Asymptotic analysis of partially and locally dissipated hyperbolic systems

Timothée Crin-Barat

Chair of Computational Mathematics, University of Deusto, Spain

Mini-workshop: “Recent Advances in Analysis and Control”
FAU DCN-AvH - 20 June 2022
Partially dissipative systems

Introduction

We look at n-component linear hyperbolic systems of the form:

\[
\frac{\partial V}{\partial t} + \sum_{j=1}^{d} A_j \frac{\partial V}{\partial x_j} = -\frac{LV}{\varepsilon}.
\]
We look at n-component linear hyperbolic systems of the form:

$$\frac{\partial V}{\partial t} + \sum_{j=1}^{d} A^j \frac{\partial V}{\partial x_j} = -\frac{LV}{\varepsilon}.$$

Such that:

- the matrices A^j are symmetric \rightarrow Hyperbolicity of the system
- $L = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}$ with $D > 0$ \rightarrow Partial dissipation
Introduction

We look at n-component linear hyperbolic systems of the form:

$$\frac{\partial V}{\partial t} + \sum_{j=1}^{d} A^j \frac{\partial V}{\partial x_j} = -\frac{LV}{\varepsilon}.$$

Such that:
- the matrices A^j are symmetric \rightarrow Hyperbolicity of the system
- $L = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}$ with $D > 0$ \rightarrow Partial dissipation

These systems models physical phenomena with finite speed of propagation or equilibrium laws, such as the compressible Euler equation with damping:

$$\begin{cases}
\partial_t \rho + \text{div}(\rho u) = 0, \\
\partial_t u + u \cdot \nabla u + \nabla P(\rho) + \frac{u}{\varepsilon} = 0.
\end{cases}$$

(1)
Introduction

We look at \(n \)-component linear hyperbolic systems of the form:

\[
\frac{\partial V}{\partial t} + \sum_{j=1}^{d} A^j \frac{\partial V}{\partial x_j} = -\frac{LV}{\varepsilon}.
\]

Such that:

- the matrices \(A^j \) are symmetric \(\rightarrow \) Hyperbolicity of the system
- \(L = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \) with \(D > 0 \) \(\rightarrow \) Partial dissipation

These systems models physical phenomena with finite speed of propagation or equilibrium laws, such as the compressible Euler equation with damping:

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho u) &= 0, \\
\partial_t u + u \cdot \nabla u + \nabla P(\rho) + \frac{u}{\varepsilon} &= 0.
\end{align*}
\]

We are interested in the following questions:

- Limit as \(\varepsilon \to 0 \)?
- Behavior as \(t \to \infty \)?
Global existence of solutions

Q: Since the dissipation is only present in some equations of the system, how can one ensure the global existence of solutions?

As a toy-model, let us look at the damped p-system

\[
\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u + v &= 0.
\end{align*}
\]

For this simple system, performing standard energy estimates leads to:

\[
dt \| (u, v) \|^2_{L^2} + \| v \|^2_{L^2} \leq 0 \rightarrow \text{no time-decay information on } u.
\]

Idea: consider the following perturbed functional

\[
L_2 = \| (u, v, \partial_x u, \partial_x v) \|^2_{L^2} + \int_R v \partial_x u,
\]

which allows to recover dissipation properties on all the components. Indeed, after basic computations, we obtain

\[
dt L_2 + \| v \|^2_{L^2} + \| (\partial_x u, \partial_x v) \|^2_{L^2} \leq 0.
\]

And since

\[
L_2 \sim \| (u, v, \partial_x u, \partial_x v) \|^2_{L^2},
\]

we can obtain time-decay estimates.
Global existence of solutions

Q: *Since the dissipation is only present in some equations of the system, how can one ensure the global existence of solutions?*

As a toy-model, let us look at the damped p-system

\[
\begin{aligned}
 \partial_t u + \partial_x v &= 0, \\
 \partial_t v + \partial_x u + v &= 0.
\end{aligned}
\]

(2)
Global existence of solutions

Q: Since the dissipation is only present in some equations of the system, how can one ensure the global existence of solutions?

As a toy-model, let us look at the damped p-system

$$\begin{cases}
\partial_t u + \partial_x v = 0, \\
\partial_t v + \partial_x u + v = 0.
\end{cases}$$

(2)

For this simple system, performing standard energy estimates leads to:

$$\frac{d}{dt} \|(u, v)\| + \|v\|^2_{L^2} \leq 0 \rightarrow \text{no time-decay information on } u.$$
Global existence of solutions

Q: Since the dissipation is only present in some equations of the system, how can one ensure the global existence of solutions?

As a toy-model, let us look at the damped p-system

\[\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u + v &= 0.
\end{align*}\] (2)

For this simple system, performing standard energy estimates leads to:

\[\frac{d}{dt} \|(u, v)\| + \|v\|_{L^2}^2 \leq 0 \rightarrow \text{no time-decay information on } u.\]

Idea: consider the following perturbed functional

\[\mathcal{L}^2 = \|(u, v, \partial_x u, \partial_x v)\|_{L^2}^2 + \int_{\mathbb{R}} v \partial_x u,\]

which allows to recover dissipation properties on all the components.
Global existence of solutions

Q: Since the dissipation is only present in some equations of the system, how can one ensure the global existence of solutions?

As a toy-model, let us look at the damped p-system

\[
\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u + v &= 0.
\end{align*}
\]

For this simple system, performing standard energy estimates leads to:

\[
\frac{d}{dt} \|(u, v)\| + \|v\|^2_{L^2} \leq 0 \rightarrow \text{no time-decay information on } u.
\]

Idea: consider the following perturbed functional

\[
\mathcal{L}^2 = \|(u, v, \partial_x u, \partial_x v)\|^2_{L^2} + \int_{\mathbb{R}} v \partial_x u,
\]

which allows to recover dissipation properties on all the components.

Indeed, after basic computations, we obtain

\[
\frac{d}{dt} \mathcal{L}^2 + \|v\|^2_{L^2} + \|\partial_x u, \partial_x v\|^2_{L^2} \leq 0.
\]
Global existence of solutions

Q: Since the dissipation is only present in some equations of the system, how can one ensure the global existence of solutions?

As a toy-model, let us look at the damped p-system

\[
\begin{cases}
\partial_t u + \partial_x v = 0, \\
\partial_t v + \partial_x u + v = 0.
\end{cases}
\] (2)

For this simple system, performing standard energy estimates leads to:

\[
\frac{d}{dt} \|(u, v)\| + \|v\|_{L^2}^2 \leq 0 \rightarrow \text{no time-decay information on } u.
\]

Idea: consider the following perturbed functional

\[
\mathcal{L}^2 = \|(u, v, \partial_x u, \partial_x v)\|_{L^2}^2 + \int_{\mathbb{R}} v \partial_x u,
\]

which allows to recover dissipation properties on all the components.

Indeed, after basic computations, we obtain

\[
\frac{d}{dt} \mathcal{L}^2 + \|v\|_{L^2}^2 + \|\partial_x u, \partial_x v\|_{L^2}^2 \leq 0.
\]

And since \(\mathcal{L}^2 \sim \|(u, v, \partial_x u, \partial_x v)\|_{L^2}^2 \), we can obtain time-decay estimates.
For the general system, the idea is the same if one assume the (SK) condition:

\[\forall \xi \in \mathbb{R}^d, \quad \ker L \cap \{\text{eigenvectors of } \sum_j A_j \xi_j \} = \{0\}. \quad (SK) \]
For the general system, the idea is the same if one assume the (SK) condition:

Definition

\[\forall \xi \in \mathbb{R}^d, \quad \ker L \cap \{\text{eigenvectors of } \sum_j A^j \xi_j\} = \{0\}. \quad (SK) \]

Such condition is actually equivalent the Kalman rank condition and inspired by hypercoercivity theory, Beauchard and Zuazua defined

\[
L^2 \triangleq \|V\|_{L^2}^2 + \int_{\mathbb{R}^d} \min(\rho, \rho^{-1}) I \quad \text{where} \quad I \triangleq \sum_{k=1}^{n-1} \mathbb{E}_k (L \omega_{k-1} V \cdot L \omega_k \tilde{V})
\]

as a Lyapunov function to recover the decay estimates.
For the general system, the idea is the same if one assume the (SK) condition:

Definition

\[
\forall \xi \in \mathbb{R}^d, \quad \ker L \cap \{\text{eigenvectors of } \sum_j A^j \xi_j\} = \{0\}. \quad \text{(SK)}
\]

Such condition is actually equivalent the Kalman rank condition and inspired by hypercoercivity theory, Beauchard and Zuazua defined

\[
\mathcal{L}^2 \triangleq \|V\|_{L^2}^2 + \int_{\mathbb{R}^d} \min(\rho, \rho^{-1}) I \quad \text{where} \quad I \triangleq \sum_{k=1}^{n-1} \varepsilon_k (L A_{\omega}^{k-1} \hat{V} \cdot L A_{\omega}^k \hat{V})
\]

as a Lyapunov function to recover the decay estimates.

Again, we obtain

\[
\frac{d}{dt} \mathcal{L} + \kappa \min(1, |\xi|^2) \mathcal{L} \leq 0
\]
With this estimates at hand, one deduces the global existence of small H^s solutions and

$$
\| V^h(t) \|_{L^2(\mathbb{R}^d, \mathbb{R}^n)} \leq C e^{-\lambda t} \| V_0 \|_{L^2(\mathbb{R}^d, \mathbb{R}^n)},
$$

$$
\| V^\ell(t) \|_{L^\infty(\mathbb{R}^d, \mathbb{R}^n)} \leq C t^{-d/2} \| V_0 \|_{L^1(\mathbb{R}^d, \mathbb{R}^n)} \tag{3}
$$

where V^h and V^ℓ correspond, respectively, to the high and low frequencies of the solution.
With this estimates at hand, one deduces the global existence of small H^s solutions and

\[
\| V^h(t) \|_{L^2(\mathbb{R}^d, \mathbb{R}^n)} \leq C e^{-\lambda t} \| V_0 \|_{L^2(\mathbb{R}^d, \mathbb{R}^n)},
\]

\[
\| V^\ell(t) \|_{L^\infty(\mathbb{R}^d, \mathbb{R}^n)} \leq C t^{-\frac{d}{2}} \| V_0 \|_{L^1(\mathbb{R}^d, \mathbb{R}^n)} \tag{3}
\]

where V^h and V^ℓ correspond, respectively, to the high and low frequencies of the solution.

Moreover, this technique also allows to treat situations when the (SK) condition is not satisfied.
With this estimates at hand, one deduces the global existence of small H^s solutions and

$$
\| V^h(t) \|_{L^2(\mathbb{R}^d,\mathbb{R}^n)} \leq C e^{-\lambda t} \| V_0 \|_{L^2(\mathbb{R}^d,\mathbb{R}^n)},
$$

$$
\| V^\ell(t) \|_{L^\infty(\mathbb{R}^d,\mathbb{R}^n)} \leq C t^{-\frac{d}{2}} \| V_0 \|_{L^1(\mathbb{R}^d,\mathbb{R}^n)}
$$

(3)

where V^h and V^ℓ correspond, respectively, to the high and low frequencies of the solution.

Moreover, this technique also allow to treat situation when the (SK) condition is not satisfied.

However, these decay estimates do not depict the full story in the low frequencies regime and do not allow to consider the limit as $\varepsilon \to 0$.
"New" observations

- Back to the damped \(p \)-system:

\[
\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u + \frac{v}{\varepsilon} &= 0.
\end{align*}
\]

(4)

A spectral analysis of the matrix

\[
\begin{pmatrix}
0 & i\xi \\
i\xi & \frac{1}{\varepsilon}
\end{pmatrix}
\]

shows that:
"New" observations

- Back to the damped p-system:

\[
\begin{aligned}
\partial_t u + \partial_x \nu &= 0, \\
\partial_t \nu + \partial_x u + \frac{\nu}{\varepsilon} &= 0.
\end{aligned}
\]

(4)

A spectral analysis of the matrix

\[
\begin{pmatrix}
0 & i\xi \\
 i\xi & \frac{1}{\varepsilon}
\end{pmatrix}
\]

shows that:

- In low frequencies ($|\xi| \ll \varepsilon^{-1}$), there are two real eigenvalues $\frac{1}{\varepsilon}$ and $\varepsilon\xi^2$.
"New" observations

- Back to the damped p-system:

$$\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u + \frac{v}{\varepsilon} &= 0.
\end{align*}$$

(4)

A spectral analysis of the matrix

$$
\begin{pmatrix}
0 & i\xi \\
 i\xi & \frac{1}{\varepsilon}
\end{pmatrix}
$$

shows that:

- In low frequencies ($|\xi| \ll \varepsilon^{-1}$), there are two real eigenvalues $\frac{1}{\varepsilon}$ and $\varepsilon\xi^2$.

- In high frequencies ($|\xi| \gg \varepsilon^{-1}$), two complex conjugate eigenvalues coexist, whose real parts are asymptotically equal to $\frac{1}{2\varepsilon}$.
"New" observations

- Back to the damped p-system:

$$
\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u + \frac{v}{\varepsilon} &= 0.
\end{align*}
$$

A spectral analysis of the matrix

$$
\begin{pmatrix}
0 & i\xi \\
i\xi & \frac{1}{\varepsilon}
\end{pmatrix}
$$

shows that:

- In low frequencies ($|\xi| \ll \varepsilon^{-1}$), there are two real eigenvalues $\frac{1}{\varepsilon}$ and $\varepsilon\xi^2$.
- In high frequencies ($|\xi| \gg \varepsilon^{-1}$), two complex conjugate eigenvalues coexist, whose real parts are asymptotically equal to $\frac{1}{2\varepsilon}$.
- the threshold between low and high frequencies is at $\frac{1}{\varepsilon}$.
Insights from the spectral analysis

- There exists a damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon} \rightarrow \text{uniform estimates.}$
Insights from the spectral analysis

- There exists a damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon} \to$ uniform estimates.

- As the eigenvalues are real in low-frequency, we expect to be able to work in L^p instead of L^2 in this regime.
Insights from the spectral analysis

- There exists a damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon} \rightarrow$ uniform estimates.
- As the eigenvalues are real in low-frequency, we expect to be able to work in L^p instead of L^2 in this regime.
- The asymptotic behaviour of the solution when $\varepsilon \rightarrow 0$ is not so intuitive.
Insights from the spectral analysis

- There exists a damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon} \to$ uniform estimates.
- As the eigenvalues are real in low-frequency, we expect to be able to work in L^p instead of L^2 in this regime.
- The asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.
 - Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.
Insights from the spectral analysis

- There exists a damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon} \to$ uniform estimates.
- As the eigenvalues are real in low-frequency, we expect to be able to work in L^p instead of L^2 in this regime.
- The asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.
 - Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.
 - However, the so-called *overdamping* effect occurs: the decay rate behaves like $(\varepsilon, 1/\varepsilon)$.
Insights from the spectral analysis

- There exists a damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon} \to$ uniform estimates.
- As the eigenvalues are real in low-frequency, we expect to be able to work in L^p instead of L^2 in this regime.
- The asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.
 - Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.
 - However, the so-called *overdamping* effect occurs: the decay rate behaves like $(\varepsilon, 1/\varepsilon)$.

![Decay rates graph]

- This is related to the fact that as $\varepsilon \to 0$, the low frequencies "invade" the whole space of frequency.
Low frequencies in a simple case

Our idea: reproduce exactly what the spectral analysis tells us using:

\[\| f \|_{B^s_{2,1}}^h \triangleq \sum_{j \geq \frac{1}{\varepsilon}} 2^j \| \hat{\Delta}_j f \|_{L^2} \quad \text{and} \quad \| f \|_{B^s_{p,1}}^\ell \triangleq \sum_{j \leq \frac{1}{\varepsilon}} 2^{j'} \| \hat{\Delta}_j f \|_{L^p}. \]
Low frequencies in a simple case

Our idea: reproduce exactly what the spectral analysis tells us using:

\[\| f \|_{B^{s}_{p,1}}^{h} \triangleq \sum_{j \geq \frac{1}{\varepsilon}} 2^{js} \| \dot{\Delta}_{j} f \|_{L^{2}} \quad \text{and} \quad \| f \|_{B^{s'}_{p,1}}^{\ell} \triangleq \sum_{j \leq \frac{1}{\varepsilon}} 2^{j s'} \| \dot{\Delta}_{j} f \|_{L^{p}}. \]

Back (again) to the damped p-system:

\[
\begin{cases}
\partial_{t} u + \partial_{x} v = 0 \\
\partial_{t} v + \partial_{x} u + \frac{v}{\varepsilon} = 0,
\end{cases}
\]
Low frequencies in a simple case

Our idea: reproduce exactly what the spectral analysis tells us using:

\[\| f \|_{h_{2,1}}^h \triangleq \sum_{j \geq \frac{1}{\varepsilon}} 2^s |\hat{\Delta} f|^2 \] and \[\| f \|_{\ell_{p,1}}^\ell \triangleq \sum_{j \leq \frac{1}{\varepsilon}} 2^{s'} |\hat{\Delta} f|^p. \]

Back (again) to the damped p-system:

\[
\begin{cases}
\partial_t u + \partial_x v = 0 \\
\partial_t v + \partial_x u + \frac{v}{\varepsilon} = 0,
\end{cases}
\]

Defining the damped mode \(w = v + \varepsilon \partial_x u \), the system can be rewritten

\[
\begin{cases}
\partial_t u - \varepsilon \partial_{xx} u = -\partial_x w \\
\partial_t w + \frac{w}{\varepsilon} = -\varepsilon \partial_{xx} v.
\end{cases}
\]
Low frequencies in a simple case

Our idea: reproduce exactly what the spectral analysis tells us using:

\[
\| f \|_{h_{2,1}}^h \triangleq \sum_{j \geq \frac{1}{\varepsilon}} 2^j \| \hat{\Delta} f \|_{L^2} \quad \text{and} \quad \| f \|_{\ell_{p,1}}^\ell \triangleq \sum_{j \leq \frac{1}{\varepsilon}} 2^{j'} \| \hat{\Delta} f \|_{L^p}.
\]

Back (again) to the damped p-system:

\[
\begin{align*}
\partial_t u + \partial_x v &= 0 \\
\partial_t v + \partial_x u + \frac{v}{\varepsilon} &= 0,
\end{align*}
\]

Defining the damped mode \(w = v + \varepsilon \partial_x u \), the system can be rewritten

\[
\begin{align*}
\partial_t u - \varepsilon \partial_{xx} u &= -\partial_x w \\
\partial_t w + \frac{w}{\varepsilon} &= -\varepsilon \partial_{xx} v.
\end{align*}
\]

→ We directly get the behaviour observed in the spectral analysis, not just heat effect.
Partially dissipative systems

Low frequencies in a simple case

Our idea: reproduce exactly what the spectral analysis tells us using:

\[\| f \|_{B^s_{2,1}}^h \triangleq \sum_{j \geq \frac{1}{\varepsilon}} 2^j \| \hat{\Delta} f \|_{L^2} \quad \text{and} \quad \| f \|_{B^s_{p,1}}^\ell \triangleq \sum_{j \leq \frac{1}{\varepsilon}} 2^j \| \hat{\Delta} f \|_{L^p}. \]

Back (again) to the damped p-system:

\[
\begin{aligned}
\partial_t u + \partial_x v &= 0 \\
\partial_t v + \partial_x u + \frac{v}{\varepsilon} &= 0,
\end{aligned}
\]

Defining the damped mode \(w = v + \varepsilon \partial_x u \), the system can be rewritten

\[
\begin{aligned}
\partial_t u - \varepsilon \partial_{xx} u &= -\partial_x w \\
\partial_t w + \frac{w}{\varepsilon} &= -\varepsilon \partial_{xx} v.
\end{aligned}
\]

→ We directly get the behaviour observed in the spectral analysis, not just heat effect.
→ It is possible to study the two equations in a decoupled way as the source terms can be absorbed in the low-frequency regime:

\[\| \partial_x f \|_{B^s_{p,1}}^\ell \leq \| f \|_{B^s_{p,1}}^\ell \]
To Sum-up

- The hypocoercivity approach does not give the full story of the low-frequency behavior.
To Sum-up

- The hypocoercivity approach does not give the full story of the low-frequency behavior.
- From the low-frequency analysis presented here and the high frequencies computation à la Beauchard et Zuazua, we are able to get a uniform global existence result.
To Sum-up

- The hypocoercivity approach does not give the full story of the low-frequency behavior.
- From the low-frequency analysis presented here and the high frequencies computation à la Beauchard et Zuazua, we are able to get a uniform global existence result.
- And from these uniform estimates we can justify, almost directly, the relaxation limit when $\varepsilon \to 0$ in the ill-prepared case.
Theorem (Danchin, C-B ’21- ill-prepared relaxation limit)

Let $d \geq 1$, $p \in [2, 4]$ and $\varepsilon > 0$. Let $\overline{\rho}$ be a strictly positive constant and $(\rho - \overline{\rho}, v)$ be the solution obtained with the previous theorem.

Let the positive function N_0 such that $N_0 - \overline{\rho}$ is small enough in $\dot{B}^{d}_{p,1}$, and let $N \in C_b(\mathbb{R}^+; \dot{B}^{d}_{p,1}) \cap L^1(\mathbb{R}^+; \dot{B}^{d+2}_{p,1})$ be the unique solution associated to the Cauchy problem:

\[
\begin{cases}
\partial_t N - \Delta P(N) = 0 \\
N(0, x) = N_0
\end{cases}
\]

If we assume that

\[
\|\overline{\rho}_0 - N_0\|_{\dot{B}^{d-1}_{p,1}} \leq C\varepsilon,
\]

then

\[
\|\overline{\rho}^\varepsilon - N\|_{L^\infty(\mathbb{R}^+; \dot{B}^{d-1}_{p,1})} + \|\overline{\rho}^\varepsilon - N\|_{L^1(\mathbb{R}^+; \dot{B}^{d+1}_{p,1})} + \left\| \frac{\nabla P(\overline{\rho}^\varepsilon)}{\overline{\rho}^\varepsilon} + \overline{v} \right\|_{L^1(\mathbb{R}^+; \dot{B}^{d}_{p,1})} \leq C\varepsilon.
\]
Localized damping
Damping active outside of a ball

We consider the one-dimensional linear hyperbolic system

\[
\begin{aligned}
\partial_t U + A\partial_x U &= -BU1_\omega, \\
U(0, x) &= U_0(x),
\end{aligned}
\]

where \(U = (u_1, u_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \) and

\[
\omega := \mathbb{R} \setminus B_R(0) = \{ x \in \mathbb{R} : \|x\| \geq R \} \quad \text{for a fixed } R > 0.
\]
We consider the one-dimensional linear hyperbolic system

\[
\begin{cases}
\partial_t U + A\partial_x U = -BU1_\omega, & (t, x) \in (0, \infty) \times \mathbb{R}, \\
U(0, x) = U_0(x), & x \in \mathbb{R},
\end{cases}
\]

where \(U = (u_1, u_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \) and

\[
\omega := \mathbb{R} \setminus B_R(0) = \{ x \in \mathbb{R} : \|x\| \geq R \} \quad \text{for a fixed } R > 0.
\]

We assume:

- \(B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \) with \(D > 0 \)
- The matrix \(A \) is a \textit{strictly hyperbolic matrix}, i.e. \(A \) has \(n \) real distinct eigenvalues

\[
\lambda_1 < \lambda_p < 0 < \lambda_{p+1} < \lambda_n.
\]

- The couple \((A, B)\) satisfies the (SK) condition.
We consider the one-dimensional linear hyperbolic system

\[
\begin{cases}
\partial_t U + A \partial_x U = -BU1_\omega, & (t, x) \in (0, \infty) \times \mathbb{R}, \\
U(0, x) = U_0(x), & x \in \mathbb{R},
\end{cases}
\]

where \(U = (u_1, u_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \) and

\[
\omega := \mathbb{R} \setminus B_R(0) = \{x \in \mathbb{R} : \|x\| \geq R\} \text{ for a fixed } R > 0.
\]

We assume:

- \(B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \) with \(D > 0 \)
- The matrix \(A \) is a strictly hyperbolic matrix, i.e. \(A \) has \(n \) real distinct eigenvalues

\[
\lambda_1 < \lambda_p < 0 < \lambda_{p+1} < \lambda_n.
\]
- The couple \((A, B)\) satisfies the (SK) condition.

In other words: we are in the same situation as before but the damping is only effective in \(\omega \) (the complementary of a ball).
Objective: Quantify the decay as in the classical case.
Objective: Quantify the decay as in the classical case.

Difficulties:
- The approach depicted previously is bound to fail as it relies on the Fourier transform.
Objective: Quantify the decay as in the classical case.

Difficulties:

- The approach depicted previously is bound to fail as it relies on the Fourier transform.
- Defining a perturbed functional is not enough to solve this problem, as it is known for the damped wave equations.
Objective: Quantify the decay as in the classical case.

Difficulties:

- The approach depicted previously is bound to fail as it relies on the Fourier transform.
- Defining a perturbed functional is not enough to solve this problem, as it is known for the damped wave equations.

Idea:

- The characteristic lines of the system spend only a finite time in the undamped region.
- When a characteristic is outside the undamped region, the solution decays as in the classical analysis.
Objective: Quantify the decay as in the classical case.

Difficulties:
- The approach depicted previously is bound to fail as it relies on the Fourier transform.
- Defining a perturbed functional is not enough to solve this problem, as it is known for the damped wave equations.

Idea:
- The characteristic lines of the system spend only a finite time in the undamped region.
- When a characteristic is outside the undamped region, the solution decays as in the classical analysis.

→ This motivates us to develop a method involving only the consideration of the characteristics curves and a semigroup-wise decomposition.
Propagation of characteristics and their location with respect to the region \(\omega = \mathbb{R} \setminus B_R \) where the damping is active.

(a) **Case 1:** The initial support is in the damped region and the characteristics are going away from the un-damped region.

(b) **Case 2:** The initial support is in the damped region and the characteristics cross the un-damped region.

(c) **Case 3:** The initial support is in the un-damped region.

(d) **Case 4:** There is one zero eigenvalue. \(\rightarrow \) Standing wave
Reformulation of the system

As A is symmetric with n real distinct eigenvalues, there exists a matrix $P \in O(n, \mathbb{R})$ such that

$$P^{-1}AP = \Lambda \quad \text{where} \quad \Lambda = \text{diag}(\lambda_1, ..., \lambda_n).$$

Setting $V = P^{-1}U$, the system can be reformulated into

$$\begin{cases}
\partial_t V + \Lambda \partial_x V = P^{-1}BPV 1_\omega(x), & (t, x) \in (0, \infty) \times \mathbb{R}, \\
V(0, x) = V_0(x), & x \in \mathbb{R},
\end{cases}$$

(5)
Reformulation of the system

As A is symmetric with n real distinct eigenvalues, there exists a matrix $P \in O(n, \mathbb{R})$ such that

$$P^{-1}AP = \Lambda \quad \text{where} \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n).$$

Setting $V = P^{-1}U$, the system can be reformulated into

$$\begin{cases}
\partial_t V + \Lambda \partial_x V = P^{-1}BPV 1_\omega(x), & (t, x) \in (0, \infty) \times \mathbb{R}, \\
V(0, x) = V_0(x), & x \in \mathbb{R},
\end{cases} \quad (5)$$

Decomposing $V = (v_1, \ldots, v_n)$, (5) is equivalent to the following system of coupled transport equations:

$$\begin{cases}
\partial_t v_1 + \lambda_1 \partial_x v_1 = \sum_{j=1}^{n} b_{1,j} v_j 1_\omega(x) \\
\vdots \\
\partial_t v_n + \lambda_n \partial_x v_n = \sum_{j=1}^{n} b_{n,j} v_j 1_\omega(x)
\end{cases}$$
Reformulation of the system

As A is symmetric with n real distinct eigenvalues, there exists a matrix $P \in O(n, \mathbb{R})$ such that

$$P^{-1}AP = \Lambda \quad \text{where} \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n).$$

Setting $V = P^{-1}U$, the system can be reformulated into

$$\begin{cases}
\partial_t V + \Lambda \partial_x V = P^{-1}BPV1_\omega(x), & (t, x) \in (0, \infty) \times \mathbb{R}, \\
V(0, x) = V_0(x), & x \in \mathbb{R},
\end{cases} \quad (5)$$

Decomposing $V = (v_1, \ldots, v_n)$, (5) is equivalent to the following system of coupled transport equations:

$$\begin{cases}
\partial_t v_1 + \lambda_1 \partial_x v_1 = \sum_{j=1}^n b_{1,j} v_j 1_\omega(x) \\
\vdots \\
\partial_t v_n + \lambda_n \partial_x v_n = \sum_{j=1}^n b_{n,j} v_j 1_\omega(x)
\end{cases}$$

For all $1 \leq i \leq n$, the characteristic lines X_i of each equations passing through the point $(x_0, t_0) \in \mathbb{R} \times [0, T]$ are given by

$$X_i(t, x_0, t_0) := \lambda_i(t - t_0) + x_0, \quad t \in [0, T].$$
Figure: Characteristics passing through a point \((x, t) \in \mathbb{R} \times \mathbb{R}_+\).
The choice of ω as an exterior domain is motivated by a *geometric control condition*: the ray of geometric optics may escape the damping effect if the inclusion $\{\|x\| \geq r\} \subset \omega$ is not satisfied for some $r > 0$. Indeed, once a characteristic has crossed and exited the undamped region ω^c it will never cross it again. The time spent by each characteristics τ_i in ω^c satisfies:

$$\tau_i \leq 2R\lambda_i.$$

1st Principle: as we have only a finite number of components, the total time spend by all the characteristics in the undamped region is finite. Since our system has a partially dissipative nature, the dissipation of each variable arises from the coupling between each equations.

\rightarrow 2nd principle: Whenever one of the characteristic is in the undamped region, then the solution does not, in general, undergo any decay. These considerations led us to the following Theorem.
The choice of ω as an exterior domain is motivated by a *geometric control condition*: the ray of geometric optics may escape the damping effect if the inclusion $\{\|x\| \geq r\} \subset \omega$ is not satisfied for some $r > 0$.

Indeed, once a characteristic has crossed and exited the undamped region ω_c it will never cross it again. The time spent by each characteristics τ_i in ω_c satisfies:

$$\tau_i \leq \frac{2R}{\lambda_i}.$$
The choice of ω as an exterior domain is motivated by a geometric control condition: the ray of geometric optics may escape the damping effect if the inclusion $\{\|x\| \geq r\} \subset \omega$ is not satisfied for some $r > 0$.

Indeed, once a characteristic has crossed and exited the undamped region ω^c it will never cross it again. The time spent by each characteristics τ_i in ω^c satisfies:

$$\tau_i \leq \frac{2R}{\lambda_i}.$$

1st Principle: as we have only a finite number of components, the total time spend by all the characteristics in the undamped region is finite.
Few facts

- The choice of ω as an exterior domain is motivated by a geometric control condition: the ray of geometric optics may escape the damping effect if the inclusion $\{\|x\| \geq r\} \subset \omega$ is not satisfied for some $r > 0$.

- Indeed, once a characteristic has crossed and exited the undamped region ω^c it will never cross it again. The time spent by each characteristics τ_i in ω^c satisfies:

$$\tau_i \leq \frac{2R}{\lambda_i}.$$

- 1st Principle: as we have only a finite number of components, the total time spend by all the characteristics in the undamped region is finite.

- Since our system has a partially dissipative nature, the dissipation of each variable arises from the coupling between each equations.
Partially dissipative systems

General presentation

Damping active outside of a ball

Few facts

- The choice of ω as an exterior domain is motivated by a *geometric control condition*: the ray of geometric optics may escape the damping effect if the inclusion $\{\|x\| \geq r\} \subset \omega$ is not satisfied for some $r > 0$.

- Indeed, once a characteristic has crossed and exited the undamped region ω^c it will never cross it again. The time spent by each characteristics τ_i in ω^c satisfies:
 \[
 \tau_i \leq \frac{2R}{\lambda_i}.
 \]

- 1st Principle: as we have only a finite number of components, *the total time spend by all the characteristics in the undamped region is finite*.

- Since our system has a partially dissipative nature, the dissipation of each variable arises from the coupling between each equations.

- → 2nd principle: Whenever one of the characteristic is in the undamped region, then the solution does not, in general, undergo any decay.
Few facts

• The choice of ω as an exterior domain is motivated by a geometric control condition: the ray of geometric optics may escape the damping effect if the inclusion $\{\|x\| \geq r\} \subset \omega$ is not satisfied for some $r > 0$.

• Indeed, once a characteristic has crossed and exited the undamped region ω^c, it will never cross it again. The time spent by each characteristic τ_i in ω^c satisfies:

$$\tau_i \leq \frac{2R}{\lambda_i}.$$

• 1st Principle: as we have only a finite number of components, the total time spend by all the characteristics in the undamped region is finite.

• Since our system has a partially dissipative nature, the dissipation of each variable arises from the coupling between each equations.

• → 2nd principle: Whenever one of the characteristic is in the undamped region, then the solution does not, in general, undergo any decay.

These considerations led us to the following Theorem.
Main Theorem

Theorem (De Nitti-Zuazua-CB ’22)

Assume that the matrix A is symmetric, strictly hyperbolic and does not admit the eigenvalue 0 and that the couple (A, B) satisfies the (SK) condition. Let $U_0 \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

Then, there exists a constant $C > 0$ and a finite time $\bar{\tau} > 0$ such that for $t \geq \bar{\tau}$, the solution satisfies

$$\| U^h(\cdot, t) \|_{L^2(\mathbb{R})} \leq C e^{-\gamma (t - \bar{\tau})} \| U_0 \|_{L^2(\mathbb{R})},$$

$$\| U^\ell(\cdot, t) \|_{L^\infty(\mathbb{R})} \leq C (t - \bar{\tau})^{-1/2} \| U_0 \|_{L^1(\mathbb{R})}$$

where

$$\bar{\tau} = \max \left(\sum_{i=1}^{p} \frac{2R}{|\lambda_i|}, \sum_{i=p+1}^{n} \frac{2R}{|\lambda_i|} \right).$$
Main Theorem

Theorem (De Nitti-Zuazua-CB ’22)

Assume that the matrix A is symmetric, strictly hyperbolic and does not admit the eigenvalue 0 and that the couple (A, B) satisfies the (SK) condition. Let $U_0 \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

Then, there exists a constant $C > 0$ and a finite time $\bar{\tau} > 0$ such that for $t \geq \bar{\tau}$, the solution satisfies

$$\|U^h(\cdot, t)\|_{L^2(\mathbb{R})} \leq Ce^{-\gamma(t-\bar{\tau})}\|U_0\|_{L^2(\mathbb{R})},$$

$$\|U^\ell(\cdot, t)\|_{L^\infty(\mathbb{R})} \leq C(t - \bar{\tau})^{-1/2}\|U_0\|_{L^1(\mathbb{R})}$$

where

$$\bar{\tau} = \max \left(\sum_{i=1}^p \frac{2R}{|\lambda_i|}, \sum_{i=p+1}^n \frac{2R}{|\lambda_i|} \right).$$

The decay estimates are delayed by the time each characteristic spend in the undamped region.
Idea of proof

We define S_d the dissipative semigroup associated to the equation without localization. This semigroup is active when all the characteristics are outside the undamped region. Recall that we have

$$\|W_h(\cdot, t)\|_{L^2(\mathbb{R}^d)} \leq \|S_{h d}(t, 0)W_h0\|_{L^2(\mathbb{R}^d)} \leq C e^{-\gamma t} \|W_h0\|_{L^2(\mathbb{R}^d)},$$

$$\|W_\ell(\cdot, t)\|_{L^\infty(\mathbb{R}^d)} \leq \|S_{\ell d}(t, 0)W_\ell0\|_{L^\infty(\mathbb{R}^d)} \leq Ct^{-d/2} \|W_\ell0\|_{L^1(\mathbb{R}^d)}.$$
We define S_d the dissipative semigroup associated to the equation without localization. This semigroup is active when all the characteristics are outside the undamped region. Recall that we have

$$
\| W^h(\cdot, t) \|_{L^2(\mathbb{R}^d)} \leq \| S^h_d(t, 0) W^h_0 \|_{L^2(\mathbb{R}^d)} \leq C e^{-\gamma t} \| W^h_0 \|_{L^2(\mathbb{R}^d)},
$$

$$
\| W^\ell(\cdot, t) \|_{L^\infty(\mathbb{R}^d)} \leq \| S^\ell_d(t, 0) W^\ell_0 \|_{L^\infty(\mathbb{R}^d)} \leq C t^{-d/2} \| W^\ell_0 \|_{L^1(\mathbb{R}^d)},
$$
We define S_d the dissipative semigroup associated to the equation without localization. This semigroup is active when all the characteristics are outside the undamped region. Recall that we have

$$
\|W^h(\cdot, t)\|_{L^2(\mathbb{R}^d)} \leq \|S^h_d(t, 0)W^h_0\|_{L^2(\mathbb{R}^d)} \leq Ce^{-\gamma t} \|W^h_0\|_{L^2(\mathbb{R}^d)},
$$

$$
\|W^\ell(\cdot, t)\|_{L^\infty(\mathbb{R}^d)} \leq \|S^\ell_d(t, 0)W^\ell_0\|_{L^\infty(\mathbb{R}^d)} \leq Ct^{-d/2} \|W^\ell_0\|_{L^1(\mathbb{R}^d)},
$$

We define S_c the conservative semigroup associated to the equation without dissipation at all. Essentially, this semigroup will be active whenever one of the characteristic is inside the undamped region. We have

$$
\|Z(t, \cdot)\|_{L^p(\mathbb{R})} = \|S_c(t, 0)Z_0\|_{L^p(\mathbb{R})} = \|Z_0\|_{L^p(\mathbb{R})}.
$$
Idea of proof

1. We define S_d the dissipative semigroup associated to the equation without localization. This semigroup is active when all the characteristics are outside the undamped region. Recall that we have

\[
\|W^h(\cdot, t)\|_{L^2(\mathbb{R}^d)} \leq \|S^h_d(t, 0)W^h_0\|_{L^2(\mathbb{R}^d)} \leq Ce^{-\gamma t}\|W^h_0\|_{L^2(\mathbb{R}^d)},
\]

\[
\|W^\ell(\cdot, t)\|_{L^\infty(\mathbb{R}^d)} \leq \|S^\ell_d(t, 0)W^\ell_0\|_{L^\infty(\mathbb{R}^d)} \leq Ct^{-d/2}\|W^\ell_0\|_{L^1(\mathbb{R}^d)},
\]

2. We define S_c the conservative semigroup associated to the equation without dissipation at all. Essentially, this semigroup will be active whenever one of the characteristic is inside the undamped region. We have

\[
\|Z(t, \cdot)\|_{L^p(\mathbb{R})} = \|S_c(t, 0)Z_0\|_{L^p(\mathbb{R})} = \|Z_0\|_{L^p(\mathbb{R})}.
\]

Then, for every $(x, t) \in \mathbb{R}^2$, we can always find suitable times t_1, t_2 such that each components of the solution can be rewritten:

\[
\nu_i(x, t) = S_{d,i}(t)S_{c,i}(t_1)S_{d,i}(t_2)\nu_{i,0}(x). \tag{6}
\]

where $S_{d,i}$ and $S_{c,i}$ are the semigroup associated to each components.
Partially dissipative systems

General presentation

Damping active outside of a ball

Figure: Illustration on the semigroups and the quantities t_1 and t_2.

$S_{d,1}$, $S_{c,1}$, X_1, $S_{d,p+1}$, X_{p+1}
Figure: Illustration on the semigroups and the quantities t_1 and t_2.

Difficulty: The time-quantities t_1 and t_2 depend on the point (x, t).
Partially dissipative systems

General presentation
Damping active outside of a ball

Figure: Illustration on the semigroups and the quantities t_1 and t_2.

Difficulty: The time-quantities t_1 and t_2 depend on the point (x, t).

But the difference $t_1 - t_2$ is always uniformly bounded!
Difficulties due to partial dissipation:

It is only possible to obtain dissipation for the solution V if all the semigroups $S_{d, i}$ are active on a same time-interval i.e. the “full” semigroup $S_{d} = (S_{d, 1}, \ldots, S_{d, p})$ needs to be active.

For instance, the action of $S_{d, 1}$ on the first component does not, in general, imply any time-decay properties for the component v_1.

This means that if one of the conservative semigroups $S_{c, i}$ is active on a time-interval then the whole solution does not experience any decay on this time-interval; Of course, it is possible that some components decay “on their own”. But in general the whole solution does not decay.

Still, when one semigroup $S_{d, i}$ is active, the L^p norms of the solutions stay bounded thanks to the positive semidefiniteness of B.

Crin-Barat Timothée
Partially and locally dissipated hyperbolic systems
Partially dissipative systems

General presentation

Damping active outside of a ball

Other remarks/difficulties

Difficulties due to partial dissipation:

- It is only possible to obtain dissipation for the solution \(V \) if all the semigroups \(S_{d,i} \) are active on a same time-interval i.e. the "full" semigroup \(S_d = (S_{d,1}, \cdots, S_{d,p}) \) needs to be active.
Difficulties due to partial dissipation:

- It is only possible to obtain dissipation for the solution V if all the semigroups $S_{d,i}$ are active on a same time-interval i.e. the "full" semigroup $S_d = (S_{d,1}, \cdots, S_{d,p})$ needs to be active.

- For instance, the action of $S_{d,1}$ on the first component does not, in general, imply any time-decay properties for the component v_1.
Difficulties due to partial dissipation:

- It is only possible to obtain dissipation for the solution V if all the semigroups $S_{d,i}$ are active on a same time-interval i.e. the "full" semigroup $S_d = (S_{d,1}, \cdots, S_{d,p})$ needs to be active.

- For instance, the action of $S_{d,1}$ on the first component does not, in general, imply any time-decay properties for the component v_1.

- This means that if one of the conservative semigroups $S_{c,i}$ is active on a time-interval then the whole solution does not experience any decay on this time-interval;
Difficulties due to partial dissipation:

- It is only possible to obtain dissipation for the solution V if all the semigroups $S_{d,i}$ are active on a same time-interval i.e. the "full" semigroup $S_d = (S_{d,1}, \cdots, S_{d,p})$ needs to be active.
- For instance, the action of $S_{d,1}$ on the first component does not, in general, imply any time-decay properties for the component v_1.
- This means that if one of the conservative semigroups $S_{c,i}$ is active on a time-interval then the whole solution does not experience any decay on this time-interval;
- Of course, it is possible that some components decay "on their own". But in general the whole solution does not decay.
Difficulties due to partial dissipation:

- It is only possible to obtain dissipation for the solution V if all the semigroups $S_{d,i}$ are active on a same time-interval i.e. the "full" semigroup $S_d = (S_{d,1}, \cdots, S_{d,p})$ needs to be active.

- For instance, the action of $S_{d,1}$ on the first component does not, in general, imply any time-decay properties for the component v_1.

- This means that if one of the conservative semigroups $S_{c,i}$ is active on a time-interval then the whole solution does not experience any decay on this time-interval;

- Of course, it is possible that some components decay "on their own". But in general the whole solution does not decay.

- Still, when one semigroups $S_{d,i}$ is active, the L^p norms of the solutions stay bounded thanks to the positive semidefiniteness of B.
Recalling that $\forall i \in [1, p]$

$$v_i(x, t) = S_{d, i}(t)S_{c, i}(t_1)S_{d, i}(t_2)v_{i, 0}(x).$$
Recalling that $\forall i \in [1, p]$

$$v_i(x, t) = S_{d,i}(t)S_{c,i}(t_1)S_{d,i}(t_2)v_{i,0}(x).$$

With the previous considerations one ends up studying:

$$\mathcal{I}(x, t) = \bigcup_{i=1}^{p}[t_{1,i}(x, t), t_{2,i}(x, t)]$$

which corresponds to the union of time-interval where the dissipation is not active. $\rightarrow |\mathcal{I}|$ quantifies the delay.
Recalling that \(\forall i \in [1, p] \)

\[v_i(x, t) = S_{d,i}(t)S_{c,i}(t_1)S_{d,i}(t_2)v_{i,0}(x). \]

With the previous considerations one ends up studying:

\[\mathcal{I}(x, t) = \bigcup_{i=1}^{p} [t_{1,i}(x, t), t_{2,i}(x, t)] \] (7)

which corresponds to the union of time-interval where the dissipation is not active. \(\rightarrow |\mathcal{I}| \) quantifies the delay.

And, essentially, our theorem derives from

\[\sup_{x \geq R, t > 0} |\mathcal{I}(x, t)| \leq \sum_{i=1}^{p} \frac{2R}{|\lambda_i|} = \bar{T}. \] (8)
Recalling that $\forall i \in [1, p]$

$$v_i(x, t) = S_{d,i}(t)S_{c,i}(t_1)S_{d,i}(t_2)v_{i,0}(x).$$

With the previous considerations one ends up studying:

$$\mathcal{I}(x, t) = \bigcup_{i=1}^{p} [t_{1,i}(x, t), t_{2,i}(x, t)]$$

(7)

which corresponds to the union of time-interval where the dissipation is not active. $\rightarrow |\mathcal{I}|$ quantifies the delay.

And, essentially, our theorem derives from

$$\sup_{x \geq R, t > 0} |\mathcal{I}(x, t)| \leq \sum_{i=1}^{p} \frac{2R}{|\lambda_i|} = \bar{\tau}.$$

(8)

And computations of the following type:

$$\|v_1(., t)\|_{L^2(\mathbb{R})} = \|S_{d,1}(t)S_{c,1}(t_1)S_{d,1}(t_2)v_{1,0}\|_{L^2(\mathbb{R})}$$

$$\leq e^{-c(t-t_1)}\|S_{c,1}(t_1)S_{d,1}(t_2)v_{1,0}\|_{L^2}$$

$$\leq e^{-c(t-t_1)}\|S_{d,1}(t_2)v_{1,0}\|_{L^2}$$

$$\leq e^{-c(t-t_1)}e^{-c(t_2-0)}\|v_{1,0}\|_{L^2}$$

$$\leq e^{-c(t-(t_1-t_2))}\|v_{1,0}\|_{L^2}$$
Optimality for shorter times

The decay estimates we obtain are optimal for times t large enough but they are not totally sharp for small times. The length of $\bar{\tau}$ can be smaller than $\bar{\tau}$.

Indeed the characteristics may overlap in the undamped region for short time and therefore "reduce the delay".

The result from our theorem is optimal for times $t \leq \bar{\tau}$ if $| \lambda_i | = | \lambda_i + 1 | = | \lambda_i + 2 | \quad \forall i \in [1, p-2]$ or $\forall i \in [p+1, n-2]$, (9)
Optimality for shorter times

- The decay estimates we obtain are optimal for times t large enough but they are not totally sharp for small times. The length of I can be smaller than $\bar{\tau}$.
Optimality for shorter times

- The decay estimates we obtain are optimal for times t large enough but they are not totally sharp for small times. The length of I can be smaller than $\bar{\tau}$.
- Indeed the characteristics may overlap in the undamped region for short time and therefore "reduce the delay".
Optimality for shorter times

- The decay estimates we obtain are optimal for times t large enough but they are not totally sharp for small times. The length of \mathcal{I} can be smaller than $\bar{\tau}$.
- Indeed, the characteristics may overlap in the undamped region for short time and therefore ”reduce the delay”.
- The result from our theorem is optimal for times $t \leq \bar{\tau}$ if

\[
\frac{|\lambda_i|}{|\lambda_{i+1}|} = \frac{|\lambda_{i+1}|}{|\lambda_{i+2}|} \quad \forall i \in [1, p-2] \text{ or } \forall i \in [p+1, n-2],
\]

(9)
What happens when this proportionality condition is not satisfied is nontrivial and depend on the length of the finite union of finite intervals $|\mathcal{I}|$.
What happens when this proportionality condition is not satisfied is nontrivial and depend on the length of the finite union of finite intervals $|\mathcal{I}|$.

We are able to provide a precise result in the case of three negative eigenvalues.
Asymptotic for 3 components with negative eigenvalues

Figure: The magenta curve is the exact upper bound of the energy.