The fractional Brezis-Nirenberg problem in low dimensions

(joint work with Nicola De Nitti, arXiv:2111.13417, submitted)

Miniworkshop FAU Erlangen

Tobias König

Institut de mathématiques de Jussieu - Paris Rive Gauche
May 25, 2022

The Brezis-Nirenberg problem

For $N \geq 3, \Omega \subset \mathbb{R}^{N}$ open bounded, $a \in C(\bar{\Omega})$ [Brezis-Nirenberg 1983] consider

$$
\begin{array}{rrr}
-\Delta u+a u & =N(N-2) u^{\frac{N+2}{N-2}} & \\
\text { in } \Omega \tag{1}\\
u>0 & & \text { in } \Omega \\
u & =0 & \\
\text { on } \partial \Omega
\end{array}
$$

[BN] observe: When $a \equiv 0$ and Ω is strictly starshaped, (1) has no solution.

Proof.

By Pohozaev's identity (integrate (1) against $\nabla u(x) \cdot x)$, when $a \equiv 0$

$$
-\int_{\partial \Omega}\left|\frac{\partial u}{\partial \nu}\right|^{2} \nu(x) \cdot x \mathrm{~d} x=\frac{N-2}{2} \int_{\Omega}|\nabla u|^{2}-\frac{N(N-2)^{2}}{2} \int_{\Omega} u^{\frac{2 N}{N-2}}=0
$$

because $N(N-2) \int_{\Omega} u^{\frac{2 N}{N-2}}=\int_{\Omega}|\nabla u|^{2}$ (integrate (1) against u). If Ω is strictly starshaped wrt 0 , this implies $\frac{\partial u}{\partial \nu} \equiv 0$ on $\partial \Omega$. Hence $\int_{\Omega} u^{\frac{N+2}{N-2}}=\int_{\Omega}-\Delta u=-\int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0$. But this is a contradiction to $u>0$.

So [BN] ask: Under what conditions on a does (1) have a solution?

Existence of solutions in high and low dimensions

Solutions are given by positive minimizers to the variational problem

$$
\begin{equation*}
S(a):=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \mathcal{S}_{a}[u], \quad \mathcal{S}_{a}[u]:=\frac{\int_{\Omega}\left(|\nabla u|^{2}+a u^{2}\right) d x}{\left(\int_{\Omega}|u|^{\frac{2 N}{N-2}} d x\right)^{\frac{N-2}{N}}} \tag{2}
\end{equation*}
$$

Theorem ([Brezis-Nirenberg 1983])

If $S(a)<S(0)$, then a minimizer exists (due to E. H. Lieb).

- Let $N \geq 4$. Then $S(a)<S(0) \quad \Leftrightarrow \quad\{a<0\} \neq \emptyset$.
- Let $N=3$. Then $S(a)=S(0)$ whenever $\|a\|_{\infty}$ is small enough !

Where does the different behavior in low dimension $N=3$ come from ?
Let $U_{x, \lambda}(y)=\left(\frac{\lambda}{1+\lambda^{2}|x-y|^{2}}\right)^{\frac{N-2}{2}}$ with $x \in \mathbb{R}^{N}$ and $\lambda>0$. We notice

$$
\left\|\nabla U_{x, \lambda}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}=S(0)\left\|U_{x, \lambda}\right\|_{L^{\frac{2 N}{N-2}}\left(\mathbb{R}^{N}\right)}^{2} \text { and }-\Delta U_{x, \lambda}=N(N-2) U_{x, \lambda}^{\frac{N+2}{N-2}} .
$$

Idea: Fix $x \in \Omega$ and $\varphi \in C_{0}^{\infty}(\Omega)$. Then test \mathcal{S}_{a} with $\varphi U_{x, \lambda} \in H_{0}^{1}(\Omega)$ and let $\lambda \rightarrow \infty$!

The Brezis-Nirenberg dimensional effect

High dimension: If $N \geq 4$, [BN] compute that, as $\lambda \rightarrow \infty$,

$$
\begin{aligned}
\left\|\nabla\left(\varphi U_{x, \lambda}\right)\right\|_{2}^{2} & =K_{1}+\mathcal{O}\left(\lambda^{-N+2}\right), \\
\left\|\varphi U_{x, \lambda}\right\|_{\frac{2 N}{N-2}}^{2} & =K_{2}+\mathcal{O}\left(\lambda^{-N}\right), \\
\int_{\Omega} a\left(\varphi U_{x, \lambda}\right)^{2} & =K_{3} a(x) \lambda^{-2}+\mathcal{O}\left(\lambda^{-N+2}\right) \quad\left(K_{3} a(x) \lambda^{-2} \log \lambda \text { if } N=4\right) . \\
\Longrightarrow \mathcal{S}_{a}\left[\varphi U_{x, \lambda}\right] & =S(0)+a(x) \lambda^{-2}+\mathcal{O}\left(\lambda^{-N+2}\right)<S(0) \text { as soon as } a(x)<0!
\end{aligned}
$$

Low dimension: Let $N=3, \Omega=B$ and a, φ radial. Then, as $\lambda \rightarrow \infty$,

$$
\begin{aligned}
\left\|\nabla\left(\varphi U_{x, \lambda}\right)\right\|_{2}^{2} & =K_{1}+\lambda^{-1}\left|\mathbb{S}^{2}\right| \int_{0}^{1}\left|\varphi^{\prime}(r)\right|^{2} \mathrm{~d} r+\mathcal{O}\left(\lambda^{-2}\right) \\
\left\|\varphi U_{x, \lambda}\right\|_{6}^{2} & =K_{2}+\mathcal{O}\left(\lambda^{-2}\right) \\
\int_{\Omega} a\left(\varphi U_{x, \lambda}\right)^{2} & =\lambda^{-1}\left|\mathbb{S}^{2}\right| \int_{0}^{1} a(r)|\varphi(r)|^{2} \mathrm{~d} r+\mathcal{O}\left(\lambda^{-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and hence } \\
& \mathcal{S}_{a}\left[\varphi U_{x, \lambda}\right]=S(0)+\left|\mathbb{S}^{2}\right| K_{2}^{-1}\left(\int_{0}^{1}\left|\varphi^{\prime}(r)\right|^{2} \mathrm{~d} r+\int_{0}^{1} a(r)|\varphi(r)|^{2} \mathrm{~d} r\right) \lambda^{-1}+\mathcal{O}\left(\lambda^{-2}\right) \text {. }
\end{aligned}
$$

Competing lower-order terms!

Critical functions and their Green's function

Question [Brezis 1986]: Is $S(a)<S(0)$ also necessary for $S(a)$ to be achieved?

Theorem ([Druet 2002])

Let $N=3$. Then $S(a)$ is achieved $\Leftrightarrow S(a)<S(0) \quad \Leftrightarrow \quad\left\{\phi_{a}<0\right\} \neq \emptyset$. As a consequence, a is critical if and only if $\min _{\Omega} \phi_{a}=0$.

Here, we define the Robin function

$$
\phi_{a}(x)=H_{a}(x, x), \quad \text { where } \quad G_{a}(x, y)=\frac{1}{|x-y|^{N-2}}-H_{a}(x, y)
$$

is the Green's function of $-\Delta+a$.
Following [Hebey-Vaugon 2001], we call a function $a \in C(\bar{\Omega})$ critical if $S(a)=S(0)$ and $S(\tilde{a})<S(a)$ for all $\tilde{a} \leq a$ with $\tilde{a} \not \equiv a$.

Corollary

- If $N \geq 4$, the only critical function is $a \equiv 0$.
- If $N=3, a$ is critical if and only if $\min _{\Omega} \phi_{a}=0$. In particular, there are critical functions of all shapes.

Concentration of solutions

Let a be critical and let $\left(u_{\epsilon}\right) \subset H_{0}^{1}(\Omega)$ be a sequence of positive solutions to

$$
\begin{equation*}
-\Delta u_{\epsilon}+(a+\epsilon V) u_{\epsilon}=N(N-2) u_{\epsilon}^{\frac{N+2}{N-2}} \quad \text { on } \Omega, \quad u_{\epsilon}=0 \quad \text { on } \partial \Omega . \tag{3}
\end{equation*}
$$

which blows up at a single point. To leading order, $u_{\epsilon} \sim U_{x_{\epsilon}, \lambda_{\epsilon}}$ with $x_{\epsilon} \rightarrow x_{0} \in \bar{\Omega}$ and $\lambda_{\epsilon} \rightarrow \infty$.

In these terms, x_{0} is the concentration point and λ_{ϵ} is the concentration speed.
Notice that $\left\|u_{\epsilon}\right\|_{\infty} \sim \lambda_{\epsilon}^{\frac{N-2}{2}}$.

Theorem

- If $N \geq 4$ (hence $a \equiv 0$), $V \equiv-1$, then $\nabla \phi_{0}\left(x_{0}\right)=0$. Moreover, $\lim _{\epsilon \rightarrow 0} \epsilon\left\|u_{\epsilon}\right\|_{\infty}^{2 \frac{N-4}{N-2}}=d_{N} \phi_{0}\left(x_{0}\right)$. [Han 1991, Rey 1989]
- If $N=3$, then $\phi_{a}\left(x_{0}\right)=0$. If x_{0} is non-degenerate as a minimum of ϕ_{a}, with $a\left(x_{0}\right)<0$, then $\lim _{\epsilon \rightarrow 0} \epsilon\left\|u_{\epsilon}\right\|_{\infty}^{2}=4 \pi^{2} \frac{\left|a\left(x_{0}\right)\right|}{\left|\int_{\Omega} V(y) G_{a}^{2}\left(x_{0}, y\right) d y\right|}$. [Frank, K., Kovarik CVPDE + arXiv 2021]

Concentration asymptotics - Proof ideas

Key idea: Refine the [BN] test function choice $\varphi U_{x, \lambda}$ and expand energy quantities to sufficient precision!
We optimize the H_{0}^{1} cutoff procedure: Let $P U_{x, \lambda}$ be the unique function s.t.

$$
-\Delta P U_{x, \lambda}=-\Delta U_{x, \lambda} \text { in } \Omega, \quad P U_{x, \lambda}=0 \text { on } \partial \Omega
$$

High dimensions: [Rey 1989]
Let $N \geq 4$ and $V \equiv-1$. As $\epsilon \rightarrow 0$, write $u_{\epsilon}=P U_{x_{\epsilon}, \lambda_{\epsilon}}+w_{\epsilon}$ with $\left\|\nabla w_{\epsilon}\right\|_{2}=o(1)$ and $w \perp\left\{P U_{x, \lambda}, \partial_{\lambda} P U_{x, \lambda}, \partial_{x_{i}} P U_{x, \lambda}\right\}$. Expand Pohozaev

$$
\epsilon \int_{\Omega} u_{\epsilon}^{2}=\int_{\partial \Omega}\left(x-x_{0}\right) \cdot \nu(x)\left|\frac{\partial u_{\epsilon}}{\partial \nu}\right|^{2}
$$

using the quantitative bound $\left\|w_{\epsilon}\right\|_{2}=\mathcal{O}\left(\lambda_{\epsilon}^{-\frac{N+2}{2}}\right)$, we get

$$
a_{N} \epsilon \lambda_{\epsilon}^{2}+o\left(\epsilon \lambda_{\epsilon}^{2}\right)=b_{N} \phi_{0}\left(x_{0}\right) \lambda_{\epsilon}^{-N+2}+o\left(\lambda_{\epsilon}^{-N+2}\right) .
$$

Low dimension: [Frank, K., Kovarik 2021]
When $N=3$, terms in energy expansion are again arranged differently. To expand to the desired precision, we need the refined development

$$
u_{\epsilon}=P U_{x_{\epsilon}, \lambda_{\epsilon}}+\lambda_{\epsilon}^{-1 / 2}\left(H_{0}\left(x_{\epsilon}, \cdot\right)-H_{a}\left(x_{\epsilon}, \cdot\right)\right)+q_{\epsilon}, \quad\left\|\nabla q_{\epsilon}\right\|_{2}^{2}=\lambda_{\epsilon}^{-1}+\epsilon \lambda^{-1 / 2}
$$

Going fractional

The appropriate generalization of the BN problem to fractional orders of derivatives $2 s<N$ with $s \in(0,1)$ is

$$
\begin{align*}
(-\Delta)^{s} u+(a+\epsilon V) u & =c_{N, s} u^{\frac{N+2 s}{N-2 s}} & & \text { in } \Omega, \\
u & >0 & & \text { in } \Omega, \tag{4}\\
u & =0 & & \text { on } \mathbb{R}^{N} \backslash \Omega .
\end{align*}
$$

with the fractional Laplacian $(-\Delta)^{s}$ given as

$$
(-\Delta)^{s} u=\mathcal{F}^{-1}\left(|\xi|^{2 s} \mathcal{F} u\right)=C_{N, s} P . V \cdot \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} \mathrm{~d} y .
$$

The variational problem associated to (4) is

$$
S_{N, s}(a):=\inf \frac{\int_{\mathbb{R}^{N}}\left|(-\Delta)^{s / 2} u\right|^{2}+\int_{\Omega} a u^{2}}{\left(\int_{\Omega} u^{\frac{2 N}{N-2 s}}\right)^{\frac{N-2 s}{N}}}
$$

where the inf is taken over $\widetilde{H}^{s}(\Omega):=\left\{u \in H^{s}\left(\mathbb{R}^{N}\right): u \equiv 0 \quad\right.$ on $\left.\mathbb{R}^{N} \backslash \Omega\right\}$.
The notions of Green's function $G_{a}(x, y)=\frac{1}{|x-y|^{N-2 s}}-H_{a}(x, y)$, and critical function a carry over without problem.

Some known results for the fractional BN problem

The analysis of the fractional BN problem with $s \in(0,1)$ presents some additional difficulties which mostly stem from the fact that the operator $(-\Delta)^{s}$ is non-local.
Still: $U_{x, \lambda}(y)=\left(\frac{\lambda}{1+\lambda^{2}|x-y|^{2}}\right)^{\frac{N-2 s}{2 s}}$ satisfies $(-\Delta)^{s} U_{x, \lambda}=c_{N, s} U_{x, \lambda}^{\frac{N+2 s}{N-2 s}}$.

Theorem (Servadei-Valdinoci 2013, 2015)

- If $N \geq 4 s$, then $S_{N, s}(a)<S_{N, s}$ whenever $a(x)<0$ for some $x \in \Omega$.
- If $2 s<N<4 s$, then $S_{N, s}(a)<S_{N, s}$ if $a(x)<-\mu_{s}<0$.
(Compare [Brezis-Nirenberg 1983].)

Theorem (Choi-Kim-Lee 2014)

If $N>4 s$, and solutions u_{ϵ} to (4) with $a \equiv 0, V=-1$ blow up at exactly one point $x_{0} \in \Omega$, then $\lim _{\epsilon \rightarrow 0} \epsilon\left\|u_{\epsilon}\right\|_{\infty}^{2 \frac{n-2 s}{n-2 s}}=\delta_{N, s} \phi_{0}\left(x_{0}\right)$. (Compare [Han 1991, Rey 1989].)
\Longrightarrow What about low dimensions $2 s<N<4 s$? ?

Main results

Theorem 1 (De Nitti, K., 2021)

Let $s \in(0,1)$ and $2 s<N<4 s$ and let $a \in C(\bar{\Omega})$. Then

$$
\text { (i) } S_{N, s}(a) \text { is achieved } \Leftrightarrow \quad(i i) S_{N, s}(a)<S_{N, s} \quad \Leftrightarrow \quad(i i i)\left\{\phi_{a}<0\right\} \neq \emptyset .
$$

As a consequence, a is critical if and only if $\min _{\Omega} \phi_{a}=0$.

- This is the fractional version of [Druet 2002].
- $(i) \Leftarrow$ (ii) follows similarly to [BN]. $(i i) \Leftarrow(i i i)$ follows from

$$
\begin{equation*}
\mathcal{S}_{a}\left[\psi_{x, \lambda}\right]=S(0)+c \phi_{a}(x) \lambda^{-N+2 s}+o\left(\lambda^{-N+2 s}\right) \tag{5}
\end{equation*}
$$

as $\lambda \rightarrow \infty$, where $\psi_{x, \lambda}=P U_{x, \lambda}+\lambda^{-\frac{N-2 s}{2}}\left(H_{0}(x, \cdot)-H_{a}(x, \cdot)\right)$.

- The forward implications are the hard part. E.g. $(i i i) \Rightarrow(i i)$ requires to show: For a critical and u_{ϵ} minimizers of $S(a-\epsilon)$, one has

$$
S(0)>S(a-\epsilon)=S(0)+c\left(\phi_{a}\left(x_{\epsilon}\right)+o(1)\right) \lambda^{-N+2 s} .
$$

Thus $\phi_{a-\epsilon}\left(x_{0}\right)<\phi_{a}\left(x_{0}\right) \leq 0$ and (iii) follows.

Main results

Write $Q_{V}(x):=\int_{\Omega} V(y) G_{a}(x, y)^{2} \mathrm{~d} y$.

Theorem 2 (De Nitti, K., 2021)

Let $s \in(0,1)$ and $\frac{8}{3} s<N<4 s$ and let $a \in C(\bar{\Omega})$ be critical. Suppose that $\left(u_{\epsilon}\right) \subset \widetilde{H}^{s}(\Omega)$ is a sequence of energy-minimizing solutions to (4). Then the u_{ϵ} blow up in exactly one point $x_{0} \in \Omega$ satisfying $\phi_{a}\left(x_{0}\right)=0$. Moreover,

$$
u_{\epsilon}=P U_{x_{\epsilon}, \lambda_{\epsilon}}+\lambda_{\epsilon}^{-\frac{N-2 s}{2}}\left(H_{0}\left(x_{\epsilon}, \cdot\right)-H_{a}\left(x_{\epsilon}, \cdot\right)\right)+q_{\epsilon}
$$

with $\left\|\left((-\Delta)^{s / 2}\right) q_{\epsilon}\right\|_{2}^{2}=o\left(\lambda_{\epsilon}^{-2 s}+\lambda_{\epsilon}^{-2 N+4 s}\right)$ and $x_{\epsilon} \rightarrow x_{0}$ and

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \epsilon \lambda_{\epsilon}^{4 s-N}=d_{N, s} \frac{\left|a\left(x_{0}\right)\right|}{\left|Q_{V}\left(x_{0}\right)\right|} . \tag{6}
\end{equation*}
$$

The point x_{0} maximizes $\frac{\left|Q_{V}\left(x_{0}\right)\right|^{\frac{2 s}{s s-N}}}{\left|a\left(x_{0}\right)\right|^{\frac{N-2 s}{s s-N}}}$ among all x with $\phi_{a}(x)=0$ and $V(x)<0$.
This is the fractional version of [Frank, K., Kovarik CVPDE 2021]

Some comments

- Our proof strategy (for both Theorems 1 and 2) is variational. In particular Theorem 2 also holds for almost-minimizers u_{ϵ} of $S_{N, s}(a+\epsilon V)$, which need not satisfy any PDE.
- If we knew that $\left\|q_{\epsilon}\right\|_{\infty}=o\left(\lambda_{\epsilon}^{\frac{N-2 s}{2}}\right)$, Theorem 2 would yield the value of $\lim _{\epsilon \rightarrow 0} \epsilon\left\|u_{\epsilon}\right\|_{\infty}^{\frac{4 s-N}{N-2 s}}$.
- For $s=1$, the recent preprint [Frank, K., Kovarik arXiv 2021] removes the energy-minimizing assumption, thus proving a conjecture from [Brezis-Peletier 1989]. The analogous question for $s \in(0,1)$ is open.
- For $N>4 s$ we prove (work in preparation)

$$
\lim _{\epsilon \rightarrow 0} \epsilon \lambda_{\epsilon}^{N-4 s}=d_{N, s} \frac{\phi_{0}\left(x_{0}\right)}{\left|V\left(x_{0}\right)\right|}
$$

and x_{0} achieves $\max _{\{x: V(x)<0\}} \phi_{0}(x)^{-\frac{2 s}{N-4 s}}|V(x)|^{\frac{N-2 s}{N-4 s}}$

- If $N<4 s$, the 'renormalized energy' $\left|Q_{V}(x)\right|^{\frac{2 s}{4 s-N}}|a(x)|^{-\frac{N-2 s}{4 s-N}}$ is non-local in V!

The proof for fractional $s \in(0,1)$

Basic results:

- Concentration compactness [Palatucci-Pisante 2015] (Compare [Struwe 1984].)
- $P U_{x, \lambda}$ and orthogonality conditions [Abdelhedi-Chtioui-Hajajiej 2017] (Compare [Bahri-Coron 1988].)
Thus we can write $u_{\epsilon}=\alpha_{\epsilon}\left(P U_{x_{\epsilon}, \lambda_{\epsilon}}+w_{\epsilon}\right)$ with $\alpha_{\epsilon} \rightarrow 1,\left\|(-\Delta)^{s} w_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}=o(1)$ and $w_{\epsilon} \perp\left\{P U_{x, \lambda}, \partial_{\lambda} P U_{x, \lambda}, \partial_{x_{i}} P U_{x, \lambda}\right\}$.

New ingredients:

- Precise analysis of the functions $P U_{x, \lambda}$ and $H_{a}(x, y)$
- Spectral coercivity inequality: For $p=\frac{2 N}{N-2 s}$,

$$
\left\|(-\Delta)^{s / 2} w_{\epsilon}\right\|_{2}^{2}-c_{N, s}(p-1) \int_{\Omega} U_{x_{\epsilon}, \lambda_{\epsilon}}^{p-2} w_{\epsilon}^{2} \geq \frac{4 s}{N+2 s+2}\left\|(-\Delta)^{s / 2} w_{\epsilon}\right\|_{2}^{2}
$$

by stereographic projection to \mathbb{S}^{N}. (Compare [Rey 1990, Bianchi-Egnell 1991].
For $s \in(0,1)$, see also [Chen-Frank-Weth 2012].)

- Non-existence of a minimizer for $S(a)$ when a critical. (Compare [Druet 2002].)

The proof for fractional $s \in(0,1)$ - cont'd

- The assumption $8 s / 3<N$ should be technical. The phenomenon that makes it necessary to be imposed has no analogue when $s=1$ and $N=3$: To absorb error terms in

$$
\begin{gathered}
S(a+\epsilon V)=S_{N, s}+\left(\phi_{a}(x)+\epsilon \int_{\Omega} V G_{a}\left(x_{\epsilon}, \cdot\right)\right) \lambda^{-N+2 s}+a(x) \lambda^{-2 s} \\
\left.+o\left(\lambda^{-2 s}\right)+\left(\epsilon+\phi_{a}(x)\right) \lambda^{-N+2 s}\right) .
\end{gathered}
$$

we need $\lambda^{-k(N-2 s)} \stackrel{!}{=} o\left(\lambda^{-2 s}\right)$ for all $k \geq 3$.
It would be very interesting to understand more precisely the impact of such 'lower-order BN dimensional effects' !

- Simplifications / differences with respect to previous works
- Avoid the intermediate spectral cutoff argument from [Frank-K.-Kovarik CVPDE 2021].
- Avoid the formulation of $(-\Delta)^{s}$ as a Dirichlet-to-Neumann problem for a degenerate-elliptic local PDE in $N+1$ dimension as in [Choi-Kim-Lee 2014] and others

Summary

- Brezis-Nirenberg problem: $\operatorname{On} \Omega \subset \mathbb{R}^{N}$, positive solutions to $(-\Delta)^{s} u+a u=u^{\frac{N+2 s}{N-2 s}}$ exist sometimes, but not always.
- The picture is more intricate in low dimensions $2 s<N<4 s$!
- Main Result: $\ln 2 s<N<4 s$:
- a is critical $\Leftrightarrow \min _{\Omega} \phi_{a}=0$.
- Let $\left(u_{\epsilon}\right)$ almost minimizers of the perturbed critical Brezis-Nirenberg energy $S(a+\epsilon V)$ at a critical. We precisely characterize
\star the concentration point x_{0} and the concentration speed λ_{ϵ} in terms of the data a, V, Ω
\star the blow-up profile: $u_{\epsilon} \sim P U_{x_{\epsilon}, \lambda_{\epsilon}}+\lambda_{\epsilon}^{-\frac{N-2 s}{2}}\left(H_{0}\left(x_{\epsilon}, \cdot\right)-H_{a}\left(x_{\epsilon}, \cdot\right)\right)$.
- Method of proof: Purely variational \longrightarrow Refine iteratively the energy expansion and improve error bounds by exploiting coercivity + energy minimality.
- Perspectives:
- Treat very low dimensions $2 s<N \leq \frac{8 s}{3}$ by understanding better the related cancellation phenomenon.
- Remove energy bounds: simple blow-up for non-minimizers, multibubble blow-up.

Vielen Dank für Eure Aufmerksamkeit! :-)

