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Introduction

We look at n-component linear hyperbolic systems of the form:

∂V

∂t
+

d∑
j=1

Aj ∂V

∂xj
= −LV

ε
.

Such that:

the matrices Aj are symmetric → Hyperbolicity of the system

L =

(
0 0
0 D

)
with D > 0 → Partial dissipation

These systems models physical phenomena with finite speed of propagation or
equilibrium laws, such as the compressible Euler equation with damping: ∂tρ+ div(ρu) = 0,

∂tu + u · ∇u +∇P(ρ) +
u

ε
= 0.

(1)

We are interested in the following questions:

Limit as ε → 0?

Behavior as t → ∞?
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Global existence of solutions

Q: Since the dissipation is only present in some equations of the system, how
can one ensure the global existence of solutions?

As a toy-model, let us look at the damped p-system{
∂tu + ∂xv = 0,

∂tv + ∂xu + v = 0.
(2)

For this simple system, performing standard energy estimates leads to:

d

dt
∥(u, v)∥+ ∥v∥2L2 ≤ 0 → no time-decay information on u.

Idea: consider the following perturbed functional

L2 = ∥(u, v , ∂xu, ∂xv)∥2L2 +
∫
R
v∂xu,

which allows to recover dissipation properties on all the components.

Indeed, after basic computations, we obtain

d

dt
L2 + ∥v∥2L2 + ∥(∂xu, ∂xv)∥2L2 ≤ 0.

And since L2 ∼ ∥(u, v , ∂xu, ∂xv)∥2L2 , we can obtain time-decay estimates.
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For the general system, the idea is the same if one assume the (SK) condition:

Definition

∀ξ ∈ Rd , ker L ∩ {eigenvectors of
∑
j

Ajξj} = {0}. (SK)

Such condition is actually equivalent the Kalman rank condition and inspired
by hypercoercivity theory, Beauchard and Zuazua defined

L2 ≜ ∥V ∥2L2 +
∫
Rd

min(ρ, ρ−1)I where I ≜ ℑ
n−1∑
k=1

εk
(
LAk−1

ω V̂ · LAk
ωV̂
)

as a Lyapunov function to recover the decay estimates.
Again, we obtain

d

dt
L+ κmin(1, |ξ|2)L ≤ 0
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With this estimates at hand, one deduces the global existence of small Hs

solutions and

∥V h(t)∥L2(Rd ,Rn) ≤ Ce−λt∥V0∥L2(Rd ,Rn),

∥V ℓ(t)∥L∞(Rd ,Rn) ≤ Ct−
d
2 ∥V0∥L1(Rd ,Rn) (3)

where V h and V ℓ correspond, respectively, to the high and low frequencies
of the solution.

Moreover, this technique also allow to treat situation when the (SK)
condition is not satisfied.

However, these decay estimates do not depict the full story in the low
frequencies regime and do not allow to consider the limit as ε → 0.
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”New” observations

Back to the damped p-system: ∂tu + ∂xv = 0,

∂tv + ∂xu +
v

ε
= 0.

(4)

A spectral analysis of the matrix(
0 iξ

iξ
1

ε

)

shows that:

In low frequencies (|ξ| ≪ ε−1), there are two real eigenvalues
1

ε
and εξ2.

In high frequencies ( |ξ| ≫ ε−1), two complex conjugate eigenvalues

coexist, whose real parts are asymptotically equal to
1

2ε
.

the threshold between low and high frequencies is at
1

ε
.
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Insights from the spectral analysis

There exists a damped mode in the low frequencies regime associated to

the eigenvalue
1

ε
→ uniform estimates.

As the eigenvalues are real in low-frequency, we expect to be able to work
in Lp instead of L2 in this regime.
The asymptotic behaviour of the solution when ε → 0 is not so intuitive.

Naively, we expect that as the damping coefficient becomes larger the
dissipation becomes more dominant.
However, the so-called overdamping effect occurs: the decay rate behaves
like (ε, 1/ε).

This is related to the fact that as ε → 0, the low frequencies ”invade” the
whole space of frequency.
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Low frequencies in a simple case

Our idea: reproduce exactly what the spectral analysis tells us using:

∥f ∥hḂs
2,1

≜
∑
j≥ 1

ε

2js∥∆̇j f ∥L2 and ∥f ∥ℓḂs′
p,1

≜
∑
j≤ 1

ε

2js
′
∥∆̇j f ∥Lp .

Back (again) to the damped p-system:∂tu + ∂xv = 0

∂tv + ∂xu +
v

ε
= 0,

Defining the damped mode w = v + ε∂xu, the system can be rewritten∂tu − ε∂2
xxu = −∂xw

∂tw +
w

ε
= −ε∂2

xxv .

→ We directly get the behaviour observed in the spectral analysis, not just
heat effect.
→ It is possible to study the two equations in a decoupled way as the source
terms can be absorbed in the low-frequency regime:

∥∂x f ∥ℓBs
p,1

≤ ∥f ∥ℓBs
p,1
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To Sum-up

The hypocoercivity approach does not give the full story of the
low-frequency behavior.

From the low-frequency analysis presented here and the high frequencies
computation à la Beauchard et Zuazua, we are able to get a uniform
global existence result.

And from these uniform estimates we can justify, almost directly, the
relaxation limit when ε → 0 in the ill-prepared case.
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computation à la Beauchard et Zuazua, we are able to get a uniform
global existence result.

And from these uniform estimates we can justify, almost directly, the
relaxation limit when ε → 0 in the ill-prepared case.

Crin-Barat Timothée Partially and locally dissipated hyperbolic systems



Partially dissipative systems
General presentation
Damping active outside of a ball

Relaxation result

Theorem (Danchin, C-B ’21- ill-prepared relaxation limit)

Let d ≥ 1, p ∈ [2, 4] and ε > 0. Let ρ̄ be a strictly positive constant and
(ρ− ρ̄, v) be the solution obtained with the previous theorem.

Let the positive function N0 such that N0 − ρ̄ is small enough in Ḃ
d
p

p,1, and let

N ∈ Cb(R+; Ḃ
d
p

p,1) ∩ L1(R+; Ḃ
d
p
+2

p,1 ) be the unique solution associated to the
Cauchy problem: {

∂tN −∆P(N ) = 0
N (0, x) = N0

If we assume that
∥ρ̃ε0 −N0∥

B
d
p
−1

p,1

≤ Cε,

then

∥ρ̃ε −N∥
L∞(R+;Ḃ

d
p
−1

p,1 )

+ ∥ρ̃ε −N∥
L1(R+;Ḃ

d
p
+1

p,1 )

+

∥∥∥∥∇P(ρ̃ε)

ρ̃ε
+ ṽε

∥∥∥∥
L1(R+;Ḃ

d
p
p,1)

≤ Cε.
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Localized damping
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Damping active outside of a ball

We consider the one-dimensional linear hyperbolic system{
∂tU + A∂xU = −BU1ω, (t, x) ∈ (0,∞)× R,
U(0, x) = U0(x), x ∈ R,

where U = (u1, u2) ∈ Rn1 × Rn2 and

ω := R \ BR(0) = {x ∈ R : ∥x∥ ≥ R} for a fixed R > 0.

We assume :

B =

(
0 0
0 D

)
with D > 0

The matrix A is a strictly hyperbolic matrix, i.e. A has n real distinct
eigenvalues

λ1 < λp < 0 < λp+1 < λn.

The couple (A,B) satisfies the (SK) condition.

In other words: we are in the same situation as before but the damping is
only effective in ω (the complementary of a ball).
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Objective: Quantify the decay as in the classical case.

Difficulties:

The approach depicted previously is bound to fail as it relies on the Fourier
transform.

Defining a perturbed functional is not enough to solve this problem, as it
is known for the damped wave equations.

Idea:

The characteristic lines of the system spend only a finite time in the
undamped region.

When a characteristic is outside the undamped region, the solution decays
as in the classical analysis.

→ This motivates us to develop a method involving only the consideration of
the characteristics curves and a semigroup-wise decomposition.
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Propagation of characteristics and their location with respect to the region
ω = R \ BR where the damping is active.

x

t

ω ωωc

−R R

(a) Case 1: The initial support is in the
damped region and the characteristics are
going away from the un-damped region.

x

t

ω ωωc

−R R

(b) Case 2: The initial support is in
the damped region and the characteris-
tics cross the un-damped region

x

t

ω ωωc

−R R

τ2

(c) Case 3: The initial support is in the
un-damped region

x

t

ω ωωc

−R R

(d) Case 4: There is one zero eigenvalue.
→ Standing wave
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Reformulation of the system

As A is symmetric with n real distinct eigenvalues, there exists a matrix
P ∈ O(n,R) such that

P−1AP = Λ where Λ = diag(λ1, ..., λn).

Setting V = P−1U, the system can be reformulated into{
∂tV + Λ∂xV = P−1BPV1ω(x), (t, x) ∈ (0,∞)× R,
V (0, x) = V0(x), x ∈ R,

(5)

Decomposing V = (v1, . . . , vn), (5) is equivalent to the following system of
coupled transport equations:

∂tv1 + λ1∂xv1 =
∑n

j=1 b1,jvj 1ω(x)
...

∂tvn + λn∂xvn =
∑n

j=1 bn,jvj 1ω(x)

For all 1 ≤ i ≤ n, the characteristic lines Xi of each equations passing through
the point (x0, t0) ∈ R× [0,T ] are given by

Xi (t, x0, t0) := λi (t − t0) + x0, t ∈ [0,T ].
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Figure: Characteristics passing through a point (x , t) ∈ R× R+.
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Few facts

The choice of ω as an exterior domain is motivated by a geometric control
condition: the ray of geometric optics may escape the damping effect if
the inclusion {∥x∥ ≥ r} ⊂ ω is not satisfied for some r > 0.

Indeed, once a characteristic has crossed and exited the undamped region
ωc it will never cross it again. The time spent by each characteristics τi in
ωc satisfies:

τi ≤
2R

λi
.

1st Principle: as we have only a finite number of components, the total
time spend by all the characteristics in the undamped region is finite.

Since our system has a partially dissipative nature, the dissipation of each
variable arises from the coupling between each equations.

→ 2nd principle: Whenever one of the characteristic is in the undamped
region, then the solution does not, in general, undergo any decay.

These considerations led us to the following Theorem.
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Main Theorem

Theorem (De Nitti-Zuazua-CB ’22)

Assume that the matrix A is symmetric, strictly hyperbolic and does not admit
the eigenvalue 0 and that the couple (A,B) satisfies the (SK) condition.
Let U0 ∈ L1(R) ∩ L2(R).
Then, there exists a constant C > 0 and a finite time τ̄ > 0 such that for
t ≥ τ̄ , the solution satisfies

∥Uh(·, t)∥L2(R) ≤ Ce−γ(t−τ̄)∥U0∥L2(R),

∥Uℓ(·, t)∥L∞(R) ≤ C(t − τ̄)−1/2∥U0∥L1(R)

where

τ̄ = max

(
p∑

i=1

2R

|λi |
,

n∑
i=p+1

2R

|λi |

)
.

The decay estimates are delayed by the time each characteristic spend in the
undamped region
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Idea of proof

1 We define Sd the dissipative semigroup associated to the equation without
localization. This semigroup is active when all the characteristics are
outside the undamped region. Recall that we have

∥W h(·, t)∥L2(Rd ) ≤ ∥Sh
d (t, 0)W

h
0 ∥L2(Rd ) ≤ Ce−γt∥W h

0 ∥L2(Rd ),

∥W ℓ(·, t)∥L∞(Rd ) ≤ ∥Sℓ
d (t, 0)W

ℓ
0 ∥L∞(Rd ) ≤ Ct−d/2∥W ℓ

0 ∥L1(Rd ),

2 We define Sc the conservative semigroup associated to the equation
without dissipation at all. Essentially, this semigroup will be active
whenever one of the characteristic is inside the undamped region. We have

∥Z(t, ·)∥Lp(R) = ∥Sc(t, 0)Z0∥Lp(R) = ∥Z0∥Lp(R).

Then, for every (x , t) ∈ R2, we can always find suitable times t1, t2 such that
each components of the solution can be rewritten:

vi (x , t) = Sd,i (t)Sc,i (t1)Sd,i (t2)vi,0(x). (6)

where Sd,i and Sc,i are the semigroup associated to each components.
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Figure: Illustration on the semigroups and the quantities t1 and t2.

Difficulty: The time-quantities t1 and t2 depend on the point (x , t).

But the difference t1 − t2 is always uniformly bounded!
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Other remarks/difficulties

Difficulties due to partial dissipation:

It is only possible to obtain dissipation for the solution V if all the
semigroups Sd,i are active on a same time-interval i.e. the ”full”
semigroup Sd = (Sd,1, · · · , Sd,p) needs to be active.

For instance, the action of Sd,1 on the first component does not, in
general, imply any time-decay properties for the component v1.

This means that if one of the conservative semigroups Sc,i is active on a
time-interval then the whole solution does not experience any decay on
this time-interval;

Of course, it is possible that some components decay ”on their own”. But
in general the whole solution does not decay.

Still, when one semigroups Sd,i is active, the Lp norms of the solutions
stay bounded thanks to the positive semidefiniteness of B.
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Recalling that ∀i ∈ [1, p]

vi (x , t) = Sd,i (t)Sc,i (t1)Sd,i (t2)vi,0(x).

With the previous considerations one ends up studying:

I(x , t) =
p⋃

i=1

[t1,i (x , t), t2,i (x , t)] (7)

which corresponds to the union of time-interval where the dissipation is not
active. → |I| quantifies the delay.
And, essentially, our theorem derives from

sup
x≥R,t>0

|I(x , t)| ≤
p∑

i=1

2R

|λi |
= τ̄ . (8)

And computations of the following type:

∥v1(., t)∥L2(R) = ∥Sd,1(t)Sc,1(t1)Sd,1(t2)v1,0∥L2(R)
≤ e−c(t−t1)∥Sc,1(t1)Sd,1(t2)v1,0∥L2

≤ e−c(t−t1)∥Sd,1(t2)v1,0∥L2

≤ e−c(t−t1)e−c(t2−0)∥v1,0∥L2

≤ e−c(t−(t1−t2))∥v1,0∥L2
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Optimality for shorter times

The decay estimates we obtain are optimal for times t large enough but
they are not totally sharp for small times. The length of I can be smaller
than τ̄ .
Indeed the characteristics may overlap in the undamped region for short
time and therefore ”reduce the delay”.
The result from our theorem is optimal for times t ≤ τ̄ if

|λi |
|λi+1|

=
|λi+1|
|λi+2|

∀i ∈ [1, p − 2] or ∀i ∈ [p + 1, n − 2]), (9)

x

t

ω ωc ω

−R R

(x , t)

texit = tenter
. . .
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What happens when this proportionality condition is not satisfied is
nontrivial and depend on the length of the finite union of finite intervals
|I|.

We are able to provide a precise result in the case of three negative
eigenvalues.
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Asymptotic for 3 components with negative eigenvalues

τ∗ τ̄ t1 t

∥V ∥L2(R)

Figure: The magenta curve is the exact upper bound of the energy.
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