The fractional Brezis–Nirenberg problem in low dimensions

(joint work with Nicola De Nitti, arXiv:2111.13417, submitted)

Miniworkshop FAU Erlangen

Tobias König

Institut de mathématiques de Jussieu - Paris Rive Gauche

May 25, 2022

The Brezis-Nirenberg problem

For $N \geq 3$, $\Omega \subset \mathbb{R}^N$ open bounded, $a \in C(\overline{\Omega})$ [Brezis–Nirenberg 1983] consider

$$\begin{aligned} -\Delta u + au &= N(N-2)u^{\frac{N+2}{N-2}} & \text{ in } \Omega, \\ u &> 0 & \text{ in } \Omega, \\ u &= 0 & \text{ on } \partial\Omega. \end{aligned} \tag{1}$$

[BN] observe: When $a \equiv 0$ and Ω is strictly starshaped, (1) has no solution.

Proof.

By **Pohozaev's identity** (integrate (1) against $\nabla u(x) \cdot x$), when $a \equiv 0$

$$-\int_{\partial\Omega} \left|\frac{\partial u}{\partial\nu}\right|^2 \nu(x) \cdot x \,\mathrm{d}x = \frac{N-2}{2} \int_{\Omega} |\nabla u|^2 - \frac{N(N-2)^2}{2} \int_{\Omega} u^{\frac{2N}{N-2}} = 0,$$

because $N(N-2)\int_{\Omega} u^{\frac{2N}{N-2}} = \int_{\Omega} |\nabla u|^2$ (integrate (1) against u). If Ω is strictly starshaped wrt 0, this implies $\frac{\partial u}{\partial \nu} \equiv 0$ on $\partial \Omega$. Hence $\int_{\Omega} u^{\frac{N+2}{N-2}} = \int_{\Omega} -\Delta u = -\int_{\partial \Omega} \frac{\partial u}{\partial \nu} = 0$. But this is a contradiction to u > 0.

So [BN] ask: Under what conditions on a does (1) have a solution?

Existence of solutions in high and low dimensions

Solutions are given by positive minimizers to the variational problem

$$S(a) := \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \mathcal{S}_a[u], \qquad \mathcal{S}_a[u] := \frac{\int_{\Omega} (|\nabla u|^2 + au^2) \, dx}{(\int_{\Omega} |u|^{\frac{2N}{N-2}} \, dx)^{\frac{N-2}{N}}}$$
(2)

Theorem ([Brezis-Nirenberg 1983])

If S(a) < S(0), then a minimizer exists (due to E. H. Lieb).

- Let $N \ge 4$. Then $S(a) < S(0) \iff \{a < 0\} \neq \emptyset$.
- Let N = 3. Then S(a) = S(0) whenever $||a||_{\infty}$ is small enough !

Where does the different behavior in low dimension N = 3 come from ?

Let
$$U_{x,\lambda}(y) = \left(\frac{\lambda}{1+\lambda^2|x-y|^2}\right)^{\frac{N-2}{2}}$$
 with $x \in \mathbb{R}^N$ and $\lambda > 0$. We notice
 $\|\nabla U_{x,\lambda}\|_{L^2(\mathbb{R}^N)}^2 = S(0) \|U_{x,\lambda}\|_{L^{\frac{2N}{N-2}}(\mathbb{R}^N)}^2$ and $-\Delta U_{x,\lambda} = N(N-2)U_{x,\lambda}^{\frac{N+2}{N-2}}$

Idea: Fix $x \in \Omega$ and $\varphi \in C_0^{\infty}(\Omega)$. Then test S_a with $\varphi U_{x,\lambda} \in H_0^1(\Omega)$ and let $\lambda \to \infty$!

The Brezis-Nirenberg dimensional effect

High dimension: If $N \ge 4$, [BN] compute that, as $\lambda \to \infty$, $\|\nabla(\varphi U_{x,\lambda})\|_2^2 = K_1 + \mathcal{O}(\lambda^{-N+2}),$ $\|\varphi U_{x,\lambda}\|_{\frac{2N}{N-2}}^2 = K_2 + \mathcal{O}(\lambda^{-N}),$ $\int_{\Omega} a(\varphi U_{x,\lambda})^2 = K_3 a(x) \lambda^{-2} + \mathcal{O}(\lambda^{-N+2})$ $(K_3 a(x) \lambda^{-2} \log \lambda \text{ if } N = 4).$

 $\implies \mathcal{S}_a[\varphi U_{x,\lambda}] = S(0) + a(x)\lambda^{-2} + \mathcal{O}(\lambda^{-N+2}) < S(0) \text{ as soon as } a(x) < 0 !$

Low dimension: Let N = 3, $\Omega = B$ and a, φ radial. Then, as $\lambda \to \infty$, $\|\nabla(\varphi U_{x,\lambda})\|_2^2 = K_1 + \lambda^{-1} |\mathbb{S}^2| \int_0^1 |\varphi'(r)|^2 \, \mathrm{d}r + \mathcal{O}(\lambda^{-2}),$ $\|\varphi U_{x,\lambda}\|_6^2 = K_2 + \mathcal{O}(\lambda^{-2}),$ $\int_\Omega a(\varphi U_{x,\lambda})^2 = \lambda^{-1} |\mathbb{S}^2| \int_0^1 a(r) |\varphi(r)|^2 \, \mathrm{d}r + \mathcal{O}(\lambda^{-2}).$

and hence

$$\mathcal{S}_{a}[\varphi U_{x,\lambda}] = S(0) + |\mathbb{S}^{2}| K_{2}^{-1} \left(\int_{0}^{1} |\varphi'(r)|^{2} \,\mathrm{d}r + \int_{0}^{1} a(r) |\varphi(r)|^{2} \,\mathrm{d}r \right) \lambda^{-1} + \mathcal{O}(\lambda^{-2}).$$

Competing lower-order terms!

Critical functions and their Green's function

Question [Brezis 1986]: Is S(a) < S(0) also necessary for S(a) to be achieved?

Theorem ([Druet 2002])

Let N = 3. Then S(a) is achieved $\Leftrightarrow S(a) < S(0) \Leftrightarrow \{\phi_a < 0\} \neq \emptyset$. As a consequence, a is critical if and only if $\min_{\Omega} \phi_a = 0$.

Here, we define the Robin function

$$\phi_a(x) = H_a(x, x),$$
 where $G_a(x, y) = \frac{1}{|x - y|^{N-2}} - H_a(x, y)$

is the Green's function of $-\Delta + a$.

Following [Hebey–Vaugon 2001], we call a function $a \in C(\overline{\Omega})$ critical if S(a) = S(0) and $S(\tilde{a}) < S(a)$ for all $\tilde{a} \le a$ with $\tilde{a} \ne a$.

Corollary

- If $N \ge 4$, the only critical function is $a \equiv 0$.
- If N = 3, a is critical if and only if $\min_{\Omega} \phi_a = 0$. In particular, there are critical functions of all shapes.

Concentration of solutions

Let a be critical and let $(u_{\epsilon}) \subset H_0^1(\Omega)$ be a sequence of positive solutions to $-\Delta u_{\epsilon} + (a + \epsilon V)u_{\epsilon} = N(N-2)u_{\epsilon}^{\frac{N+2}{N-2}}$ on Ω , $u_{\epsilon} = 0$ on $\partial\Omega$. (3)

which blows up at a single point. To leading order, $u_{\epsilon} \sim U_{x_{\epsilon},\lambda_{\epsilon}}$ with $x_{\epsilon} \to x_0 \in \overline{\Omega}$ and $\lambda_{\epsilon} \to \infty$.

In these terms, x_0 is the concentration point and λ_{ϵ} is the concentration speed. Notice that $\|u_{\epsilon}\|_{\infty} \sim \lambda_{\epsilon}^{\frac{N-2}{2}}$.

Theorem

- If $N \ge 4$ (hence $a \equiv 0$), $V \equiv -1$, then $\nabla \phi_0(x_0) = 0$. Moreover, $\lim_{\epsilon \to 0} \epsilon ||u_{\epsilon}||_{\infty}^{2\frac{N-4}{N-2}} = d_N \phi_0(x_0)$. [Han 1991, Rey 1989]
- If N = 3, then $\phi_a(x_0) = 0$. If x_0 is non-degenerate as a minimum of ϕ_a , with $a(x_0) < 0$, then $\lim_{\epsilon \to 0} \epsilon ||u_{\epsilon}||_{\infty}^2 = 4\pi^2 \frac{|a(x_0)|}{|\int_{\Omega} V(y) G_a^2(x_0, y) \, dy|}$. [Frank, K., Kovarik CVPDE + arXiv 2021]

Concentration asymptotics - Proof ideas

Key idea: Refine the [BN] test function choice $\varphi U_{x,\lambda}$ and expand energy quantities to sufficient precision!

We optimize the H_0^1 cutoff procedure: Let $PU_{x,\lambda}$ be the unique function s.t.

$$-\Delta P U_{x,\lambda} = -\Delta U_{x,\lambda} \text{ in } \Omega, \qquad P U_{x,\lambda} = 0 \text{ on } \partial \Omega.$$

High dimensions: [Rey 1989]

Let $N \geq 4$ and $V \equiv -1$. As $\epsilon \to 0$, write $u_{\epsilon} = PU_{x_{\epsilon},\lambda_{\epsilon}} + w_{\epsilon}$ with $\|\nabla w_{\epsilon}\|_{2} = o(1)$ and $w \perp \{PU_{x,\lambda}, \partial_{\lambda}PU_{x,\lambda}, \partial_{x_{i}}PU_{x,\lambda}\}$. Expand Pohozaev

$$\epsilon \int_{\Omega} u_{\epsilon}^2 = \int_{\partial \Omega} (x - x_0) \cdot \nu(x) \left| \frac{\partial u_{\epsilon}}{\partial \nu} \right|^2$$

using the <u>quantitative</u> bound $||w_{\epsilon}||_{2} = O(\lambda_{\epsilon}^{-\frac{N+2}{2}})$, we get

$$a_N \epsilon \lambda_{\epsilon}^2 + o(\epsilon \lambda_{\epsilon}^2) = b_N \phi_0(x_0) \lambda_{\epsilon}^{-N+2} + o(\lambda_{\epsilon}^{-N+2}).$$

Low dimension: [Frank, K., Kovarik 2021]

When N = 3, terms in energy expansion are again arranged differently. To expand to the desired precision, we need the refined development

$$u_{\epsilon} = PU_{x_{\epsilon},\lambda_{\epsilon}} + \lambda_{\epsilon}^{-1/2} (H_0(x_{\epsilon},\cdot) - H_a(x_{\epsilon},\cdot)) + q_{\epsilon}, \qquad \|\nabla q_{\epsilon}\|_2^2 = \lambda_{\epsilon}^{-1} + \epsilon \lambda^{-1/2}.$$

Going fractional

The appropriate generalization of the BN problem to fractional orders of derivatives 2s < N with $s \in (0,1)$ is

$$\begin{split} (-\Delta)^s u + (a + \epsilon V) u &= c_{N,s} u^{\frac{N+2s}{N-2s}} & \text{ in } \Omega, \\ u &> 0 & \text{ in } \Omega, \\ u &= 0 & \text{ on } \mathbb{R}^N \setminus \Omega. \end{split}$$

with the fractional Laplacian $(-\Delta)^s$ given as

$$(-\Delta)^{s} u = \mathcal{F}^{-1}(|\xi|^{2s}\mathcal{F}u) = C_{N,s}P.V.\int_{\mathbb{R}^{N}} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \,\mathrm{d}y.$$

The variational problem associated to (4) is

$$S_{N,s}(a) := \inf \frac{\int_{\mathbb{R}^N} |(-\Delta)^{s/2} u|^2 + \int_{\Omega} a u^2}{\left(\int_{\Omega} u^{\frac{2N}{N-2s}}\right)^{\frac{N-2s}{N}}}$$

where the inf is taken over $\widetilde{H}^s(\Omega):=\big\{u\in H^s(\mathbb{R}^N)\,:\,u\equiv 0\quad \text{ on } \mathbb{R}^N\setminus\Omega\big\}.$

The notions of Green's function $G_a(x, y) = \frac{1}{|x-y|^{N-2s}} - H_a(x, y)$, and critical function a carry over without problem.

Tobias König (IMJ-PRG)

(4)

Some known results for the fractional BN problem

The analysis of the fractional BN problem with $s \in (0,1)$ presents some additional difficulties which mostly stem from the fact that the operator $(-\Delta)^s$ is **non-local**. **Still:** $U_{x,\lambda}(y) = \left(\frac{\lambda}{1+\lambda^2|x-y|^2}\right)^{\frac{N-2s}{2}}$ satisfies $(-\Delta)^s U_{x,\lambda} = c_{N,s} U_{x,\lambda}^{\frac{N+2s}{N-2s}}$.

Theorem (Servadei–Valdinoci 2013, 2015)

• If $N \ge 4s$, then $S_{N,s}(a) < S_{N,s}$ whenever a(x) < 0 for some $x \in \Omega$.

• If
$$2s < N < 4s$$
, then $S_{N,s}(a) < S_{N,s}$ if $a(x) < -\mu_s < 0$.

(Compare [Brezis-Nirenberg 1983].)

Theorem (Choi–Kim–Lee 2014)

If N > 4s, and solutions u_{ϵ} to (4) with $a \equiv 0$, V = -1 blow up at exactly one point $x_0 \in \Omega$, then $\lim_{\epsilon \to 0} \epsilon ||u_{\epsilon}||_{\infty}^{2\frac{n-4s}{n-2s}} = \delta_{N,s}\phi_0(x_0)$. (Compare [Han 1991, Rey 1989].)

 \implies What about low dimensions 2s < N < 4s ??

Main results

Theorem 1 (De Nitti, K., 2021) Let $s \in (0, 1)$ and 2s < N < 4s and let $a \in C(\overline{\Omega})$. Then (i) $S_{N,s}(a)$ is achieved \Leftrightarrow (ii) $S_{N,s}(a) < S_{N,s} \Leftrightarrow$ (iii) $\{\phi_a < 0\} \neq \emptyset$. As a consequence, a is critical if and only if $\min_{\Omega} \phi_a = 0$.

is a consequence, u is critical if and only if $\min_{\Omega} \varphi_a = 0$

- This is the fractional version of [Druet 2002].
- $(i) \leftarrow (ii)$ follows similarly to [BN]. $(ii) \leftarrow (iii)$ follows from

$$\mathcal{S}_a[\psi_{x,\lambda}] = S(0) + c\phi_a(x)\lambda^{-N+2s} + o(\lambda^{-N+2s})$$
(5)

as
$$\lambda \to \infty$$
, where $\psi_{x,\lambda} = PU_{x,\lambda} + \lambda^{-\frac{N-2s}{2}} (H_0(x,\cdot) - H_a(x,\cdot)).$

The forward implications are the hard part. E.g. (*iii*) ⇒ (*ii*) requires to show: For a critical and u_ε minimizers of S(a − ε), one has

$$S(0) > S(a - \epsilon) = S(0) + c(\phi_a(x_{\epsilon}) + o(1))\lambda^{-N+2s}$$

Thus $\phi_{a-\epsilon}(x_0) < \phi_a(x_0) \le 0$ and (iii) follows.

Main results

Write
$$Q_V(x) := \int_{\Omega} V(y) G_a(x, y)^2 dy$$
.

Theorem 2 (De Nitti, K., 2021)

Let $s \in (0,1)$ and $\frac{8}{3}s < N < 4s$ and let $a \in C(\overline{\Omega})$ be critical. Suppose that $(u_{\epsilon}) \subset \widetilde{H}^{s}(\Omega)$ is a sequence of energy-minimizing solutions to (4). Then the u_{ϵ} blow up in exactly one point $x_{0} \in \Omega$ satisfying $\phi_{a}(x_{0}) = 0$. Moreover,

$$u_{\epsilon} = PU_{x_{\epsilon},\lambda_{\epsilon}} + \lambda_{\epsilon}^{-\frac{N-2s}{2}} (H_0(x_{\epsilon},\cdot) - H_a(x_{\epsilon},\cdot)) + q_{\epsilon}$$

with $\|((-\Delta)^{s/2})q_{\epsilon}\|_{2}^{2} = o(\lambda_{\epsilon}^{-2s} + \lambda_{\epsilon}^{-2N+4s})$ and $x_{\epsilon} \to x_{0}$ and

$$\lim_{\epsilon \to 0} \epsilon \lambda_{\epsilon}^{4s-N} = d_{N,s} \frac{|a(x_0)|}{|Q_V(x_0)|}.$$
(6)

The point
$$x_0$$
 maximizes $\frac{|Q_V(x_0)|^{\frac{2s}{4s-N}}}{|a(x_0)|^{\frac{N-2s}{4s-N}}}$ among all x with $\phi_a(x) = 0$ and $V(x) < 0$.

This is the fractional version of [Frank, K., Kovarik CVPDE 2021]

Some comments

- Our proof strategy (for both Theorems 1 and 2) is **variational**. In particular Theorem 2 also holds for <u>almost-minimizers</u> u_{ϵ} of $S_{N,s}(a + \epsilon V)$, which need not satisfy any PDE.
- If we knew that $\|q_{\epsilon}\|_{\infty} = o(\lambda_{\epsilon}^{\frac{N-2s}{2}})$, Theorem 2 would yield the value of $\lim_{\epsilon \to 0} \epsilon \|u_{\epsilon}\|_{\infty}^{2\frac{4s-N}{N-2s}}$.
- For s = 1, the recent preprint [Frank, K., Kovarik arXiv 2021] removes the energy-minimizing assumption, thus proving a conjecture from [Brezis–Peletier 1989]. The analogous question for s ∈ (0, 1) is open.
- For N > 4s we prove (work in preparation)

$$\lim_{\epsilon \to 0} \epsilon \lambda_{\epsilon}^{N-4s} = d_{N,s} \frac{\phi_0(x_0)}{|V(x_0)|}.$$

and x_0 achieves $\max_{\{x: V(x) < 0\}} \phi_0(x)^{-\frac{2s}{N-4s}} |V(x)|^{\frac{N-2s}{N-4s}}$

• If N<4s, the 'renormalized energy' $|Q_V(x)|^{\frac{2s}{4s-N}}|a(x)|^{-\frac{N-2s}{4s-N}}$ is non-local in V !

The proof for fractional $s \in (0, 1)$

Basic results:

- Concentration compactness [Palatucci-Pisante 2015] (Compare [Struwe 1984].)
- $PU_{x,\lambda}$ and orthogonality conditions [Abdelhedi–Chtioui–Hajajiej 2017] (Compare [Bahri–Coron 1988].)

Thus we can write $u_{\epsilon} = \alpha_{\epsilon}(PU_{x_{\epsilon},\lambda_{\epsilon}} + w_{\epsilon})$ with $\alpha_{\epsilon} \to 1$, $\|(-\Delta)^{s}w_{\epsilon}\|_{L^{2}(\mathbb{R}^{N})} = o(1)$ and $w_{\epsilon} \perp \{PU_{x,\lambda}, \partial_{\lambda}PU_{x,\lambda}, \partial_{x_{i}}PU_{x,\lambda}\}$.

New ingredients:

- Precise analysis of the functions $PU_{x,\lambda}$ and $H_a(x,y)$
- Spectral coercivity inequality: For $p = \frac{2N}{N-2s}$,

$$|(-\Delta)^{s/2}w_{\epsilon}||_{2}^{2} - c_{N,s}(p-1)\int_{\Omega} U_{x_{\epsilon},\lambda_{\epsilon}}^{p-2}w_{\epsilon}^{2} \geq \frac{4s}{N+2s+2}||(-\Delta)^{s/2}w_{\epsilon}||_{2}^{2}.$$

by stereographic projection to \mathbb{S}^N . (Compare [Rey 1990, Bianchi–Egnell 1991]. For $s \in (0, 1)$, see also [Chen–Frank–Weth 2012].)

• Non-existence of a minimizer for S(a) when a critical. (Compare [Druet 2002].)

The proof for fractional $s \in (0,1)$ - cont'd

• The assumption 8s/3 < N should be technical. The phenomenon that makes it necessary to be imposed has no analogue when s = 1 and N = 3: To absorb error terms in

$$S(a + \epsilon V) = S_{N,s} + (\phi_a(x) + \epsilon \int_{\Omega} VG_a(x_{\epsilon}, \cdot))\lambda^{-N+2s} + a(x)\lambda^{-2s} + o(\lambda^{-2s}) + (\epsilon + \phi_a(x))\lambda^{-N+2s}).$$

we need
$$\lambda^{-k(N-2s)} \stackrel{!}{=} o(\lambda^{-2s})$$
 for all $k \ge 3$.

It would be very interesting to understand more precisely the impact of such 'lower-order BN dimensional effects' !

- Simplifications / differences with respect to previous works
 - Avoid the intermediate spectral cutoff argument from [Frank-K.-Kovarik CVPDE 2021].
 - Avoid the formulation of $(-\Delta)^s$ as a Dirichlet-to-Neumann problem for a degenerate-elliptic local PDE in N+1 dimension as in [Choi–Kim–Lee 2014] and others

Summary

- Brezis–Nirenberg problem: On $\Omega \subset \mathbb{R}^N$, positive solutions to
 - $(-\Delta)^s u + a u = u^{\frac{N+2s}{N-2s}}$ exist sometimes, but not always.
 - ▶ The picture is more intricate in low dimensions 2s < N < 4s !

• Main Result: In 2s < N < 4s:

- a is critical $\Leftrightarrow \min_{\Omega} \phi_a = 0.$
- ▶ Let (u_{ϵ}) almost minimizers of the perturbed critical Brezis–Nirenberg energy $S(a + \epsilon V)$ at a critical. We precisely characterize
 - * the concentration point x_0 and the concentration speed λ_ϵ in terms of the data a, V, Ω

* the blow-up profile: $u_{\epsilon} \sim PU_{x_{\epsilon},\lambda_{\epsilon}} + \lambda_{\epsilon}^{-\frac{N-2s}{2}} (H_0(x_{\epsilon},\cdot) - H_a(x_{\epsilon},\cdot)).$

- **Method of proof:** Purely variational \longrightarrow Refine iteratively the energy expansion and improve error bounds by exploiting coercivity + energy minimality.
- Perspectives:
 - ▶ Treat very low dimensions $2s < N \le \frac{8s}{3}$ by understanding better the related cancellation phenomenon.
 - Remove energy bounds: simple blow-up for non-minimizers, multibubble blow-up.

Vielen Dank für Eure Aufmerksamkeit! :-)