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Some general thoughts
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Diffraction + Nonlinearity
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Fractional Laplacian

Fractional Equation Domain
Diffusion-Reaction [2] A+ (—A)Pu+e(t,z)u=0 (0, +00) x B9
Quasi-geostrophic [3] B +u-VO+r(—A)Y20=f [0,T] x B2
Cahn-Hilliard [4, 5] dou+ (A2 (=2 Au + f(u)) =0 (0,T] % (0,2m)?
Porous Medium [4, 6] Aeu + (—A)?(Ju|™ signu) = 0 (0, +00) x R?
Schrodinger [7] ihd ) = Do(—R2A) 2 + V(r, t) (r,t) € R® x (0, +00)
Ultrasound [8, 9] Ft;- Pp = V2p— {18,(—A)*? + n(—A)@TD 2L p (—00, +00) x RY

Table 1: Important equations mvolving the fractional Laplacian.



Fractional Schrodinger Equation in QM

In quantum mechanics, Laskin* proposed a different generalization of the Feynman

path integral representation based on Brownian trajectories. If instead path integrals are
replaced by Levy fights, one arrives to what is known as space-fractional quantum mechanics
(SFQM). SFQM provides an interesting fractional physical model in quantum physics, but

as with Anderson localization or PT-symmetry, there is no QM-example to date where this
principle has been observed. The similarity of Optics and QM at the level of modeling is most
evident in the Laplacian spatial operator, which in QM represents the squared momentum
operator whereas in optics it models diffraction in free space. In both instances it is difficult

To envision the fractional property.

*N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62, 31353145 (2000)




y Flight for Light

(P. Barthelemy et al, Nature 2008)
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Figure: Lévy walker trajectory in a scale — invarian Levy glass




Work by Dr. Jimmie Adriazola, NJIT USA

Problem 2: Laser Beam Reshaping

Classical Diffraction

R

|
lh|
| |

Studied by Kunkel and Leger, (2018).
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Optimal Control Framework

The optimization problem 15 to maximize the fidelity:

. [1y . ol VLT g a2
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subject to Schrodinger's equation
o L .'-_irl — Wiz z i I
|I..-:L I g': :L - .-...ll. Ly
iz, 0) = wolx),

where i = {u & H! (10, 1) : u(0) = wp, w(l) = uy}.



Initial and Desired States

They're eypenfunctions of the form
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Result 1: Squeezing a Wave
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Result 2: Mapping to a Square-like Wave
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Experiment

W. Minster Kunkel, Ali Ghoreyshi, Glen Douglass, Simon Gross, Michael J. Withford, James R. Leger, "Gradient-index beam
shapers: fabricated devices and 3D design method,"” Proc. SPIE 10518, Laser Resonators, Microresonators, and Beam Control
XX, 105181S (16 February 2018); doi:10.1117/12.2290909
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What if it is desirable to have a more complex profil
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Perhaps introduce fractional diffraction......



.....Perhaps no ! (Neural networks). Fresh from the press

Research Article

Vol 30, No. 13/ 20 Jun 2022/ Optics Express 22798 |
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Advanced beam shaping for laser materials
processing based on diffractive neural networks
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Fig. 1. Example setup with two diffractive layers (A®; and A®,) and two output layers
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Longhi’s resonator model.

From Longhi: Fractional Schrédinger equation in optics (OL 2015)
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Some brief observations for the nonlinear FSE

= — (-0)z W + | P2Y = 0
au U(x,z) —U(y, z)
lE_CSP'V'j X — y|t2s dy 0<s<o
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Orbital stability, rigorous results

“Stability and instability of standing waves for the fractional nonlinear Schrodinger
equations, B Feng, S Zhu, Journal of Differential Equations 292 (2021) 287-324

Abstract

In this paper. we make a comprehensive study for the orbital stability of standing waves for the fractional
Schrodinger equation with combined power-type nonlinearities

10¢r — (=AU +aly|PPy + | |P2yr =0, (FNLS)

We prove that when py = 4—h“§ and a(py — %S) < 0, there exist the standing waves of (FNLS). which are

Ty o 0 4s P ) . ! i e P ,
orbitally stable. When a =0 and § < p2 < 55, We present a new, simpler method to %[UL]} the strong

e . B - ‘_45 H4 _
instability of standing waves. Whena =—1,0< p; < ppand 5y < p2 < y—5,.0ra =1 d[ld ~ <P <

P2 < N4 sc.ora=1,0<py < 45 < p2 < Nd'—z and f?zsmuf Iﬁ_l < 0, we deduce that the crmund state

standing waves of (FNLS) are atmngl} unstable by blow -up.
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Scaling, estimates Brian Choi, SMU

If u(X,t) is a solution to the 2d NLS
Oy = —Au + plulP~ o, (1)

2 —
then so is uy(X,t) = A" P Tu(5,5z). For sc =1 — % since

A
— 2 S-—5
|A P_lf( )HHs R2) — = A% ||f||H5{Rz},

eq. (1) is well-posed for any initial data in H5(R?) for s > s..
Do we have an analogous scaling symmetry for the mixed FNLS?
For

i0¢u = (Df + D§)u + plulP~ v, (2)

__2 : .
ur(x,y,y) =X P Tu(%, ,x_gf’ﬁ =) defines a one-parameter family of

solutions. To account for the mixed dispersion, define the
a-adapted anisotropic Sobolev space H3(R?) with the symbol
(1+ %2+ |n|™)2 as the multiplier. Then for sc(a) =3 + 2 — %,

18
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Initial observations Brian Choi, SMU

Adapting the proofs of [Hong-Sire '15] and [Dinh '16],

Theorem (Subcritical Well-posedness)

For a € (1,2), suppose s € (£ — 2, |p]] for p € (1,3), s € (s, | p|] for
p > 3 not an odd integer, and s € (sc,00) for p > 3, an odd integer.
Then, eq. (2) is locally well-posed in HS (R?).

Main differences and difficulties:

o For a = 2, the Strichartz estimates (spacetime estimate of the linear
evolution) have no derivative loss.

o For a < 2, the Strichartz estimates suffer derivative loss (except in
[2), portraying the nonlocal effect.

@ For the mixed dispersion and a < 2, the competition between the
local and nonlocal effects needs to be investigated. Furthermore, the
standard results in Fourier analysis may or may not hold due to the
non-smooth symbol (1 + &2 + |5|®)/2. 19



Mixed Nonlinear FSE:

a1 an
0¥ 0%\ 2 0%\ 2 e
o (-5)" e —(—ﬁ) W4 |W2Y = 0
a;, =0, a,= 2:Integrable NLSE
a, = a, = 2: 2d-NLSE

. - -‘. ..

Possible finite time blow-up event (Austin Copeland, 2020) o, =1, a,= 2.
Q: Is there a finite time singular blow-up. Is it radially symmetric ? 20



Q2: What if we have nonlocal coupling in discrete systems ?
Continuum limit ?

L—Um = thim h1+25|m—p|1+2s + yluml Um 0<s< O, Uy = U(Z, mh)

dz

Long range interactions

Q: Under which conditions limit when h approaches 0 is valid ?
i Do (—0)?U + y|UI2U
where (—A)* Is the continuous fractional Laplacian.
And what is the relation between a and s ?

 For s below 1, the long-range interactions in the discrete NLS-type equation remain long-range in the continuum
limit, producing a fractional NLS with a nonlocal character coming from the Laplacian of order a = s.

» For s above 1, the interaction strength decays quickly enough that only local effects survive in the continuum
limit, which is exactly the “classical” NLS, a = 1.

« Fors=1, we get the classical NLS in the continuum limit, with a logarithmic factor appearing in the scaling

constants

“On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions”, Kirkpatrick et.al., Commun. Math. Phys.
317, 563-591 (2013)
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Our recent work

Biccari, Umberto and AA, “WKB expansion for a fractional Schrédinger equation with applications to
controllability”, 2018 https://doi.org/10.48550/arxiv.1809.08099.

A Copeland, A Aceves, “Spatiotemporal Dynamics in the Fractional Nonlinear Schrédinger Equation”,
Proceedings Nonlinear Photonics, 2020.

Brian Choi, A A, “Well-posedness of the mixed-fractional nonlinear Schrédinger equation on R2”, Partial
Differential Equations in Applied Mathematics, (2022), 100406.
https://www.sciencedirect.com/science/article/pii/S2666818122000754

B Choi, A A, “On Properties of the mixed-Fractional Nonlinear Schrédinger Equation”, preprint arXiv:2109.03921,
2021


https://doi.org/10.48550/arxiv.1809.08099
https://www.sciencedirect.com/science/article/pii/S2666818122000754

Conclusions

Presented a brief mathematical introduction of the concept of fractional
Laplacian

Highlighted some applications in photonics
Part of the next generation of photonic devices !

Thanks for your attention
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