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Supervised Learning
Problem statement
• Input space X ⊂ Rd, output space Y ⊂ Rm.
• Given dataset D = {(xi, yi)}N

i=1 ⊂ X × Y ,

Goal
Approximating an ideal unknown target function F ∗ that can label any input x ∈ X to its corresponding label y ∈ Y ,
using only the information contained in the dataset D, which verifies yi = F ∗(xi) for i = 1, . . . N .
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Supervised Learning
Learning procedure

• We construct, using D, a predictive model F̂ from a chosen parametric class of functions that we call the hypothesis
space H.

• The best possible predictor in H would be ideally obtained through population risk minimization:

arg min
F∈H

E(x,y)∼µ∗L(F (x), y),

where µ∗ is the unknown input-output distribution and L(·, ·) is a suitable loss function.

• In practice, the predictor F̂ constructed is obtained through empirical risk minimization:

F̂ = arg min
F∈H

1
N

N∑
i=1

L(F (xi), yi︸︷︷︸
=F ∗(xi)

),

• Main paradigms:
◦ Approximation: How close is our hypothesis space H of any target function F ∗?
◦ Optimization: How can we find or get close to the best possible approximation F̂ ∈ H of F ∗?
◦ Generalization: Can the constructed predictor F̂ generalize well to unseen examples?
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Supervised Learning
Examples of hypothesis spaces

• Linear models: H =
{

F : Rd → R
∣∣∣∣ F (x) =

∑M−1
i=0 wiϕi(x), wi ∈ R

}
, where ϕi : Rd → R are a prefixed set of basis

functions or feature maps:

ϕj(x) = xj, ϕj(x) = exp
(

−(x − mj)2

2d2

)
, ϕj(x) = sigm

(
x − mj

d

)
, with sigm(b) = 1

1 + e−b
.

• Shallow Neural Networks (SNNs): H =
{

FM : FM(x) =
∑M

i=1 wiσ(ai
T · x + bi), wi ∈ R, ai ∈ Rd, bi ∈ R, M ∈ N

}
.

◦ σ is the activation function.

ReLU: σ(z) = max(0, z), σ(z) = tanh(z), σ(z) = sigm(z), . . .

◦ M is the width, which controls the complexity of the model.
• Deep Neural Networks (DNNs):

◦ Multilayer Perceptron (MLP) of depth K: HK =
{

FK : FK(x) = wTx(K), w ∈ RdK
}

, with
▶ x(k + 1) = w(k)σ

(
a(k)T x(k) + b(k)

)
, w(k) ∈ Rdk+1, a(k) ∈ Rdk, b(k) ∈ R, k = 0, . . . , K − 1.

▶ dk ∈ N for all k, and d0 = d, x(0) = x.
◦ Residual Networks (ResNets): take MLP redefining x(k + 1) = x(k) + w(k)σ

(
a(k)T x(k) + b(k)

)
.
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Shallow Neural Networks
Structure
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Shallow Neural Networks
Approximation Properties

Universal Approximation Theorem for SNNs [Cyb89]
Let Ω ⊂ Rd be a compact set, and F ∗ ∈ C(Ω). Assume that the activation function σ is continuous and sigmoidal, i.e.
limz→∞ σ(z) = 1, limz→−∞ σ(z) = 0. Then, for every ϵ > 0 there exists FM ∈ H such that

∥FM − F ∗∥C(K) = max
x∈K

|FM(x) − F ∗(x)| < ϵ. (1)

Universal Approximation Theorem for SNNs [Pin99]
Let Ω ⊂ Rd be a compact set and σ a continuous activation function. Then, H is dense in C(Ω) in the topology of
uniform convergence if and only if σ is non-polynomial.

Also for Deep Neural Networks:

Universal Approximation Theorem for Deep-Narrow NNs [KL20]
Let Ω ⊂ Rd be a compact set and σ a nonaffine continuous activation function. Assume further that σ is continuously
differentiable with nonzero derivative at least at one point. Then, HK is dense in C(K;RdK) in the topology of uniform
convergence if K = d + dK + 2.
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Necessity: Curse of dimensionality

• Is the space of continuous functions enough?

• No → Curse of dimensionality (CoD): Complexity of the models required for better estimates increases exponentially
with the dimension of the ambient space

∥FM − F ∗∥Lp(Ω) ≤ C
∥F ∗∥W s,p

Mα(s)/d
.

We need M > ϵ−d to achieve an approximation error of ϵ.
• The curse of dimensionality is intrinsic for high dimensional spaces.
• The model works without curse of dimensionality when the complexity depends at most polynomially on d for fixed ϵ.
• We can only avoid it by considering a smaller set of problems → Find the “right” space of target functions to

approximate.

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces November 15, 2022 15/24



Necessity: Curse of dimensionality

• Is the space of continuous functions enough?
• No → Curse of dimensionality (CoD): Complexity of the models required for better estimates increases exponentially

with the dimension of the ambient space

∥FM − F ∗∥Lp(Ω) ≤ C
∥F ∗∥W s,p

Mα(s)/d
.

We need M > ϵ−d to achieve an approximation error of ϵ.

• The curse of dimensionality is intrinsic for high dimensional spaces.
• The model works without curse of dimensionality when the complexity depends at most polynomially on d for fixed ϵ.
• We can only avoid it by considering a smaller set of problems → Find the “right” space of target functions to

approximate.

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces November 15, 2022 15/24



Necessity: Curse of dimensionality

• Is the space of continuous functions enough?
• No → Curse of dimensionality (CoD): Complexity of the models required for better estimates increases exponentially

with the dimension of the ambient space

∥FM − F ∗∥Lp(Ω) ≤ C
∥F ∗∥W s,p

Mα(s)/d
.

We need M > ϵ−d to achieve an approximation error of ϵ.
• The curse of dimensionality is intrinsic for high dimensional spaces.
• The model works without curse of dimensionality when the complexity depends at most polynomially on d for fixed ϵ.
• We can only avoid it by considering a smaller set of problems → Find the “right” space of target functions to

approximate.

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces November 15, 2022 15/24



Example
Classical numerical analysis

• Theory of splines and theory of finite element methods approximate functions using piecewise polynomials.
• One starts from a function that lies in a Sobolev/Besov space and proceeds to derive optimal error estimates.
• These estimates depend on the function norm and the regularity encoded in the function space, as well as the

approximation scheme.
• Sobolev/Besov spaces are the right ones for these classical theories:

◦ Direct and inverse approximation theorems: a function can be approximated by piecewise polynomials with certain
convergence rate if and only if the function is in a certain Sobolev/Besov space

◦ The functions that we are interested in (e.g. solutions of PDEs) lie on these spaces.
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Barron Spaces
Definition
• Let Ω ⊂ Rd be a compact set. We will work with σ ≡ ReLU.
• Consider functions f : Ω → R that admit the representation

f (x) =
∫

Θ

wσ(aT x + c)ρ(dw, da, db) = Eρ[wσ(aT x + b)], x ∈ Ω, (2)

where Θ = R × Rd × R space of parameters and ρ is a probability distribution on (Θ, ΣΘ), being ΣΘ a Borel
σ-algebra on Θ.
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Barron Spaces
Definition

• In general, the ρ’s for which (2) holds are not unique. For a function that admits this representation, we define its
Barron norm

∥f∥Bp
= inf

ρ
(Eρ[|w|p(∥a∥1 + |b|)p])1/p , 1 ≤ p ≤ ∞, (3)

where the infimum is taken over all ρ for which (2) holds for all x ∈ Ω.
• Barron spaces Bp are defined as

{f ∈ C(Ω) : f admits a representation (2), ∥f∥Bp
< ∞}.

• By Hölder’s inequality, we have
B∞ ⊂ · · · ⊂ B2 ⊂ B1 :

• The opposite is also true:

Proposition [MW+22]
For any f ∈ B1, we have f ∈ B∞ and

∥f∥B1 = ∥f∥B∞.

• As a consequence, there is just one Barron space and one Barron norm that we denote by B and ∥ · ∥B, respectively.
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What functions belong to B?
Early study
• Recall:

◦ Fourier transform of f : Rd → R:

f̂ (ξ) = 1
(2π)d

∫
Rd

f (x)e−iξ·xdx.

◦ Fourier inversion formula:

f (x) =
∫
Rd

f̂ (x)eiξ·xdξ.

◦ D̂f (ξ) = iξf̂ (ξ)

Barron’s Theorem [Bar93]
For a function F ∗ : Ω → R, let F̂ ∗ be the Fourier transform of any extension of F ∗ to Rd. Then, if

γ(F ∗) := inf
F̂

∫
Rd

∥ξ∥2
1|F̂ ∗(ξ)|dξ = ∥D̂2F ∗∥1 < +∞,

for any M > 0 there exists a SNN FM(x) = 1
M

∑M
i=1 wiσ(ai

T x + bi) satisfying

∥FM − F ∗∥2
L2(Ω) ≤ 3γ(F ∗)2

M
,

and
∑M

i=1 |wi|(∥ai∥1 + |bi|) ≤ 2γ(F ∗).

UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces November 15, 2022 19/24



What functions belong to B?
Early study
• Recall:

◦ Fourier transform of f : Rd → R:

f̂ (ξ) = 1
(2π)d

∫
Rd

f (x)e−iξ·xdx.

◦ Fourier inversion formula:

f (x) =
∫
Rd

f̂ (x)eiξ·xdξ.

◦ D̂f (ξ) = iξf̂ (ξ)

Barron’s Theorem [Bar93]
For a function F ∗ : Ω → R, let F̂ ∗ be the Fourier transform of any extension of F ∗ to Rd. Then, if

γ(F ∗) := inf
F̂

∫
Rd

∥ξ∥2
1|F̂ ∗(ξ)|dξ = ∥D̂2F ∗∥1 < +∞,

for any M > 0 there exists a SNN FM(x) = 1
M

∑M
i=1 wiσ(ai

T x + bi) satisfying

∥FM − F ∗∥2
L2(Ω) ≤ 3γ(F ∗)2

M
,

and
∑M

i=1 |wi|(∥ai∥1 + |bi|) ≤ 2γ(F ∗).
UAM Antonio Álvarez López Breaking the curse of dimensionality with Barron Spaces November 15, 2022 19/24



What functions belong to B?

Theorem [Bar93]
Let F ∗ ∈ C(Ω) and assume that F ∗ satisfies γ(F ∗) < ∞. Then F ∗ admits an integral representation (2).
Moreover,

∥F ∗∥B ≤ 2γ(F ∗) + 2∥∇F ∗(0)∥1 + 2|F ∗(0)|.

• To achieve γ(F ∗) < ∞:
◦ Necessary condition: All first order partial derivatives are bounded.
◦ Sufficient condition: All partial derivatives of order less or equal than s belong to L2(Rd), being s = ⌈1 + d/2⌉.

• Not enough to generally avoid CoD (γ(F ∗) involves a d−dimensional integral), but there are many examples for which
γ(F ∗) is only moderately large, e.g., O(d) or O(d2).

Corollary
All gaussian functions, positive definite functions, linear functions and radial functions belong to B.
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Theorem of direct approximation

• Define the path norm as

∥θ∥P := 1
M

M∑
i=1

|wi|(∥ai∥1 + |bi|),

where θ denotes a specific set of parameters {(wi, ai, bi)}M
i=1.

Theorem of direct approximation [MW+22]

For any F ∗ ∈ B and M > 0, there exists a SNN FM(x) = 1
M

∑M
i=1 wiσ(ai

T x + bi) satisfying

∥FM(·; θ) − F ∗(·)∥2
L2(Ω) ≤ 3∥F ∗∥2

B
M

.

Furthermore, we have ∥θ∥P ≤ 2∥F ∗∥B.

• B can be seen as the closure of H with respect to the path norm.
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Inverse approximation theorem

• Define NQ := {FM(x; θ) : ∥θ∥P ≤ Q, m ∈ N+}.

Theorem of inverse approximation [MW+22]
Let F ∗ ∈ C(Ω). Assume there exists a constant Q and a sequence of functions (FM) ⊂ NQ such that

lim
M→∞

FM(x) = F ∗(x),

for all x ∈ Ω. Then F ∗ ∈ B and ∥F ∗∥B ≤ Q.

• Idea of the proof:
Assume FM(x) = 1

M

∑M
i=1 w

(M)
i σ

(
a(M)

i x + b
(M)
i

)
. The Theorem’s hypothesis implies that the sequence (ρM)

defined by

ρM(w, a, b) = 1
M

M∑
i=1

δ(w − w
(M)
i )δ(a − a(M)

i )δ(b − b
(M)
i )

is tight. By Prokhorov’s Theorem, there exists a subsequence (ρMk
) and a probability measure ρ∗ such that ρMk

converges weakly to ρ∗.
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Consequences/Conclusions

• The Barron space catches all the functions that can be approximated by Shallow Neural Networks with bounded path
norm, and the approximation error does not suffer from CoD.

• The Barron space is the largest function set which is well approximated by Shallow Neural Networks, and the Barron
norm is the natural norm associated with it. Target functions outside B may be increasingly difficult to approximate by
SNNs as dimension increases.

Open questions

• More specific descriptions of the functions that belong to B.
• Extension to Deep Neural Networks? For ResNets ⇒ Compositional function spaces [MW+22]
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