Optimization and stability problems for eigenvalues of linear and non linear operators

Gloria Paoli
Friedrich-Alexander-Universität Erlangen-Nürnberg

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung/Foundation

(1) Introduction to Spectral Inequalities
(2) Steklov Eigenvalue Problem for the Laplace Operator
(3) Stability results for the Pólia inequality
(4) A Quantitative Inequality for the first Dirichlet Eigenvalue in terms of Perimeter

Table of Contents

(1) Introduction to Spectral Inequalities

(2) Steklov Eigenvalue Problem for the Laplace Operator

(3) Stability results for the Pólia inequality
(4) A Quantitative Inequality for the first Dirichlet Eigenvalue in terms of Perimeter

Isoperimetric Problems

Classical Isoperimetric Inequality

Let $n \geq 2$. Balls have maximal measure among Borel sets of \mathbb{R}^{n} with finite Lebesgue measure of given perimeter, that is

$$
V(\Omega) \leq V\left(\Omega^{*}\right)
$$

where Ω^{*} is the ball such that $P(\Omega)=P\left(\Omega^{*}\right)$. We denote by $V(\cdot)$ the volume and by $P(\cdot)$ the perimeter of a set. Moreover, equality holds if and only if Ω is a ball.

Isoperimetric Problems

Classical Isoperimetric Inequality

Let $n \geq 2$. Balls have maximal measure among Borel sets of \mathbb{R}^{n} with finite Lebesgue measure of given perimeter, that is

$$
V(\Omega) \leq V\left(\Omega^{*}\right)
$$

where Ω^{*} is the ball such that $P(\Omega)=P\left(\Omega^{*}\right)$. We denote by $V(\cdot)$ the volume and by $P(\cdot)$ the perimeter of a set. Moreover, equality holds if and only if Ω is a ball.

- The classical isoperimetric inequality can be equivalently written in the following scaling invariant form

$$
\frac{P(\Omega)}{V(\Omega)^{\frac{n-1}{n}}} \geq \frac{P(B)}{V(B)^{\frac{n-1}{n}}}
$$

Isoperimetric Problems

Classical Isoperimetric Inequality

Let $n \geq 2$. Balls have maximal measure among Borel sets of \mathbb{R}^{n} with finite Lebesgue measure of given perimeter, that is

$$
V(\Omega) \leq V\left(\Omega^{*}\right)
$$

where Ω^{*} is the ball such that $P(\Omega)=P\left(\Omega^{*}\right)$. We denote by $V(\cdot)$ the volume and by $P(\cdot)$ the perimeter of a set. Moreover, equality holds if and only if Ω is a ball.

- The classical isoperimetric inequality can be equivalently written in the following scaling invariant form

$$
\frac{P(\Omega)}{V(\Omega)^{\frac{n-1}{n}}} \geq \frac{P(B)}{V(B)^{\frac{n-1}{n}}} .
$$

- A (not exhaustive) list of References: De Giorgi (Atti Accad. Naz. Lincei, 1958), Osserman (Bull. Amer. Math. Soc., 1979), Talenti (Handbook of convex geom., 1993), Chavel (Cambridge Tract. in Math., 2001), Fusco (Bull. Math. Sci., 2015).

Dirichlet boundary condition

Dirichlet boundary condition

Let $\Omega \subseteq \mathbb{R}^{n}$, with $n \geq 2$, be an open set with finite Lebesgue measure. The first Dirichlet eigenvalue of Ω is the least positive λ such that

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits non-trivial solution in $H_{0}^{1}(\Omega)$. Let us denote by $\lambda_{1}(\Omega)$ the first Dirichlet eigenvalue.

Dirichlet boundary condition

Let $\Omega \subseteq \mathbb{R}^{n}$, with $n \geq 2$, be an open set with finite Lebesgue measure. The first Dirichlet eigenvalue of Ω is the least positive λ such that

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits non-trivial solution in $H_{0}^{1}(\Omega)$. Let us denote by $\lambda_{1}(\Omega)$ the first Dirichlet eigenvalue.

Faber-Krahn inequality [Faber, 1923; Krahn, 1925; Pólya and Szegö, 1951]
Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set with finite Lebesgue measure, then

$$
\lambda_{1}(\Omega) V(\Omega)^{2 / n} \geq \lambda_{1}(B) V(B)^{2 / n}
$$

and there is equality if and only if Ω is equivalent to a ball.

Neumann boundary condition

Neumann boundary condition

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded, open and Lipschitz domain; the first non-zero Neumann eigenvalue of Ω is the least strictly positive μ such that

$$
\begin{cases}-\Delta u=\mu u & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

Neumann boundary condition

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded, open and Lipschitz domain; the first non-zero Neumann eigenvalue of Ω is the least strictly positive μ such that

$$
\begin{cases}-\Delta u=\mu u & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

admits solution in $H^{1}(\Omega)$, where $\partial u / \partial \nu$ is outer normal derivative of u on $\partial \Omega$. Let us call $\mu_{2}(\Omega)$ the first non zero eigenvalue $\left(\mu_{1}(\Omega)=0\right.$ and corresponds to the constant eigenfunctions).

Neumann boundary condition

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded, open and Lipschitz domain; the first non-zero Neumann eigenvalue of Ω is the least strictly positive μ such that

$$
\begin{cases}-\Delta u=\mu u & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

admits solution in $H^{1}(\Omega)$, where $\partial u / \partial \nu$ is outer normal derivative of u on $\partial \Omega$. Let us call $\mu_{2}(\Omega)$ the first non zero eigenvalue $\left(\mu_{1}(\Omega)=0\right.$ and corresponds to the constant eigenfunctions).

Szegö-Weinberger inequality [Szegö, 1954, Weinberger, 1956]

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded, open and Lipschitz domain. Then

$$
\mu_{2}(\Omega) V(\Omega)^{2 / n} \leq \mu_{2}(B) V(B)^{2 / n}
$$

and there is equality if and only if Ω is equivalent to a ball.

The Stability Issue

The Stability Issue

The classical isoperimetric inequality can be also stated:

$$
P(\Omega) \geq P\left(\Omega^{\sharp}\right),
$$

where Ω^{\sharp} is the ball such that $V\left(\Omega^{\sharp}\right)=V(\Omega)$.

The Stability Issue

The classical isoperimetric inequality can be also stated:

$$
P(\Omega) \geq P\left(\Omega^{\sharp}\right),
$$

where Ω^{\sharp} is the ball such that $V\left(\Omega^{\sharp}\right)=V(\Omega)$.
The Faber-Krahn and the Szegö-Weinberger inequalities can be written as

$$
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{\sharp}\right)
$$

$$
\mu_{2}\left(\Omega^{\sharp}\right) \geq \mu_{2}(\Omega)
$$

The Stability Issue

The classical isoperimetric inequality can be also stated:

$$
P(\Omega) \geq P\left(\Omega^{\sharp}\right),
$$

where Ω^{\sharp} is the ball such that $V\left(\Omega^{\sharp}\right)=V(\Omega)$.
The Faber-Krahn and the Szegö-Weinberger inequalities can be written as

$$
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{\sharp}\right)
$$

$$
\mu_{2}\left(\Omega^{\sharp}\right) \geq \mu_{2}(\Omega)
$$

What about quantitative estimates?

The Stability Issue

The classical isoperimetric inequality can be also stated:

$$
P(\Omega) \geq P\left(\Omega^{\sharp}\right),
$$

where Ω^{\sharp} is the ball such that $V\left(\Omega^{\sharp}\right)=V(\Omega)$.
The Faber-Krahn and the Szegö-Weinberger inequalities can be written as

$$
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{\sharp}\right)
$$

$$
\mu_{2}\left(\Omega^{\sharp}\right) \geq \mu_{2}(\Omega)
$$

What about quantitative estimates?

that is:
If the differences $P(\Omega)-P\left(\Omega^{\sharp}\right), \lambda_{1}(\Omega)-\lambda_{1}\left(\Omega^{\sharp}\right)$ or $\mu_{2}\left(\Omega^{\sharp}\right)-\mu_{2}(\Omega)$ are small, can we say that Ω is "close" to a ball? And in what sense?

Quantitative Spectral Inequalities

Definition of Fraenkel Asymmetry

$$
\mathcal{A}_{F}(\Omega):=\inf _{x \in \mathbb{R}^{n}}\left\{\frac{V\left(\Omega \Delta B_{R}(x)\right)}{V\left(B_{R}(x)\right)}, V\left(B_{R}(x)\right)=V(\Omega)\right\} .
$$

Quantitative spectral inequalities

Quantitative Isoperimetric Inequality [Fusco- Maggi-Pratelli, Ann. of Math., 2008]

Let $\Omega \subseteq \mathbb{R}^{n}$ set of finite measure

$$
V(\Omega)^{(1-n) / n} P(\Omega)-V(B)^{(1-n) / n} P(B) \geq \alpha_{n} \mathcal{A}_{F}(\Omega)^{2},
$$

The exponent 2 is sharp

Quantitative spectral inequalities

Quantitative Isoperimetric Inequality [Fusco- Maggi-Pratelli, Ann. of Math., 2008]
Let $\Omega \subseteq \mathbb{R}^{n}$ set of finite measure

$$
V(\Omega)^{(1-n) / n} P(\Omega)-V(B)^{(1-n) / n} P(B) \geq \alpha_{n} \mathcal{A}_{F}(\Omega)^{2}
$$

The exponent 2 is sharp

- History: Bernstein, 1905; Bonnensen 1924; Hadwiger, 1948; Fuglede, 1989; Hall, 1992...
- New proofs: Fusco-Maggi-Figalli, 2010; Cicalese-Leonardi, 2013

Quantitative spectral inequalities

Quantitative Faber-Krahn [Brasco-De Phillippis-Velichkov, Duke Math. J., 2015]
Let $\Omega \subseteq \mathbb{R}^{n}$ set of finite measure

$$
V(\Omega)^{2 / n} \lambda_{1}(\Omega)-V(B)^{2 / n} \lambda_{1}(B) \geq \beta_{n} \mathcal{A}_{F}(\Omega)^{2} .
$$

The exponent 2 is sharp

Quantitative spectral inequalities

Quantitative Faber-Krahn [Brasco-De Phillippis-Velichkov, Duke Math. J., 2015]
Let $\Omega \subseteq \mathbb{R}^{n}$ set of finite measure

$$
V(\Omega)^{2 / n} \lambda_{1}(\Omega)-V(B)^{2 / n} \lambda_{1}(B) \geq \beta_{n} \mathcal{A}_{F}(\Omega)^{2} .
$$

The exponent 2 is sharp

- Melas, 1992;
- Hansen-Nadirashvili, 1994;
- Bhattacharya, 2001;
- Fusco-Maggi-Pratelli, 2009.

Quantitative spectral inequalities

Quantitative Szegö-Weinberger [Brasco-Pratelli, Geometric and Functional Anal., 2012]
Let $\Omega \subseteq \mathbb{R}^{n}$ open set with Lipschitz boundary

$$
V(B)^{2 / n} \mu_{2}(B)-V(\Omega)^{2 / n} \mu_{2}(\Omega) \geq \gamma_{n} \mathcal{A}_{F}(\Omega)^{2},
$$

The exponent 2 is sharp

Quantitative spectral inequalities

Quantitative Szegö-Weinberger [Brasco-Pratelli, Geometric and Functional Anal., 2012]
Let $\Omega \subseteq \mathbb{R}^{n}$ open set with Lipschitz boundary

$$
V(B)^{2 / n} \mu_{2}(B)-V(\Omega)^{2 / n} \mu_{2}(\Omega) \geq \gamma_{n} \mathcal{A}_{F}(\Omega)^{2},
$$

The exponent 2 is sharp

- Nadirashvili, 1997.

Table of Contents

(1) Introduction to Spectral Inequalities
(2) Steklov Eigenvalue Problem for the Laplace Operator
(3) Stability results for the Pólia inequality

44 A Quantitative Inequality for the first Dirichlet Eigenvalue in terms of Perimeter

First non-zero Steklov eigenvalue

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a bounded, connected, open set with Lipschitz boundary.
The first non-zero Steklov eigenvalue of Ω is defined by

$$
\sigma(\Omega):=\min \left\{\frac{\int_{\Omega}|\nabla v|^{2} d x}{\int_{\partial \Omega} v^{2} d \sigma_{x}}: v \in H^{1}(\Omega) \backslash\{0\}, \int_{\partial \Omega} v d \sigma_{x}=0\right\} .
$$

First non-zero Steklov eigenvalue

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a bounded, connected, open set with Lipschitz boundary.
The first non-zero Steklov eigenvalue of Ω is defined by

$$
\sigma(\Omega):=\min \left\{\frac{\int_{\Omega}|\nabla v|^{2} d x}{\int_{\partial \Omega} v^{2} d \sigma_{x}}: v \in H^{1}(\Omega) \backslash\{0\}, \int_{\partial \Omega} v d \sigma_{x}=0\right\} .
$$

Any minimizer satisfies

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=\sigma u & \text { on } \partial \Omega\end{cases}
$$

First non-zero Steklov eigenvalue

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=\sigma u & \text { on } \partial \Omega\end{cases}
$$

The sequence of Steklov eigenvalues

$$
0=\sigma_{1}(\Omega)<\sigma_{2}(\Omega)(=\sigma(\Omega)) \leq \sigma_{3}(\Omega) \leq \sigma_{3}(\Omega) \cdots \nearrow+\infty
$$

as in the Neumann case, starts with zero.

First non-zero Steklov eigenvalue

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=\sigma u & \text { on } \partial \Omega\end{cases}
$$

- $\sigma(\Omega)$ is invariant under translations;
- $\sigma(t \Omega)=t^{-1} \sigma(\Omega)$.

First non-zero Steklov eigenvalue

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=\sigma u & \text { on } \partial \Omega\end{cases}
$$

- $\sigma(\Omega)$ is invariant under translations;
- $\sigma(t \Omega)=t^{-1} \sigma(\Omega)$.

Weinstock inequality in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]

If $\Omega \subseteq \mathbb{R}^{2}$ is a bounded, Lipschitz simply connected open set, then

$$
\begin{equation*}
\sigma(\Omega) P(\Omega) \leq \sigma(B) P(B), \tag{1}
\end{equation*}
$$

where $P(\Omega)$ stands for the perimeter of Ω and $B \subseteq \mathbb{R}^{2}$ is a ball. Equality holds if and only if Ω is a ball.

In other words: "among all simply connected sets of \mathbb{R}^{2} with prescribed perimeter, the disc maximises the first non-zero Steklov eigenvalue".

Weinstock inequality in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]

If $\Omega \subseteq \mathbb{R}^{2}$ is a bounded, Lipschitz simply connected open set, then

$$
\begin{equation*}
\sigma(\Omega) P(\Omega) \leq \sigma(B) P(B) \tag{1}
\end{equation*}
$$

where $P(\Omega)$ stands for the perimeter of Ω and $B \subseteq \mathbb{R}^{2}$ is a ball. Equality holds if and only if Ω is a ball.

In other words: "among all simply connected sets of \mathbb{R}^{2} with prescribed perimeter, the disc maximises the first non-zero Steklov eigenvalue".

Remark (Girouard-Polterovich, J. Spectral Theory, 2017)

Weinstock inequality fails for planar domains which are not simply connected. Namely, one can find an annulus $\Omega_{\varepsilon}=B_{1} \backslash \bar{B}_{\varepsilon}, \varepsilon \approx 0$, such that

$$
\sigma\left(\Omega_{\varepsilon}\right) P\left(\Omega_{\varepsilon}\right)>\sigma(B) P(B)
$$

Weinstock inequality in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]

If $\Omega \subseteq \mathbb{R}^{2}$ is a bounded, Lipschitz simply connected open set, then

$$
\begin{equation*}
\sigma(\Omega) P(\Omega) \leq \sigma(B) P(B), \tag{1}
\end{equation*}
$$

where $P(\Omega)$ stands for the perimeter of Ω and $B \subseteq \mathbb{R}^{2}$ is a ball. Equality holds if and only if Ω is a ball.

The isoperimetric inequality in (1) gives

$$
\sigma(\Omega) V(\Omega)^{1 / 2} \leq \sigma(B) V(B)^{1 / 2}
$$

Weinstock inequality in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]
If $\Omega \subseteq \mathbb{R}^{2}$ is a bounded, Lipschitz simply connected open set, then

$$
\begin{equation*}
\sigma(\Omega) P(\Omega) \leq \sigma(B) P(B), \tag{1}
\end{equation*}
$$

where $P(\Omega)$ stands for the perimeter of Ω and $B \subseteq \mathbb{R}^{2}$ is a ball. Equality holds if and only if Ω is a ball.

The isoperimetric inequality in (1) gives

$$
\sigma(\Omega) V(\Omega)^{1 / 2} \leq \sigma(B) V(B)^{1 / 2}
$$

What about the n-dimensional case, $n \geq 3$?

Brock-Weinstock inequality in \mathbb{R}^{n}

Theorem [Brock, ZAMM, 2001]

For every Lipschitz bounded open set $\Omega \subseteq \mathbb{R}^{n}$, it holds true

$$
\sigma(\Omega) V(\Omega)^{\frac{1}{n}} \leq \sigma(B) V(B)^{\frac{1}{n}}
$$

The equality holds iff Ω is a ball.
In other words: "Among all Lipschitz sets of \mathbb{R}^{n} with prescribed volume, balls maximise the first non-zero Steklov eigenvalue".

Brock-Weinstock inequality in \mathbb{R}^{n}

Theorem [Brock, ZAMM, 2001]

For every Lipschitz bounded open set $\Omega \subseteq \mathbb{R}^{n}$, it holds true

$$
\sigma(\Omega) V(\Omega)^{\frac{1}{n}} \leq \sigma(B) V(B)^{\frac{1}{n}} .
$$

The equality holds iff Ω is a ball.
In other words: "Among all Lipschitz sets of \mathbb{R}^{n} with prescribed volume, balls maximise the first non-zero Steklov eigenvalue".

Theorem [Brasco-De Philippis-Ruffini, J. Funct. Anal., 2012]

For every $\Omega \subset \mathbb{R}^{n}$, bounded, Lipschitz open set, there exists a positive constant $C=C(n)$ such that it holds

$$
V(B)^{\frac{1}{n}} \sigma(B)-V(\Omega)^{\frac{1}{n}} \sigma(\Omega) \geq C(n) \mathcal{A}_{F}(\Omega)^{2} .
$$

The exponent 2 is sharp.

Weinstock inequality in \mathbb{R}^{n}

Weinstock inequality in \mathbb{R}^{n}

Theorem [Bucur-Ferone-Nitsch-Trombetti, J. Differential Geom., 2018]

Let Ω be a bounded, open and convex set of \mathbb{R}^{n}. Then

$$
\sigma(\Omega) P(\Omega)^{\frac{1}{n-1}} \leq \sigma(B) P(B)^{\frac{1}{n-1}} .
$$

Equality holds only if Ω is a ball.

The above inequality cannot hold for simply connected sets in \mathbb{R}^{n}. Namely, one can find a spherical shell $\Omega_{\varepsilon}=B_{1} \backslash \bar{B}_{\varepsilon}, \varepsilon \approx 0,\left(B_{r}\right.$ denotes the ball of radius r centered at the origin) such that

$$
\sigma\left(\Omega_{\varepsilon}\right) P\left(\Omega_{\varepsilon}\right)^{\frac{1}{n-1}}>\sigma(B) P(B)^{\frac{1}{n-1}} .
$$

Stability of the Weinstock Inequaliy

Theorem [Gavitone-La Manna - P. - Trani, Calc. Var., 2019]

Among open, bounded and convex sets Ω, we have

- for $n=2$

$$
P(B) \sigma(B)-P(\Omega) \sigma(\Omega) \geq C \mathcal{A}^{5 / 2}(\Omega) ;
$$

- for $n=3$

$$
P(B)^{1 / 2} \sigma(B)-P(\Omega)^{1 / 2} \sigma(\Omega) \geq C g\left(\mathcal{A}^{2}(\Omega)\right),
$$

where g is the inverse function of $f(t)=t \log \left(\frac{1}{t}\right)$, for $0<t<e^{-1}$;

- for $n \geq 4$

$$
P(B)^{1 /(n-1)} \sigma(B)-P(\Omega)^{1 /(n-1)} \sigma(\Omega) \geq C \mathcal{A}(\Omega)^{(n+1) / 2} .
$$

Moreover, all the exponents are sharp.

Hausdorff Distance

- Definition of Hausdorff distance between two convex sets of \mathbb{R}^{n} :

$$
d_{\mathcal{H}}(C, K):=\inf \left\{\varepsilon>0: C \subset K+B_{\varepsilon}, K \subset C+B_{\varepsilon}\right\}
$$

where B_{ϵ} a ball of radius ϵ and + the Minkowski sum between sets, i.e.

$$
A+B=\{x+y \mid x \in A, \quad y \in B\}
$$

Definition of Spherical Asymmetry:

$$
\mathcal{A}(\Omega):=\min _{x \in \mathbb{R}^{n}}\left\{\left(\frac{d_{\mathcal{H}}\left(\Omega, B_{R}(x)\right)}{R}\right), P\left(B_{R}(x)\right)=P(\Omega)\right\} .
$$

Table of Contents

(1) Introduction to Spectral Inequalities
(2) Steklov Eigenvalue Problem for the Laplace Operator
(3) Stability results for the Pólia inequality

4) A Quantitative Inequality for the first Dirichlet Eigenvalue in terms of Perimeter

The Torsion Problem with Dirichlet boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ an open, bounded and convex set. The torsional rigidity $T(\Omega)$ is defined as

$$
T(\Omega)=\int_{\Omega} u(x) d x,
$$

where u is the unique solution of the PDE problem

$$
\left\{\begin{array}{l}
-\Delta u(x)=1 \quad \text { in } \Omega \\
u \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

The Torsion Problem with Dirichlet boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ an open, bounded and convex set. The torsional rigidity $T(\Omega)$ is defined as

$$
T(\Omega)=\int_{\Omega} u(x) d x,
$$

where u is the unique solution of the PDE problem

$$
\left\{\begin{array}{l}
-\Delta u(x)=1 \quad \text { in } \Omega \\
u \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

Variational characterization of Torsional Rigidity

$$
T(\Omega)=\max _{\substack{\varphi \in H_{1}^{1}(\Omega) \\ \varphi \neq 0}} \frac{\left(\int_{\Omega} \varphi(x) d x\right)^{2}}{\int_{\Omega} \nabla \varphi(x)^{2} d x}
$$

Lower estimate for the Torsion in terms of area and

 perimeterWe recall the following scaling propertiesfor every $t>0$:

$$
V(t \Omega)=t^{n} V(\Omega), \quad P(t \Omega)=t^{n-1} P(\Omega)
$$

and

$$
T(t \Omega)=t^{n+2} T(\Omega)
$$

Theorem [Pólya, J. Indian Math Soc, (1960)]

Let Ω be an open, bounded and convex set of \mathbb{R}^{n}. It holds:

$$
\frac{T(\Omega) P^{2}(\Omega)}{V(\Omega)^{3}} \geq \frac{1}{3}
$$

and the equality sign is attained by a sequence of thinning cylinders.

- Pólya, J. Indian Math Soc, (1960);
- Fragalá-Gazzola-Lamboley, Geom. for parabolic and elliptic PDE's, (2013);
- Della Pietra-Gavitone, Math. Nachr., 2014;

Some Definitions

Let us denote by w_{Ω} the minimal width and by $\operatorname{diam}(\Omega)$ the diameter of Ω.

Definition

- Let Ω_{k} be a sequence of open, bounded and convex sets of \mathbb{R}^{n}. We say that Ω_{k} is a sequence of thinning domains if

$$
\frac{w_{\Omega_{k}}}{\operatorname{diam}\left(\Omega_{k}\right)} \xrightarrow{k \rightarrow 0} 0 .
$$

- In particular, if $k>0$ and C is an open, bounded and convex set of \mathbb{R}^{n-1}, then, if $k \rightarrow 0$, the sequence

$$
\Omega_{k}=C \times\left[-\frac{1}{2 k}, \frac{1}{2 k}\right]
$$

is called a sequence of thinning cylinders. Moreover, in the case $n=2$ the above sequence is called sequence of thinning rectangles.

A first quantitative result

Theorem 1 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of \mathbb{R}^{2} and let $f \equiv 1$. Then,

$$
\frac{T(\Omega) P^{2}(\Omega)}{V(\Omega)^{3}}-\frac{1}{3} \geq K(2) \frac{w_{\Omega}}{\operatorname{diam}(\Omega)}
$$

where $K(2)$ is a positive constant that can be computed explicitly.
Moreover, the exponent of the quantity $\frac{w_{\Omega}}{\operatorname{diam}(\Omega)}$ is sharp.

A first quantitative result

Theorem 1 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]

Let Ω be an open, bounded and convex set of \mathbb{R}^{2} and let $f \equiv 1$. Then,

$$
\frac{T(\Omega) P^{2}(\Omega)}{V(\Omega)^{3}}-\frac{1}{3} \geq K(2) \frac{w_{\Omega}}{\operatorname{diam}(\Omega)}
$$

where $K(2)$ is a positive constant that can be computed explicitly.
Moreover, the exponent of the quantity $\frac{W_{\Omega}}{\operatorname{diam}(\Omega)}$ is sharp.

- Generalization to the case of the p-Laplacian, with

$$
K(p)=\frac{(p-1) p}{2^{\frac{p}{p-1}} 3(3 p-2)(2 p-1)} .
$$

- Generalization in dimension $n>2$

A second quantitative result in the planar case

Theorem 2 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of \mathbb{R}^{2}. Then, there exists a positive constant M such that

$$
\frac{T(\Omega) P^{2}(\Omega)}{|\Omega|^{3}}-\frac{1}{3} \geq M\left(\frac{|\Omega \triangle Q|}{|\Omega|}\right)^{3},
$$

where $\Omega \triangle Q$ denotes the symmetric difference between Ω and a rectangle Q with sides $P(\Omega) / 2$ and w_{Ω}, containing Ω.

A second quantitative result in the planar case

Theorem 2 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of \mathbb{R}^{2}. Then, there exists a positive constant M such that

$$
\frac{T(\Omega) P^{2}(\Omega)}{|\Omega|^{3}}-\frac{1}{3} \geq M\left(\frac{|\Omega \triangle Q|}{|\Omega|}\right)^{3}
$$

where $\Omega \triangle Q$ denotes the symmetric difference between Ω and a rectangle Q with sides $P(\Omega) / 2$ and w_{Ω}, containing Ω.

A second quantitative result in the planar case

Theorem 2 [Amato, Masiello, P., Sannipoli, preprint on arxiv (2021)]
Let Ω be an open, bounded and convex set of \mathbb{R}^{2}. Then, there exists a positive constant M such that

$$
\frac{T(\Omega) P^{2}(\Omega)}{|\Omega|^{3}}-\frac{1}{3} \geq M\left(\frac{|\Omega \triangle Q|}{|\Omega|}\right)^{3}
$$

where $\Omega \triangle Q$ denotes the symmetric difference between Ω and a rectangle Q with sides $P(\Omega) / 2$ and w_{Ω}, containing Ω.

- Sharpness of the exponent of the asymmetry?
- Extend the second quantitative results contained in Theorem 2 in dimension $n>2$?

Table of Contents

(1) Introduction to Spectral Inequalities
(2) Steklov Eigenvalue Problem for the Laplace Operator
(3) Stability results for the Pólia inequality
4) A Quantitative Inequality for the first Dirichlet Eigenvalue in terms of Perimeter

A quantitative isoperimetric type inequality for the Dirichlet Laplacian in terms of the perimeter

The starting point is the following conjecture.
Conjecture [Fthoui-Lamboley, 2020, SIAM]
Let $\Omega \subseteq \mathbb{R}^{2}$ an open and convex sets such that $V(\Omega)=1$, then

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \beta(P(\Omega)-P(B))^{3 / 2}
$$

where $B \subseteq \mathbb{R}^{2}$ is a ball of area $1, \beta:=\frac{4 \cdot 3^{3 / 2} \zeta(3)}{\pi^{11 / 4}}$ and $\zeta(n)=\sum_{k=1}^{\infty} k^{-n}$ is the Riemann zeta function.

- Analytic support: [Grinfeld- Strang, Journal of Math. Anal. and Appl., 2012; Molinari, Journal of Physics, 1997] Let P_{k}^{*} be the regular polygon with k edges and area equal to 1 . Then, as k goes to $+\infty$,

$$
\lambda_{1}\left(P_{k}^{*}\right)-\lambda_{1}(B) \sim \beta\left(P\left(P_{k}^{*}\right)-P(B)\right)^{3 / 2} .
$$

- Analytic support: [Grinfeld- Strang, Journal of Math. Anal. and Appl., 2012; Molinari, Journal of Physics, 1997] Let P_{k}^{*} be the regular polygon with k edges and area equal to 1 . Then, as k goes to $+\infty$,

$$
\lambda_{1}\left(P_{k}^{*}\right)-\lambda_{1}(B) \sim \beta\left(P\left(P_{k}^{*}\right)-P(B)\right)^{3 / 2} .
$$

- Numerical support: [Fthoui-Lamboley, 2020, preprint] the Blaschke-Santaló diagram for the triplet $\left(P(\cdot), \lambda_{1}(\cdot), V(\cdot)\right)$, that is the sets of points

$$
\left\{\left(P(\Omega), \lambda_{1}(\Omega)\right) \mid V(\Omega)=1, \Omega \subset \mathbb{R}^{2}, \Omega \text { convex }\right\}
$$

Blaschke-Santaló Diagram (Fthoui-Lamboley, SIAM)

- We define the following class of admissible sets, with $n \geq 2$:

$$
\mathcal{C}_{n}:=\left\{\Omega \subseteq \mathbb{R}^{n} \mid \Omega \text { convex, } V(\Omega)=V(B)\right\},
$$

- We define the following class of admissible sets, with $n \geq 2$:

$$
\mathcal{C}_{n}:=\left\{\Omega \subseteq \mathbb{R}^{n} \mid \Omega \text { convex, } V(\Omega)=V(B)\right\},
$$

Theorem [P., Rend. Lincei, 2021]

Let $n \geq 2$; there exists a constant $c>0$, depending only on n, such that, for every $\Omega \in \mathcal{C}_{n}$, it holds

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq c(P(\Omega)-P(B))^{2} .
$$

Intermediate Step

Main Ingredients:

- Quantitative Faber-Krahn [Brasco-De Philippis-Velichkov, 2015] For every open set Ω with $V(\Omega)=1$, it holds

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \bar{C} \mathcal{A}_{F}(\Omega)^{2}
$$

Intermediate Step

Main Ingredients:

- Quantitative Faber-Krahn [Brasco-De Philippis-Velichkov, 2015] For every open set Ω with $V(\Omega)=1$, it holds

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \bar{C} \mathcal{A}_{F}(\Omega)^{2}
$$

- We want to prove an inequality of this form: there exist $C, \delta>0$ such that

$$
\mathcal{A}_{\mathcal{F}}(\Omega) \geq C(P(\Omega)-P(B))^{\delta}
$$

Intermediate Step

Main Ingredients:

- Quantitative Faber-Krahn [Brasco-De Philippis-Velichkov, 2015] For every open set Ω with $V(\Omega)=1$, it holds

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \bar{C} \mathcal{A}_{F}(\Omega)^{2}
$$

- We want to prove an inequality of this form: there exist $C, \delta>0$ such that

$$
\mathcal{A}_{\mathcal{F}}(\Omega) \geq C(P(\Omega)-P(B))^{\delta}
$$

The target power would be $\delta=3 / 4$, but unfortunately the best power is $\delta=1$ and the "bad" sets are the polygons:

$$
\mathcal{A}_{\mathcal{F}}\left(P_{k}^{*}\right) \sim\left(P\left(P_{k}^{*}\right)-P(B)\right) .
$$

Intermediate Step

Main Ingredients:

- Quantitative Faber-Krahn [Brasco-De Philippis-Velichkov, 2015] For every open set Ω with $V(\Omega)=1$, it holds

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \bar{C} \mathcal{A}_{F}(\Omega)^{2}
$$

Intermediate Step

Main Ingredients:

- Quantitative Faber-Krahn [Brasco-De Philippis-Velichkov, 2015] For every open set Ω with $V(\Omega)=1$, it holds

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \bar{C} \mathcal{A}_{F}(\Omega)^{2}
$$

- We want to prove an inequality of this form: there exist $C, \delta>0$ such that

$$
\mathcal{A}_{\mathcal{F}}(\Omega) \geq C(P(\Omega)-P(B))^{1}
$$

The target power would be $\delta=3 / 4$, but unfortunately the best power is $\delta=1$ and the "bad" sets are the polygons:

$$
\mathcal{A}_{\mathcal{F}}\left(P_{k}^{*}\right) \sim\left(P\left(P_{k}^{*}\right)-P(B)\right) .
$$

Thank you for your attention!

