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Isoperimetric Problems
Classical Isoperimetric Inequality
Let n ≥ 2. Balls have maximal measure among Borel sets of Rn with finite
Lebesgue measure of given perimeter, that is

V (Ω) ≤ V (Ω∗),

where Ω∗ is the ball such that P(Ω) = P(Ω∗). We denote by V (·) the volume and
by P(·) the perimeter of a set. Moreover, equality holds if and only if Ω is a ball.

The classical isoperimetric inequality can be equivalently written in the
following scaling invariant form

P(Ω)

V (Ω)
n−1
n

≥ P(B)

V (B)
n−1
n

.

A (not exhaustive) list of References: De Giorgi (Atti Accad. Naz. Lincei,
1958), Osserman (Bull. Amer. Math. Soc., 1979), Talenti (Handbook of
convex geom., 1993), Chavel (Cambridge Tract. in Math., 2001), Fusco
(Bull. Math. Sci., 2015).
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Dirichlet boundary condition

Let Ω ⊆ Rn, with n ≥ 2, be an open set with finite Lebesgue measure. The first
Dirichlet eigenvalue of Ω is the least positive λ such that®

−∆u = λu in Ω

u = 0 on ∂Ω

admits non-trivial solution in H1
0 (Ω). Let us denote by λ1(Ω) the first Dirichlet

eigenvalue.

Faber-Krahn inequality [Faber, 1923; Krahn, 1925; Pólya and Szegö,
1951]
Let Ω ⊆ Rn be an open set with finite Lebesgue measure, then

λ1(Ω)V (Ω)2/n ≥ λ1(B)V (B)2/n,

and there is equality if and only if Ω is equivalent to a ball.
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Neumann boundary condition

Let Ω ⊆ Rn be a bounded, open and Lipschitz domain; the first non-zero
Neumann eigenvalue of Ω is the least strictly positive µ such that−∆u = µu in Ω

∂u

∂ν
= 0 on ∂Ω,

admits solution in H1(Ω), where ∂u/∂ν is outer normal derivative of u on ∂Ω.
Let us call µ2(Ω) the first non zero eigenvalue (µ1(Ω) = 0 and corresponds to the
constant eigenfunctions).

Szegö-Weinberger inequality [Szegö, 1954, Weinberger, 1956]
Let Ω ⊆ Rn be a bounded, open and Lipschitz domain. Then

µ2(Ω)V (Ω)2/n ≤ µ2(B)V (B)2/n

and there is equality if and only if Ω is equivalent to a ball.
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The Stability Issue

The classical isoperimetric inequality can be also stated:

P(Ω) ≥ P(Ω♯),

where Ω♯is the ball such that V (Ω♯) = V (Ω).

The Faber-Krahn and the Szegö-Weinberger inequalities can be written as

λ1(Ω) ≥ λ1(Ω
♯) µ2(Ω

♯) ≥ µ2(Ω)

What about quantitative estimates?

that is:

If the differences P(Ω)−P(Ω♯), λ1(Ω)− λ1(Ω
♯) or µ2(Ω

♯)− µ2(Ω) are small, can
we say that Ω is "close" to a ball? And in what sense?
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Quantitative Spectral Inequalities
Definition of Fraenkel Asymmetry

AF (Ω) := inf
x∈Rn

ß
V (Ω∆BR(x))

V (BR(x))
, V (BR(x)) = V (Ω)

™
.

Ω

𝜴𝚫𝐁
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Quantitative spectral inequalities

Quantitative Isoperimetric Inequality [Fusco- Maggi-Pratelli, Ann. of
Math., 2008]
Let Ω ⊆ Rn set of finite measure

V (Ω)(1−n)/nP(Ω)− V (B)(1−n)/nP(B) ≥ αnAF (Ω)
2,

The exponent 2 is sharp

History: Bernstein, 1905; Bonnensen 1924; Hadwiger, 1948; Fuglede, 1989;
Hall, 1992...

New proofs: Fusco-Maggi-Figalli, 2010; Cicalese-Leonardi, 2013
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Quantitative spectral inequalities

Quantitative Faber-Krahn [Brasco-De Phillippis-Velichkov, Duke
Math. J., 2015]
Let Ω ⊆ Rn set of finite measure

V (Ω)2/nλ1(Ω)− V (B)2/nλ1(B) ≥ βnAF (Ω)
2.

The exponent 2 is sharp

Melas, 1992;
Hansen-Nadirashvili, 1994;
Bhattacharya, 2001;
Fusco-Maggi-Pratelli, 2009.
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Quantitative spectral inequalities

Quantitative Szegö-Weinberger [Brasco-Pratelli, Geometric and
Functional Anal., 2012]
Let Ω ⊆ Rn open set with Lipschitz boundary

V (B)2/nµ2(B)− V (Ω)2/nµ2(Ω) ≥ γnAF (Ω)
2,

The exponent 2 is sharp

Nadirashvili, 1997.
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First non-zero Steklov eigenvalue
Let Ω ⊆ Rn, n ≥ 2, be a bounded, connected, open set with Lipschitz boundary.

The first non-zero Steklov eigenvalue of Ω is defined by

σ(Ω) := min


∫
Ω

|∇v |2dx∫
∂Ω

v2dσx

: v ∈ H1(Ω) \ {0},
∫
∂Ω

v dσx = 0

 .

Any minimizer satisfies 
∆u = 0 in Ω

∂u

∂ν
= σu on ∂Ω.
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First non-zero Steklov eigenvalue

∆u = 0 in Ω

∂u

∂ν
= σu on ∂Ω

The sequence of Steklov eigenvalues

0 = σ1(Ω) < σ2(Ω)(= σ(Ω)) ≤ σ3(Ω) ≤ σ3(Ω) · · · ↗ +∞

as in the Neumann case, starts with zero.
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First non-zero Steklov eigenvalue

∆u = 0 in Ω

∂u

∂ν
= σu on ∂Ω

σ(Ω) is invariant under translations;
σ(tΩ) = t−1σ(Ω).
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Weinstock inequality in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]
If Ω ⊆ R2 is a bounded, Lipschitz simply connected open set, then

σ(Ω)P(Ω) ≤ σ(B)P(B), (1)

where P(Ω) stands for the perimeter of Ω and B ⊆ R2 is a ball. Equality holds if
and only if Ω is a ball.

In other words: “among all simply connected sets of R2 with prescribed perimeter,
the disc maximises the first non-zero Steklov eigenvalue".
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In other words: “among all simply connected sets of R2 with prescribed perimeter,
the disc maximises the first non-zero Steklov eigenvalue".

Remark (Girouard-Polterovich, J. Spectral Theory, 2017)
Weinstock inequality fails for planar domains which are not simply connected.
Namely, one can find an annulus Ωε = B1 \ Bε, ε ≈ 0, such that

σ(Ωε)P(Ωε) > σ(B)P(B).
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where P(Ω) stands for the perimeter of Ω and B ⊆ R2 is a ball. Equality holds if
and only if Ω is a ball.

The isoperimetric inequality in (1) gives

σ(Ω)V (Ω)1/2 ≤ σ(B)V (B)1/2,

What about the n-dimensional case, n ≥ 3?
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Brock-Weinstock inequality in Rn

Theorem [Brock, ZAMM, 2001]
For every Lipschitz bounded open set Ω ⊆ Rn, it holds true

σ(Ω)V (Ω)
1
n ≤ σ(B)V (B)

1
n .

The equality holds iff Ω is a ball.

In other words: “Among all Lipschitz sets of Rn with prescribed volume, balls
maximise the first non-zero Steklov eigenvalue".

Theorem [Brasco-De Philippis-Ruffini, J. Funct. Anal., 2012]
For every Ω ⊂ Rn, bounded, Lipschitz open set, there exists a positive constant
C = C (n) such that it holds

V (B)
1
n σ(B)− V (Ω)

1
n σ(Ω) ≥ C (n)AF (Ω)

2.

The exponent 2 is sharp.
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Weinstock inequality in Rn

Theorem [Bucur-Ferone-Nitsch-Trombetti, J. Differential Geom.,
2018]
Let Ω be a bounded, open and convex set of Rn. Then

σ(Ω)P(Ω)
1

n−1 ≤ σ(B)P(B)
1

n−1 .

Equality holds only if Ω is a ball.
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Let Ω be a bounded, open and convex set of Rn. Then

σ(Ω)P(Ω)
1

n−1 ≤ σ(B)P(B)
1

n−1 .

Equality holds only if Ω is a ball.

The above inequality cannot hold for simply connected sets in Rn . Namely, one
can find a spherical shell Ωε = B1 \ Bε, ε ≈ 0, (Br denotes the ball of radius r
centered at the origin) such that

σ(Ωε)P(Ωε)
1

n−1 > σ(B)P(B)
1

n−1 .
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Stability of the Weinstock Inequaliy

Theorem [Gavitone-La Manna - P. - Trani, Calc. Var., 2019]
Among open, bounded and convex sets Ω, we have

for n = 2
P(B)σ(B)− P(Ω)σ(Ω) ≥ CA5/2(Ω);

for n = 3
P(B)1/2σ(B)− P(Ω)1/2σ(Ω) ≥ C g

(
A2(Ω)

)
,

where g is the inverse function of f (t) = t log
( 1
t

)
, for 0 < t < e−1;

for n ≥ 4

P(B)1/(n−1)σ(B)− P(Ω)1/(n−1)σ(Ω) ≥ CA(Ω)(n+1)/2.

Moreover, all the exponents are sharp.
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Hausdorff Distance

Definition of Hausdorff distance between two convex sets of Rn:

dH(C ,K ) := inf {ε > 0 : C ⊂ K + Bε, K ⊂ C + Bε} ,

where Bϵ a ball of radius ϵ and + the Minkowski sum between sets, i.e.

A+ B = {x + y | x ∈ A, y ∈ B}.

Definition of Spherical Asymmetry:

A(Ω) := min
x∈Rn

ßÅ
dH (Ω,BR(x))

R

ã
, P(BR(x)) = P(Ω)

™
.
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The Torsion Problem with Dirichlet boundary conditions

Let Ω ⊂ Rn an open, bounded and convex set. The torsional rigidity T (Ω) is
defined as

T (Ω) =

∫
Ω

u(x) dx ,

where u is the unique solution of the PDE problem®
−∆u(x) = 1 in Ω

u ∈ H1
0 (Ω).

Variational characterization of Torsional Rigidity

T (Ω) = max
φ∈H1

0 (Ω)
φ̸≡0

Å∫
Ω

φ(x) dx

ã2

∫
Ω

∇φ(x)2 dx
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Lower estimate for the Torsion in terms of area and
perimeter
We recall the following scaling propertiesfor every t > 0:

V (tΩ) = tnV (Ω), P(tΩ) = tn−1P(Ω)

and
T (tΩ) = tn+2T (Ω).

Theorem [Pólya, J. Indian Math Soc, (1960)]
Let Ω be an open, bounded and convex set of Rn. It holds:

T (Ω)P2(Ω)

V (Ω)3
≥ 1

3

and the equality sign is attained by a sequence of thinning cylinders.

Pólya, J. Indian Math Soc, (1960);
Fragalá-Gazzola-Lamboley, Geom. for parabolic and elliptic PDE’s, (2013);
Della Pietra-Gavitone, Math. Nachr., 2014;
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Some Definitions
Let us denote by wΩ the minimal width and by diam(Ω) the diameter of Ω.

Definition
Let Ωk be a sequence of open, bounded and convex sets of Rn. We say that
Ωk is a sequence of thinning domains if

wΩk

diam(Ωk)
k→0−−−→ 0.

In particular, if k > 0 and C is an open, bounded and convex set of Rn−1,
then, if k → 0, the sequence

Ωk = C ×
ï
− 1

2k
,

1
2k

ò
C

1
k

Ωk

is called a sequence of thinning cylinders. Moreover, in the case n = 2 the
above sequence is called sequence of thinning rectangles.
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A first quantitative result

Theorem 1 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of R2 and let f ≡ 1. Then,

T (Ω)P2(Ω)

V (Ω)3
− 1

3
≥ K (2)

wΩ

diam(Ω)
,

where K (2) is a positive constant that can be computed explicitly.

Moreover, the exponent of the quantity
wΩ

diam(Ω)
is sharp.

Generalization to the case of the p-Laplacian, with

K (p) =
(p − 1)p

2
p

p−1 3(3p − 2)(2p − 1)
.

Generalization in dimension n > 2
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A second quantitative result in the planar case

Theorem 2 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of R2. Then, there exists a positive
constant M such that

T (Ω)P2(Ω)

|Ω|3
− 1

3
≥ M

Å |Ω△ Q|
|Ω|

ã3

,

where Ω△Q denotes the symmetric difference between Ω and a rectangle Q with
sides P(Ω)/2 and wΩ, containing Ω.

wΩ

Ω

P(Ω)/2
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A second quantitative result in the planar case

Theorem 2 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of R2. Then, there exists a positive
constant M such that
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|Ω|
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,

where Ω△Q denotes the symmetric difference between Ω and a rectangle Q with
sides P(Ω)/2 and wΩ, containing Ω.

Sharpness of the exponent of the asymmetry?
Extend the second quantitative results contained in Theorem 2 in dimension
n > 2?
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A quantitative isoperimetric type inequality for the Dirichlet
Laplacian in terms of the perimeter

The starting point is the following conjecture.

Conjecture [Fthoui-Lamboley, 2020, SIAM]
Let Ω ⊆ R2 an open and convex sets such that V (Ω) = 1, then

λ1(Ω)− λ1(B) ≥ β (P(Ω)− P(B))3/2 ,

where B ⊆ R2 is a ball of area 1, β := 4·33/2 ζ(3)
π11/4 and ζ(n) =

∑∞
k=1 k

−n is the
Riemann zeta function.
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Analytic support: [Grinfeld- Strang, Journal of Math. Anal. and Appl., 2012;
Molinari, Journal of Physics , 1997] Let P∗

k be the regular polygon with k
edges and area equal to 1. Then, as k goes to +∞,

λ1(P
∗
k )− λ1(B) ∼ β (P(P∗

k )− P(B))3/2 .

Numerical support: [Fthoui-Lamboley, 2020, preprint] the Blaschke-Santaló
diagram for the triplet (P(·), λ1(·), V (·)), that is the sets of points

{(P(Ω), λ1(Ω)) | V (Ω) = 1, Ω ⊂ R2, Ω convex}.

G. Paoli (FAU) Stability results Erlangen, July 1 2022 28 / 33



Analytic support: [Grinfeld- Strang, Journal of Math. Anal. and Appl., 2012;
Molinari, Journal of Physics , 1997] Let P∗

k be the regular polygon with k
edges and area equal to 1. Then, as k goes to +∞,

λ1(P
∗
k )− λ1(B) ∼ β (P(P∗

k )− P(B))3/2 .

Numerical support: [Fthoui-Lamboley, 2020, preprint] the Blaschke-Santaló
diagram for the triplet (P(·), λ1(·), V (·)), that is the sets of points

{(P(Ω), λ1(Ω)) | V (Ω) = 1, Ω ⊂ R2, Ω convex}.

G. Paoli (FAU) Stability results Erlangen, July 1 2022 28 / 33



Blaschke-Santaló Diagram (Fthoui-Lamboley, SIAM)
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We define the following class of admissible sets, with n ≥ 2:

Cn := {Ω ⊆ Rn | Ω convex, V (Ω) = V (B)},

Theorem [P., Rend. Lincei, 2021]
Let n ≥ 2; there exists a constant c > 0, depending only on n, such that, for every
Ω ∈ Cn, it holds

λ1(Ω)− λ1(B) ≥ c (P(Ω)− P(B))2 .
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Intermediate Step

Main Ingredients:
Quantitative Faber-Krahn [Brasco-De Philippis-Velichkov, 2015] For every
open set Ω with V (Ω) = 1, it holds

λ1(Ω)− λ1(B) ≥ C̄AF (Ω)
2

We want to prove an inequality of this form: there exist C , δ > 0 such that

AF (Ω) ≥ C (P(Ω)− P(B))δ

The target power would be δ = 3/4, but unfortunately the best power is δ = 1
and the "bad" sets are the polygons:

AF (P
∗
k ) ∼ (P(P∗

k )− P(B)) .
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Thank you for your attention!
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