. Fresca, L. Dede’, A. Manzoni. A Journal of 
Scientific Computing, 87(2):1-36, 2021.

S. Fresca, A. Manzoni. Computer Methods in 
Applied Mechanics and Engineering, 388 
114181, 2022.

Franco, N.R, Manzoni, A. and Zunino, P., Math. 
Comp. 2023, (340), pp. 483 - 524

Franco, N.R, Manzoni, A. and Zunino, P., 
arXiv:2203.11648, 2022.

The DL-ROM approch: training and summary
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The loss functions:
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Once the architecture has been fixed, we optimize the autoencoder by minimizing
the loss function below

Loss( 0
, ) =

1

Ntrain

NtrainX

i=1

L(uh

µi
,  ( 0(uh

µi
))),

where L is a suitable measure of discrepancy. A classical choice is to consider
squared errors, L(y, ŷ) = ||y � ŷ||2, in order to favor di↵erentiability of the loss
function. However, other metrics, such as relative errors L(y, ŷ) = ||y � ŷ||/||y||,
can be used as well. The minimization of the loss function is handled via stochastic
gradient descent, mainly using batching strategies and first order optimizers.

Transcoder-decoder approach. As an alternative, we also propose a di↵erent archi-
tecture where the encoder is replaced with a transcoder  0

µ
: Rp

⇥ RNh ! Rn.
The idea is to facilitate the encoding by making explicitly use of the parameters,
so that di↵erent solutions are more likely to have di↵erent latent representations.
This is clearly linked with Theorem 3.b1, and has the advantage of always enabling
a maximal reduction, as we can now set n = p = nmin({µ,uh

µ}µ2⇥). We define the

decoder exactly as before, so that uh

µ ⇡  ( 0
µ
(µ,uh

µ)). We refer to the combined ar-
chitecture,  � 0

µ
, as to a transcoder-decoder. In practice, the transcoder-decoder is

analogous to an autoencoder but has p additional neurons in the input layer, which
is where we pass the parameters. To design the architectures, we follow the same
rule of thumb as before. In general, we give more weight to the decoder, where
we employ deep convolutional networks, while we use lighter architectures for the
transcoder. For instance, in the limit case of 0-depth, the latter becomes of the form
 0

µ
(µ,u) = ⇢ (W0µ+Wu+ b). During the o✏ine stage, the transcoder-decoder

is trained over the snapshots by minimizing the loss function below,

Loss( 0
µ
, ) =

1

Ntrain

NtrainX

i=1

L(uh

µi
,  ( 0

µ
(µ

i
,uh

µi
))),

where L is as before. The two approaches, autoencoder and transcoder-decoder,
adopt di↵erent perspectives and provide di↵erent advantages. The first one is com-
pletely based on the solution manifold, so it is likely to reflect intrinsic properties
of Sh. On the other hand, the transcoder-decoder ensures a maximal compression,
the latent dimension being always equal to p. In particular, the latent coordinates
can be seen as an alternative parametrization of the solution manifold. In this
sense, we say that  0

µ
performs a transcoding.

3.2.2. Approximation of the reduced map. The second step in the DL-ROM pipeline
is to approximate the reduced map Rp

3 µ ! un

µ 2 Rn, where either un

µ :=  0(uh

µ)

or un

µ :=  0
µ
(µ,uh

µ), depending on the adopted approach. As we noted in Section

3.2, the reduced map is continuous, as it is given by the composition of µ ! uh

µ

and  0 (resp.  0
µ
), hence it can be approximated uniformly by some ⇢-DNN � :

Rp
! Rn. In general, we do not impose a particular structure on �, rather we use

a generic fully connected network with dense layers. To design the architecture in
terms of number of layers and neurons, we rely on Theorem 5 and on the underlying
theoretical results available in the literature, e.g. [9, 17, 30, 54, 55, 64].
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In order to train � we minimize the objective function below

Loss(�) =
1

Ntrain

NtrainX

i=1

L(un

µi
, �(µ

i
))

where, once again, L is some discrepancy measure (this time having inputs in
Rn

⇥Rn). Notice that the optimization of the above only involves �, as the weights
and biases of  0 (resp.  0

µ
) are frozen.

At the end of the whole process, which we summarized in Algorithm 1, we let
� :=  � �. Now the DL-ROM is fully operational, and for each new µ 2 ⇥ we
can approximate online the corresponding solution �(µ) ⇡ uh

µ almost e↵ortlessly,
with very little computational cost. Also, the model can be e�ciently evaluated on
multiple parameter values simultaneously. In fact, as DNNs are ultimately based on
elementary linear algebra, it possible to stack together multiple parameter vectors
M = [µ1, . . . ,µl

] in a single matrix and directly return the corresponding list of
ROM approximations �(M) ⇡ [uh

1
, . . . ,uh

l
].

Remark. We mention that, in the case n = p, an interesting alternative for � could
be provided by the so-called ODE-nets [13]. In fact, if the reduced map happens
to be injective, then ⇥ and {un

µ}µ2⇥ define two homeomorphic sets of coordi-
nates. Even though homeomorphisms can be approximated by classical DNNs, we
note that fully connected unconstrained networks can easily result in noninvertible
models. In this sense, an alternative architecture which ensures the existence and
continuity of ��1 would be appealing. ODE-nets enjoys such property and have
been proven to be universal approximators for homeomorphisms [68]. However, the
development and implementation of ODE-nets is still in its infancy so we did not
investigate this further.

4. Numerical experiments

We now present some numerical results obtained with our DL-ROM approach.
So far, neural networks have shown remarkable performances in the approximation
of the parametric map at least in those contexts where classical POD-based methods
succeed, e.g. [7, 26]. There is now an increasing interest in understanding how and if
NNs can be of help in more challenging situations. In the case of transport problems,
some theoretical and numerical results are now appearing in the literature, see
respectively [41] and [24].

Here, we focus on parameter dependent second order elliptic PDEs. The first
test case concerns an advection-di↵usion problem with a singular source term. The
PDE depends on 7 scalar parameters which a↵ect the equation both in a linear and
nonlinear fashion. We consider two variants of the same problem, one of which is
transport-dominated. As second test case, we consider a stochastic Poisson equa-
tion. The main di↵erence with respect to the previous case is that the equation is
parametrized by a stochastic process, and the PDE formally depends on an infinite-
dimensional parameter. In order to apply the DL-ROM approach, we consider a
suitable truncation of the Karhunen–Loève expansion of the stochastic process.



The DL-ROM approach: some questions
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Some important questions:

Q1) How to choose the latent dimension?

Q2) Error analysis?

Q3) What kind of DNN architectures?

Other topics: general models, general domains, time dependent problems etc.



Theorem 1 (informal)

Assume the parameter space is compact;
If 𝑆 has topological dimension 𝑝;
If the parameter-to-solution map is:

a) Lipschitz continuous, then
(from Menger-Nobeling Th.)

b) Continuous and injective near at least a point, 
then

c) Continuous and injective, then

Franco N.R., Manzoni A., Zunino P.., A Deep Learning approach to 
Reduced Order Modelling of Parameter Dependent Partial 
Differential Equations, (2023) Mathematics of Computation, 92 
(340), pp. 483 - 524

Q1: Properties of the latent space
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What is the relation between the minimal 
latent dimension and the topological 
dimension of the solution manifold?

General abstract result:



Q1: Properties of the latent space
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Application to PDEs

Theorem 2 (informal)

a) if the dependence of 𝜎!, 𝑏!, 𝑓!, 𝑔! on 𝝁 ∈ ℝ" is
Lipschitz continuous, then 𝑛#$% 𝑆 ≤ 2𝑝 + 1

b) if 𝜎!, 𝑏!, 𝑓!, 𝑔! depend continuously on 𝝁 and the 
solution map 𝝁 → 𝑢𝝁 is one-to-one, then 𝑛#$% 𝑆 = 𝑝

Application to PDEs with stochastic coefficients:

Theorem 3 (informal)

For all 𝑛 ≥ 2𝑝 + 1, if 𝑠𝑢𝑝$ 𝜑$ '! < ∞, then

for some 𝐶, independent of 𝑛, 𝑝

𝜎 is a random field given by a truncated KL expansion:

20

Before coming to the L2-case, it is worth to mention a practical application of
Theorem 2. For instance, following our previous discussion Section 2.2, we note
that Theorem 2 can be applied to the case of Darcy flow in porous media.

Corollary 3. Let ⌦ ⊂ Rd
be a bounded domain with Lipschitz boundary. Let � be

a Gaussian random field defined over ⌦. Without loss of generality, let � be given

in the form

�(x) ∶=m +
+∞
�

i=1
�

�i⌘i'i(x),

where m,�i, ⌘i,'i are as in Lemma 4. Assume that the mean is bounded and that

the covariance kernel of � is Lipschitz continuous. Consider the following stochastic

second order elliptic PDE

(40)
�
��
�
��
�

−∇ ⋅ (e�∇u) = f in ⌦

u = 0 on @⌦
,

where f ∈ L2
(⌦) is given. For all p ∈ N, let u(p) be the (random) solution to (40)

obtained by replacing � with

�(p)(x) ∶=
p

�

i=1
�

�iµi'i(x).

Then, for all n ≥ 2p + 1,

inf
 ′∈C(L2(⌦),Rn)
 ∈C(Rn

,L
2(⌦))

E�uµ − ( 
′
(uµ(p)))�L2(⌦) ≤ C

�����������

�

i>p
�i'

2
i

�����������

1�2

L∞(⌦)
,

for some C > 0 independent on n and p. In particular,

inf
 ′∈C(L2(⌦),Rn)
 ∈C(Rn

,L
2(⌦))

E�uµ − ( 
′
(uµ(p)))�L2(⌦) ≤ C

�

�

i>p
�i,

whenever sup
i
�'i�L∞(⌦) < +∞.

Proof. This is a direct consequence of Proposition 2 and Theorem 2. ⇤

To conclude, we finally address the L2-case. As we mentioned, this is a much
simpler scenario that only includes a smaller class of operators. In this sense, it is
not surprising to see that one can recover an error bound similar to (36), but with
fewer assumptions on µ.

Theorem 3. (L2-version) Let ⌦ be a bounded domain and let (V, � ⋅ �) be a Hilbert

space. Let µ be a Gaussian random field defined over ⌦, with a square integrable

mean m ∶ ⌦→ R and a square integrable covariance kernel Cov ∶ ⌦×⌦→ R. Finally,
let G ∶ L2

(⌦)→ V be an operator satisfying the growth condition below,

�@G�(⌫) ≤Me��⌫�L2(⌦) for all ⌫ ∈ L2
(⌦),

for some constants M,� > 0. In agreement with Lemma 5, let

µ =m +
+∞
�

i=1
�

�i⌘i'i

Very efficient (optimal) dimensional reduction Franco, N.R, Manzoni, A. and 
Zunino, P., Math. Comp. 2023



Q2: general concepts about the error analysis of DNN
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The functional to be minimized is (also called MRE):

ℰ 𝑓 = '
!
𝐿 𝑧, 𝑓 𝑑𝑃!

The global minimum of the error is:

ℰ∗ = 𝑖𝑛𝑓#∈% &,( ℰ(𝑓)

The optimal function in the hypothesis set 𝐹 is:

𝑓)∗ = 𝑎𝑟𝑔𝑚𝑖𝑛#∈)ℰ(𝑓)

The empirical MRE that is minimized on the training set 𝐷 is:

7ℰ*(𝑓) =
1
𝑚9

+,-

.

𝐿(𝑓, 𝑧+)

The output of the learning algorithm is the function 𝑓*
where 𝐷 are the training data

Generalization 
error

Optimization 
error

Generalization 
error

Approximation 
error

The error of the Deep Learning approximation can be 
represented as follows:

J. Berner, P. Grohs, G. Kutyniok, P. Petersen, The Modern Mathematics of Deep Learning, arXiv:2105.04026v1, 2021



Assume that the map 𝝁 → 𝒖𝝁𝒉 is Lipshitz continuous (with constant L) 

Assume that the infimum of 𝐸$ is attained for Ψ∗ and Ψ&∗ that are s-times differentiable with derivatives bounded 

by the constants 𝐶', 𝐶( respectively. 

Assume that, for a tolerance 𝜀 there exists𝑚 ∈ ℕ s.t. 𝑑) 𝒮 < 𝜀. 

Then, for a constant 𝑐 Θ, 𝐿, 𝐶', 𝐶(, 𝑝, 𝑛, 𝑠 ,  there exists

• a ReLU decoder Ψ having at most 𝒄𝒎𝟏∗𝒏/(𝒔/𝟏)𝜺/𝒏/(𝒔/𝟏)log 𝒎/𝜺 +𝒎𝑵𝒉 active weights and 𝒄log 𝒎/𝜺 layers,

• a ReLU reduced map 𝜙 having at most 𝒄𝜺/𝒑log 𝟏/𝜺 active weights and 𝒄log 𝟏/𝜺 layers,

such that the approximation error satisfies 𝐸$ ≤ 2𝜀

Theorem 4 (informal)

Worst case analysis E f = ∫! 𝐿 𝑧, 𝑓 𝑑𝑃! = 𝑠𝑢𝑝/∈!𝐿(𝑧, 𝑓)

The approximation error is: 𝐸0 = 𝑠𝑢𝑝1∈2 𝑢13 −Ψ∗ 𝜙∗ 𝜇

Approximation error (𝐸0) ≤ reconstruction error (𝐸4) + parametric error (𝑅5)

Q2: Error analysis of DL-ROM approximation
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Franco, N.R, Manzoni, A. and 
Zunino, P., Math. Comp. 2023

What is the size of the DNN that 
satisfies a given tolerance on 𝑬𝑨?

The expressivity of DNN:
NN depth and size increase poly-

logarithmically with respect to the target 
approximation accuracy

size Φ ≈ log 𝜀

Marcati, C., Opschoor, J.A.A., Petersen, P.C. et al. Exponential ReLU
Neural Network Approximation Rates for Point and Edge 

Singularities. Found Comput Math (2022).



How should we define the autoencoder architecture? 
What is the balance between convolutional and dense blocks?

Q3: DNN Architecure Design – Main guidelines
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Dense block

Convolutional block

Theorem 5 (informal)

Let be r-times differentiable.

For any there exists a DNN

such that

Furthermore, we may define the latter to have

• At most dense layers and convolutional layers

• active weights

• input and output channels

Franco, N.R., Fresca, S., Manzoni, A., Zunino, P. Approximation bounds for convolutional
neural networks in operator learning (2023) Neural Networks, 161, pp. 129-141. 

FOM features: Specific Architecture:

Mesh resolution Depth of convolutional block

Desired Accuracy Depth of dense block

Accuracy and regularity of the 
manifold Width of dense block

Regularity of the solution space Number of channels in the 
convolutional block



Numerical results
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Advection-diffusion equation.

The parameters describe
• The conductivity coefficient

(piecewise constant, cookie-like)
• Singular force location
• Transport direction

Here, p = 7.

Good results for both the dissipative and transport-dominated case.



Numerical results
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Advection-diffusion equation - Overcoming the Kolmogorov n-width barrier

Coherently with Theorem 3, we can improve the AE accuracy by enriching the decoder, by increasing the active weights 
without changing the latent dimension 𝒏𝒎𝒊𝒏 = 𝒑 = 𝟕.

Active weights Active weights

Add 
training 
points

M
RE

The compression rate doesn’t change 𝒏𝒎𝒊𝒏 = 𝒑 = 𝟕

Online cost: negligible 

Offline cost (1): moderate for training

Offline cost (2): high for snapshot collection.

Training on 10K data points 3-4- points per each dimension.



Physics based models
• Fluid mechanics
• Solid mechanics
• …

Model order reduction
• Real time computations

Many-query scenario
• Sensitivity analysis

• Uncertainty quantification

Heterogeneous model coupling
• Multiphysics

• Multiscale-upscaling

Model learning
• Discovery of constitutive laws

Deep learning ehnanced 
reduced order models

• Satisfy a desired accuracy;

• Control the computational effort;

• Streamlining the workflow for 
complex problems;

• Increase the interoperability of 
computational models.

Deep Learning enhanced ROM for complex problems
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Thank you! 
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