

Breaking the curse of dimensionality with Barron Spaces

Antonio Álvarez López Universidad Autónoma de Madrid, Department of Mathematics November 15, 2022

- 1.1 Problem statement
- 1.2 Main paradigms

2. Shallow Neural Networks

- 2.1 Structure
- 2.2 Approximation Capabilities

3. Barron Spaces

- 3.1 Curse of dimensionality
- 3.2 Definition and properties

Problem statement

- Input space $X \subset \mathbb{R}^d$, output space $Y \subset \mathbb{R}^m$.
- Given dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N \subset X \times Y$,

Goal

Approximating an ideal unknown *target function* F^* that can label any input $x \in X$ to its corresponding label $y \in Y$, using only the information contained in the dataset \mathcal{D} , which verifies $y_i = F^*(x_i)$ for i = 1, ..., N.

Learning procedure

- We construct, using D, a predictive model F from a chosen parametric class of functions that we call the hypothesis space H.
- The best possible predictor in \mathcal{H} would be ideally obtained through *population risk minimization*:

 $\arg\min_{F\in\mathcal{H}}\mathbb{E}_{(x,y)\sim\mu^*}L(F(x),y),$

where μ^* is the unknown input-output distribution and $L(\cdot, \cdot)$ is a suitable *loss function*.

Learning procedure

- We construct, using D, a predictive model F from a chosen parametric class of functions that we call the hypothesis space H.
- The best possible predictor in \mathcal{H} would be ideally obtained through *population risk minimization*:

$$\arg\min_{F\in\mathcal{H}}\mathbb{E}_{(x,y)\sim\mu^*}L(F(x),y),$$

where μ^* is the unknown input-output distribution and $L(\cdot, \cdot)$ is a suitable *loss function*.

• In practice, the predictor \hat{F} constructed is obtained through *empirical risk minimization*:

$$\hat{F} = \arg\min_{F \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} L(F(x_i), \underbrace{y_i}_{=F^*(x_i)}),$$

Learning procedure

- We construct, using D, a predictive model F from a chosen parametric class of functions that we call the hypothesis space H.
- The best possible predictor in \mathcal{H} would be ideally obtained through *population risk minimization*:

$$\arg\min_{F\in\mathcal{H}}\mathbb{E}_{(x,y)\sim\mu^*}L(F(x),y),$$

where μ^* is the unknown input-output distribution and $L(\cdot, \cdot)$ is a suitable *loss function*.

• In practice, the predictor \hat{F} constructed is obtained through *empirical risk minimization*:

$$\hat{F} = \arg\min_{F \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} L(F(x_i), \underbrace{y_i}_{=F^*(x_i)}),$$

- Main paradigms:
 - Approximation: How close is our hypothesis space \mathcal{H} of any target function F^* ?
 - **Optimization**: How can we find or get close to the best possible approximation $\hat{F} \in \mathcal{H}$ of F^* ?
 - **Generalization**: Can the constructed predictor \hat{F} generalize well to unseen examples?

FAU

FAU

FAU

FAU

Examples of hypothesis spaces

• Linear models: $\mathcal{H} = \left\{ F : \mathbb{R}^d \to \mathbb{R} \mid F(\mathbf{x}) = \sum_{i=0}^{M-1} w_i \phi_i(\mathbf{x}), w_i \in \mathbb{R} \right\}$, where $\phi_i : \mathbb{R}^d \to \mathbb{R}$ are a prefixed set of basis functions or feature maps:

$$\phi_j(\mathbf{x}) = \mathbf{x}^j, \qquad \phi_j(\mathbf{x}) = \exp\left(-\frac{(\mathbf{x} - \mathbf{m}_j)^2}{2d^2}\right), \qquad \phi_j(\mathbf{x}) = \operatorname{sigm}\left(\frac{\mathbf{x} - \mathbf{m}_j}{d}\right), \text{ with } \operatorname{sigm}(b) = \frac{1}{1 + e^{-b}}.$$

Examples of hypothesis spaces

• *Linear models*: $\mathcal{H} = \left\{ F : \mathbb{R}^d \to \mathbb{R} \mid F(\mathbf{x}) = \sum_{i=0}^{M-1} w_i \phi_i(\mathbf{x}), w_i \in \mathbb{R} \right\}$, where $\phi_i : \mathbb{R}^d \to \mathbb{R}$ are a prefixed set of *basis functions* or *feature maps*:

$$\phi_j(\mathbf{x}) = \mathbf{x}^j, \qquad \phi_j(\mathbf{x}) = \exp\left(-\frac{(\mathbf{x} - \mathbf{m}_j)^2}{2d^2}\right), \qquad \phi_j(\mathbf{x}) = \operatorname{sigm}\left(\frac{\mathbf{x} - \mathbf{m}_j}{d}\right), \text{ with } \operatorname{sigm}(b) = \frac{1}{1 + e^{-b}}.$$

• Shallow Neural Networks (SNNs): $\mathcal{H} = \left\{ F_M : F_M(\mathbf{x}) = \sum_{i=1}^M w_i \sigma(\mathbf{a_i}^T \cdot \mathbf{x} + b_i), \ w_i \in \mathbb{R}, \mathbf{a_i} \in \mathbb{R}^d, b_i \in \mathbb{R}, M \in \mathbb{N} \right\}.$ $\circ \sigma$ is the activation function.

ReLU: $\sigma(z) = \max(0, z), \qquad \sigma(z) = \tanh(z), \qquad \sigma(z) = \operatorname{sigm}(z), \dots$

 $\circ M$ is the *width*, which controls the complexity of the model.

Examples of hypothesis spaces

• Linear models: $\mathcal{H} = \left\{ F : \mathbb{R}^d \to \mathbb{R} \mid F(\mathbf{x}) = \sum_{i=0}^{M-1} w_i \phi_i(\mathbf{x}), w_i \in \mathbb{R} \right\}$, where $\phi_i : \mathbb{R}^d \to \mathbb{R}$ are a prefixed set of *basis* functions or feature maps:

$$\phi_j(\mathbf{x}) = \mathbf{x}^j, \qquad \phi_j(\mathbf{x}) = \exp\left(-\frac{(\mathbf{x} - \mathbf{m_j})^2}{2d^2}\right), \qquad \phi_j(\mathbf{x}) = \operatorname{sigm}\left(\frac{\mathbf{x} - \mathbf{m_j}}{d}\right), \text{ with } \operatorname{sigm}(b) = \frac{1}{1 + e^{-b}}.$$

Shallow Neural Networks (SNNs): H = {F_M: F_M(**x**) = ∑_{i=1}^M w_iσ(**a**_i^T · **x** + b_i), w_i ∈ ℝ, **a**_i ∈ ℝ^d, b_i ∈ ℝ, M ∈ ℕ}.
 σ is the activation function.

ReLU: $\sigma(z) = \max(0, z), \qquad \sigma(z) = \tanh(z), \qquad \sigma(z) = \operatorname{sigm}(z), \dots$

- $\circ M$ is the *width*, which controls the complexity of the model.
- Deep Neural Networks (DNNs):
 - *Multilayer Perceptron* (MLP) of *depth* K: $\mathcal{H}_K = \{F_K : F_K(\mathbf{x}) = \mathbf{w}^T \mathbf{x}(K), \mathbf{w} \in \mathbb{R}^{d_K}\}$, with
 - ► $\mathbf{x}(k+1) = \mathbf{w}(k)\sigma\left(\mathbf{a}(k)^T\mathbf{x}(k) + b(k)\right), \quad \mathbf{w}(k) \in \mathbb{R}^{d_{k+1}}, \quad \mathbf{a}(k) \in \mathbb{R}^{d_k}, \quad b(k) \in \mathbb{R}, \quad k = 0, \dots, K-1.$ ► $d_k \in \mathbb{N}$ for all k, and $d_0 = d$, $\mathbf{x}(0) = \mathbf{x}$.
 - *Residual Networks* (ResNets): take MLP redefining $\mathbf{x}(k+1) = \mathbf{x}(k) + \mathbf{w}(\mathbf{k})\sigma (\mathbf{a}(k)^T \mathbf{x}(k) + b(k))$.

- 1.1 Problem statement
- 1.2 Main paradigms

2. Shallow Neural Networks

- 2.1 Structure
- 2.2 Approximation Capabilities

3. Barron Spaces

- 3.1 Curse of dimensionality
- 3.2 Definition and properties

Shallow Neural Networks

Structure

Shallow Neural Networks

Approximation Properties

Universal Approximation Theorem for SNNs [Cyb8

Let $\Omega \subset \mathbb{R}^d$ be a compact set, and $F^* \in C(\Omega)$. Assume that the activation function σ is continuous and *sigmoidal*, i.e. $\lim_{z\to\infty} \sigma(z) = 1$, $\lim_{z\to-\infty} \sigma(z) = 0$. Then, for every $\epsilon > 0$ there exists $F_M \in \mathcal{H}$ such that

$$||F_M - F^*||_{C(K)} = \max_{\mathbf{x} \in K} |F_M(\mathbf{x}) - F^*(\mathbf{x})| < \epsilon.$$
(1)

Universal Approximation Theorem for SNNs [Pin99

Let $\Omega \subset \mathbb{R}^d$ be a compact set and σ a continuous activation function. Then, \mathcal{H} is dense in $C(\Omega)$ in the topology of uniform convergence if and only if σ is non-polynomial.

Also for Deep Neural Networks:

Universal Approximation Theorem for Deep-Narrow NNs [KL20

Let $\Omega \subset \mathbb{R}^d$ be a compact set and σ a nonaffine continuous activation function. Assume further that σ is continuously differentiable with nonzero derivative at least at one point. Then, \mathcal{H}_K is dense in $C(K; \mathbb{R}^{d_K})$ in the topology of uniform convergence if $K = d + d_K + 2$.

- 1.1 Problem statement
- 1.2 Main paradigms

2. Shallow Neural Networks

- 2.1 Structure
- 2.2 Approximation Capabilities

3. Barron Spaces

- 3.1 Curse of dimensionality
- 3.2 Definition and properties

• Is the space of continuous functions enough?

- Is the space of continuous functions enough?
- No → Curse of dimensionality (CoD): Complexity of the models required for better estimates increases exponentially
 with the dimension of the ambient space

$$||F_M - F^*||_{L^p(\Omega)} \le C \frac{||F^*||_{W^{s,p}}}{M^{\alpha(s)/d}}.$$

We need $M > \epsilon^{-d}$ to achieve an approximation error of ϵ .

- Is the space of continuous functions enough?
- No → Curse of dimensionality (CoD): Complexity of the models required for better estimates increases exponentially with the dimension of the ambient space

$$||F_M - F^*||_{L^p(\Omega)} \le C \frac{||F^*||_{W^{s,p}}}{M^{\alpha(s)/d}}.$$

We need $M > \epsilon^{-d}$ to achieve an approximation error of ϵ .

- The curse of dimensionality is intrinsic for high dimensional spaces.
- The model works without curse of dimensionality when the complexity depends at most polynomially on d for fixed ϵ .
- We can only avoid it by considering a smaller set of problems → Find the "right" space of target functions to approximate.

Example

Classical numerical analysis

- Theory of splines and theory of finite element methods approximate functions using piecewise polynomials.
- One starts from a function that lies in a Sobolev/Besov space and proceeds to derive optimal error estimates.
- These estimates depend on the function norm and the regularity encoded in the function space, as well as the approximation scheme.
- Sobolev/Besov spaces are the right ones for these classical theories:
 - Direct and inverse approximation theorems: a function can be approximated by piecewise polynomials with certain convergence rate if and only if the function is in a certain Sobolev/Besov space
 - The functions that we are interested in (e.g. solutions of PDEs) lie on these spaces.

Barron Spaces

Fau

Definition

- Let $\Omega \subset \mathbb{R}^d$ be a compact set. We will work with $\sigma \equiv \text{ReLU}$.
- Consider functions $f: \Omega \to \mathbb{R}$ that admit the representation

$$f(\mathbf{x}) = \int_{\Theta} w\sigma(\mathbf{a}^T \mathbf{x} + c)\rho(dw, \mathbf{da}, db) = \mathbb{E}_{\rho}[w\sigma(\mathbf{a}^T \mathbf{x} + b)], \qquad \mathbf{x} \in \Omega,$$
(2)

where $\Theta = \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}$ space of parameters and ρ is a probability distribution on $(\Theta, \Sigma_{\Theta})$, being Σ_{Θ} a Borel σ -algebra on Θ .

Barron Spaces

FAU

Definition

- Let $\Omega \subset \mathbb{R}^d$ be a compact set. We will work with $\sigma \equiv \text{ReLU}$.
- Consider functions $f: \Omega \to \mathbb{R}$ that admit the representation

$$f(\mathbf{x}) = \int_{\Theta} w\sigma(\mathbf{a}^T \mathbf{x} + c)\rho(dw, \mathbf{da}, db) = \mathbb{E}_{\rho}[w\sigma(\mathbf{a}^T \mathbf{x} + b)], \qquad \mathbf{x} \in \Omega,$$
(2)

where $\Theta = \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}$ space of parameters and ρ is a probability distribution on $(\Theta, \Sigma_{\Theta})$, being Σ_{Θ} a Borel σ -algebra on Θ .

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces

Barron Spaces

Definition

• In general, the ρ 's for which (2) holds are not unique. For a function that admits this representation, we define its *Barron norm*

$$\|f\|_{\mathcal{B}_p} = \inf_{\rho} \left(\mathbb{E}_{\rho} [\|w|^p (\|\mathbf{a}\|_1 + |b|)^p] \right)^{1/p}, \qquad 1 \le p \le \infty,$$
(3)

where the infimum is taken over all ρ for which (2) holds for all $\mathbf{x} \in \Omega$.

• Barron spaces \mathcal{B}_p are defined as

 $\{f \in C(\Omega) : f \text{ admits a representation (2)}, \|f\|_{\mathcal{B}_p} < \infty\}.$

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces

Barron Spaces

Definition

 In general, the ρ's for which (2) holds are not unique. For a function that admits this representation, we define its Barron norm

$$\|f\|_{\mathcal{B}_p} = \inf_{\rho} \left(\mathbb{E}_{\rho} [|w|^p (\|\mathbf{a}\|_1 + |b|)^p] \right)^{1/p}, \qquad 1 \le p \le \infty,$$
(3)

where the infimum is taken over all ρ for which (2) holds for all $\mathbf{x} \in \Omega$.

• Barron spaces \mathcal{B}_p are defined as

 $\{f \in C(\Omega) : f \text{ admits a representation (2)}, \|f\|_{\mathcal{B}_p} < \infty\}.$

• By Hölder's inequality, we have

 $\mathcal{B}_\infty \subset \cdots \subset \mathcal{B}_2 \subset \mathcal{B}_1$:

• The opposite is also true:

Proposition [MW+22]

For any
$$f \in \mathcal{B}_1$$
, we have $f \in \mathcal{B}_\infty$ and

$$\|f\|_{\mathcal{B}_1} = \|f\|_{\mathcal{B}_\infty}.$$

• As a consequence, there is just one Barron space and one Barron norm that we denote by \mathcal{B} and $\|\cdot\|_{\mathcal{B}}$, respectively.

Equipart inversion formula:

• Fourier inversion formula:

 $\circ \ \widehat{Df}(\xi) = i\xi \widehat{f}(\xi)$

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces

What functions belong to \mathcal{B} ?

Early study

• Fourier transform of $f : \mathbb{R}^d \to \mathbb{R}$:

• Fourier transform of $f : \mathbb{R}^d \to \mathbb{R}$:

 $\circ \ \widehat{Df}(\xi) = i\xi\widehat{f}(\xi)$

Barron's Theorem [Bar93]

Fourier inversion formula:

For a function $F^*: \Omega \to \mathbb{R}$, let \hat{F}^* be the Fourier transform of any extension of F^* to \mathbb{R}^d . Then, if

$$\gamma(F^*) := \inf_{\hat{F}} \int_{\mathbb{R}^d} \|\xi\|_1^2 |\hat{F}^*(\xi)| d\xi = \|\widehat{D^2 F^*}\|_1 < +\infty,$$

 $\hat{f}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} f(\mathbf{x}) e^{-i\xi \cdot \mathbf{x}} \mathbf{dx}.$

 $f(\mathbf{x}) = \int_{\mathbb{D}^d} \hat{f}(\mathbf{x}) e^{i\xi \cdot \mathbf{x}} d\xi.$

for any M > 0 there exists a SNN $F_M(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^M w_i \sigma(\mathbf{a_i}^T \mathbf{x} + b_i)$ satisfying

$$||F_M - F^*||^2_{L^2(\Omega)} \le \frac{3\gamma(F^*)^2}{M},$$

and $\sum_{i=1}^{M} |w_i| (||\mathbf{a_i}||_1 + |b_i|) \le 2\gamma(F^*).$

What functions belong to \mathcal{B} ?

Early study

Recall:

FAU

Theorem [Bar93

Let $F^* \in C(\Omega)$ and assume that F^* satisfies $\gamma(F^*) < \infty$. Then F^* admits an integral representation (2). Moreover,

 $||F^*||_{\mathcal{B}} \le 2\gamma(F^*) + 2||\nabla F^*(0)||_1 + 2|F^*(0)|.$

• To achieve $\gamma(F^*) < \infty$:

- Necessary condition: All first order partial derivatives are bounded.
- Sufficient condition: All partial derivatives of order less or equal than s belong to $L^2(\mathbb{R}^d)$, being $s = \lceil 1 + d/2 \rceil$.
- Not enough to generally avoid CoD ($\gamma(F^*)$ involves a d-dimensional integral), but there are many examples for which $\gamma(F^*)$ is only moderately large, e.g., O(d) or $O(d^2)$.

Corollary

All gaussian functions, positive definite functions, linear functions and radial functions belong to \mathcal{B} .

• Define the *path norm* as

$$\|\theta\|_{\mathcal{P}} := \frac{1}{M} \sum_{i=1}^{M} |w_i| (\|\mathbf{a_i}\|_1 + |b_i|),$$

where θ denotes a specific set of parameters $\{(w_i, \mathbf{a}_i, b_i)\}_{i=1}^M$.

Theorem of direct approximation [MW+2]

For any $F^* \in \mathcal{B}$ and M > 0, there exists a SNN $F_M(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^M w_i \sigma(\mathbf{a_i}^T \mathbf{x} + b_i)$ satisfying

$$\|F_M(\cdot;\theta) - F^*(\cdot)\|_{L^2(\Omega)}^2 \le \frac{3\|F^+\|_{\mathcal{B}}}{M}.$$

Furthermore, we have $\|\theta\|_{\mathcal{P}} \leq 2\|F^*\|_{\mathcal{B}}$.

• \mathcal{B} can be seen as the closure of \mathcal{H} with respect to the path norm.

• Define $\mathcal{N}_Q := \{ F_M(\mathbf{x}; \theta) : \|\theta\|_{\mathcal{P}} \le Q, m \in \mathbb{N}^+ \}.$

Theorem of inverse approximation [MW+22

Let $F^* \in C(\Omega)$. Assume there exists a constant Q and a sequence of functions $(F_M) \subset \mathcal{N}_Q$ such that

$$\lim_{M\to\infty}F_M(\mathbf{x})=F^*(\mathbf{x}),$$

for all $\mathbf{x} \in \Omega$. Then $F^* \in \mathcal{B}$ and $\|F^*\|_{\mathcal{B}} \leq Q$.

• Idea of the proof:

Assume $F_M(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^{M} w_i^{(M)} \sigma\left(\mathbf{a}_i^{(M)} \mathbf{x} + b_i^{(M)}\right)$. The Theorem's hypothesis implies that the sequence (ρ_M) defined by

$$\rho_M(w, \mathbf{a}, b) = \frac{1}{M} \sum_{i=1}^M \delta(w - w_i^{(M)}) \delta(\mathbf{a} - \mathbf{a}_i^{(M)}) \delta(b - b_i^{(M)})$$

is tight. By Prokhorov's Theorem, there exists a subsequence (ρ_{M_k}) and a probability measure ρ^* such that ρ_{M_k} converges weakly to ρ^* .

- The Barron space catches all the functions that can be approximated by Shallow Neural Networks with bounded path norm, and the approximation error does not suffer from CoD.
- The Barron space is the largest function set which is well approximated by Shallow Neural Networks, and the Barron norm is the natural norm associated with it. Target functions outside \mathcal{B} may be increasingly difficult to approximate by SNNs as dimension increases.

- The Barron space catches all the functions that can be approximated by Shallow Neural Networks with bounded path norm, and the approximation error does not suffer from CoD.
- The Barron space is the largest function set which is well approximated by Shallow Neural Networks, and the Barron norm is the natural norm associated with it. Target functions outside *B* may be increasingly difficult to approximate by SNNs as dimension increases.

Open questions

- More specific descriptions of the functions that belong to \mathcal{B} .

References

- [Bar93] A. Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information Theory 39.3 (1993), pp. 930–945. DOI: 10.1109/18.256500.
- [Cyb89] G. Cybenko. "Approximation by superpositions of a sigmoidal function". In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.
- [KL20] P. Kidger and T. Lyons. "Universal Approximation with Deep Narrow Networks". In: Proceedings of Thirty Third Conference on Learning Theory. Ed. by J. Abernethy and S. Agarwal. Vol. 125. Proceedings of Machine Learning Research. PMLR, Sept. 2020, pp. 2306–2327.
- [MW+22] C. Ma, L. Wu, et al. "The Barron space and the flow-induced function spaces for neural network models". In: Constructive Approximation 55.1 (2022), pp. 369–406.
- [Pin99] A. Pinkus. "Approximation theory of the MLP model in neural networks". In: Acta Numerica 8 (1999), pp. 143– 195.