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1 ABSTRACT

1 Abstract

In the field of aviation maintenance, the detection of submillimeter cracks within
combustion chambers presents a significant challenge, given the intricacies of sensor
data containing both fine surface features and roughness. Conventional data processi-
ng techniques struggle to differentiate between benign abnormalities and genuine
cracks in this complex scenario. However, the aviation industry, specifically in aircraft
maintenance, grapples with a data deficit, making model training and generalization
particularly daunting. Obtaining real crack data is challenging due to its expense and
unavailability in real-time. To overcome this hurdle, the proposed techniques employ
Generative Adversarial Networks (GANs) to generate synthetic data. This industry
project, conducted at 3D-aero, aims to establish a robust pipeline dedicated to generat-
ing synthetic training samples using GANs. By training a GAN with actual crack data
and utilizing its generator to produce synthetic cracks, the synthesized data is enriched
with diverse crack patterns. This dataset becomes instrumental in training a deep
learning network, aiming to enhance the efficiency of crack detection procedures
during airplane maintenance. The synergy between GANs and deep learning not
only addresses data constraints but also empowers the model to accurately identify
a spectrum of crack configurations encountered in real-world situations. Both the
conventional Generative Adversarial Network (GAN) and the Wasserstein Generative
Adversarial Network (WGAN) methodologies were employed to generate synthetic
point clouds in the implementation. The findings underscore the effectiveness of the
WGAN model in producing compelling results, showcasing its advanced capability
in faithfully replicating real-world point clouds. WGAN’s efficient performance is
attributed to its unique wasserstein distance metric, which provides a more stable and
meaningful measure of the difference between the generated and real distributions.
Unlike traditional GAN, WGAN address issues such as mode collapse and training
instability, leading to more realistic and diverse synthetic data. This significant finding
underscores the potential of generative models, particularly WGAN, in bridging the
gap posed by data scarcity. In conclusion, this research contributes to the broader
goal of advancing data-driven methodologies in safety-critical industries, offering a
promising avenue for future applications and research endeavors in the field.
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2 INTRODUCTION

2 Introduction

In recent years, deep learning has influenced the way we analyse and interpret compl-
ex visual data. The development of deep learning techniques has accelerated advance-
ments across varied applications, such as object detection, image segmentation, and
instance semantics. Among the numerous types of data, three-dimensional (3D) point
clouds have emerged as a versatile representation that can be applied to a variety
of different fields, including robotics [29], autonomous navigation [41], augmented
reality [21], and many more. In robotic vision, point clouds are broadly used as 3D
representations of real-world scenes. In scenarios where labelled real data is limited,
efficient 3D data synthesis is essential [34].

For deep learning models to succeed in analysing point cloud data, they must have
qualitative and quantitative characteristics of the training data. Graph Neural Networ-
ks (GNNs) and Convolutional Neural Networks (CNNs) are deep learning models that
rely on large, diverse, and accurately labelled datasets to achieve effective performan-
ce. It can be difficult and resource-intensive to collect such datasets for point clouds
in practice, especially in real-world scenarios [16], due to their multidimensional
nature of data, requiring specialized sensors such as LiDAR or depth cameras, which
may have inherent limitations in terms of their range and resolution. For specific
tasks, such as object detection, segmentation, or classification, deep learning models
require substantial amounts of labelled data that accurately reflect the complexity and
variations experienced in real-world point clouds. Despite these challenges, ongoing
advancements in technology and collaboration between researchers and industry may
contribute to overcoming these obstacles in the future.

The integration of deep learning with aircraft maintenance is a pioneering developme-
nt. As it utilizes advanced neural networks to effectively handle complex aircraft data.
A key benefit of this technology is that it allows for accurate identification of potential
problems, enables predictive maintenance by analysing historical data for forecasting,
and enhances overall safety and reliability by continuously learning and adapting.
As a result, maintenance procedures can be handled more efficiently and proactively,
reducing the risk of unexpected failures and minimizing aircraft downtime. By using
deep learning algorithms, such as 3D CNN, to analyse 3D point cloud data within
combustion chambers, meticulous crack patterns within volumetric data can be precis-
ely detected. This is especially important when it comes to combustion chambers,
where traditional methods may struggle with the complex three-dimensional structur-
es. Deep learning enhances precision by effectively capturing spatial relationships in
the point cloud, enabling accurate detection of subtle or evolving cracks.

In addition, deep learning reduces the need for manual inspection of large datasets
and facilitates a quicker analysis of them with its automation capabilities. As a result,
this approach contributes to improved combustion chamber reliability, safety, and
maintenance efficiency. Due to their ability to capture subtle nuances and patterns,
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2.1 Problem Statement 2 INTRODUCTION

these models can detect even the tiniest cracks while minimizing false positives caused
by surface roughness.

Moreover, the depth and complexity of deep learning architectures align well with
the multifaceted nature of crack detection. Deep neural networks use hierarchical
representation learning to abstract features at different scales, enhancing their ability
to distinguish cracks from surface irregularities [43]. During point cloud data processi-
ng, the network undergoes learning to differentiate structural defects from surface
imperfections, thereby resolving the persistent challenge of confusing roughness with
cracks. However, deep learning models are only effective when they are trained on
extensive, high-quality data [33]. Herein lies a major hurdle for the aviation industry.
A lack of quantity and diversity of data from actual aircraft maintenance inspections,
particularly concerning combustion chamber cracks, is one of the main challenges. It
is crucial to address these constraints to successfully deploy deep learning models.

The proposed methods in this master’s thesis address two main challenges. To begin
with, synthetic training samples are generated to address the data deficiency issue.
Generative Adversarial Networks (GANs) can be used to generate synthetic cracks
that resemble the real cracks. This synthetic data solves the shortage issue by giving
an abundance of data for deep learning models. Second, the synthetic data, which is
created, bridges the gap between real-world data and the training set of the deep
learning model. These synthetic data samples are expected to provide the model
with a more thorough grasp of fractures and surface roughness. As a result, the deep
learning model’s capacity to distinguish between various complexities in point cloud
data is projected to be greatly improved, leading to more reliable and accurate crack
detection.

We will go deeper into the technical complexities of deep learning model development,
training, and the assessment in following sections of this thesis, all of which are crucial
to the effective application of deep learning in the domain of aviation maintenance. We
will investigate the intricacies of data preparation, model architecture selection, hyper
parameter tweaking, and model performance evaluation. This study is a pioneering
attempt at the interface of cutting-edge deep learning technology and aviation industry
demands. This thesis intends to create a novel solution for the aviation sector by
solving the severe issue of data shortages and using the potential of deep learning,
enhancing aircraft safety and dependability through more precise combustion chamb-
er crack detection.

2.1 Problem Statement

In the field of aviation maintenance, white light interferometry is useful for detecting
submillimeter cracks within combustion chambers. This cutting-edge technology gen-
erates high-resolution point cloud data that captures fine surface features. However,
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2.2 Objective 2 INTRODUCTION

because the sensor data contains surface roughness, it is difficult for standard data
processing techniques to distinguish between benign surface abnormalities and genui-
ne cracks. To overcome this barrier, the proposed solution makes use of deep learning
methodologies. The goal is to create models capable of recognizing minute and as well
as essential distinctions between surface roughness and real cracks using advanced
neural network architectures. Deep learning introduces a paradigm change by allowi-
ng the system to understand deep patterns and make nuanced decisions based on
the intricacies contained in the data. However, the aviation industry, particularly
in aircraft maintenance, faces a data deficit. The lack of data makes training and
generalizing models particularly challenging. Therefore, the technique employs Gene-
rative Adversarial Networks (GANs) to produce synthetic data.

2.2 Objective

To address the issue of limited data, the proposed technique entails building a robust
pipeline dedicated to creating synthetic training samples using Generative Adversarial
Networks (GANs). One critical component of this pipeline is the creation of artificial
cracks. The method involves training a GAN with actual crack data and then using its
generator to generate synthetic cracks. The synthesized data, which has been enhanc-
ed with various crack patterns, will subsequently be used to train a deep learning
network. The end goal is to increase the efficiency of crack detection procedures
during airplane maintenance by combining the power of GANs and deep learning
techniques to solve data shortages and improve the model’s generalization capabilities.
This method not only overcomes data constraints but also enables the model to accur-
ately identify diverse crack configurations observed in real-world situations.

2.3 Structure of Thesis

The following chapters examine specific aspects of the research questions and objecti-
ves. A detailed literature review is provided in Chapters 3 and a comprehensive
overview of point cloud analysis, GANs, and WGANs along with their benefits and
challenges is outlined in Chapter 4 and in Chapter 5, describing the methods and
techniques for generating synthetic point clouds, and analysing the evolution of data
generation techniques. As the experiment progresses, Chapter 6 presents the results,
and the validation of these results is carried out.

A detailed discussion of the findings, their interpretation, and implications is provided
in Chapter 7. A comprehensive conclusion is presented in the next chapter and finally
ending with suggestions for future research avenues in this field, highlighting what
was learned during the research process. The methodical sequence of chapters ensures
a thorough exploration of the subject matter, combining theoretical foundations, empi-
rical findings, and thoughtful discussions that contribute to the existing body of know-
ledge in the field.
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2.3 Structure of Thesis 2 INTRODUCTION

This master’s thesis seeks to address the challenges of data scarcity and improve the
accuracy, robustness, and generalization capabilities of deep learning models in this
domain by exploring the potential of GAN-based synthetic data generation to contribu-
te significantly to the field of point cloud analysis. With a comprehensive investigation
and empirical evaluation, this research provides useful insights and tools to advance
point cloud analysis.

5



3 LITERATURE REVIEW

3 Literature Review

In recent years, researchers have embarked on an intriguing exploration of the synergi-
es between Generative Adversarial Networks (GANs) and the challenges inherent in
generating realistic images from point cloud data. This literature review meticulously
navigates the pivotal contributions of researchers who have shaped the intersection of
GANs and point clouds. Commencing with the foundational birth of GANs, we trace
the evolutionary journey that seamlessly transitions into the realm of point clouds.
Our exploration spans the processing of point clouds, shedding light on innovative
methodologies and key advancements. Specifically, we delve into the applications
where GANs prove instrumental in synthesizing images from point clouds, unravelling
the complexity of this fusion. By providing a thorough grasp of the environment,
approaches, and new developments at the intersection of GANs and point cloud data,
this section of the thesis seeks to summarize research efforts.

3.1 GANs in image generation

The work of Goodfellow et al. [17] laid the groundwork for GANs. Synthetic data and
assessing the authenticity of it is accomplished through adversarial training, which
uses a generator network and a discriminator network. It marked the beginning of a
new era in generative modelling, enabling a novel method of synthesising images. He
not only introduced Generative Adversarial Networks (GANs) but also revolutionized
the landscape of generative modelling. The adversarial training paradigm, involving
the interplay between a generator and a discriminator network, brought forth a unique
approach to the creation of synthetic data. The generator network, employing deep
neural architectures, is tasked with transforming random noise into data that ideally
mirrors the characteristics of real-world samples. Concurrently, the discriminator
network is trained to differentiate between authentic and generated data. This advers-
arial dynamic has proven to be a robust mechanism for producing high-quality synthet-
ic data, subsequently opening up novel avenues in various domains, from computer
vision to natural language processing. The ability of GANs to learn and replicate
complex patterns in data marked the beginning of a new era in generative modelling,
offering innovative solutions for image synthesis, data augmentation, and beyond.
The influence of this seminal work extends far beyond the realms of academia, as
GANs continue to be a driving force behind advancements in artificial intelligence
and machine learning.

In addition, Radford et al. (2015) [32] further developed this paradigm with Deep
Convolutional Generative Adversarial Networks (DCGAN), introducing deep convolut-
ional structures to enhance the generation of high-resolution and realistic images.
DCGANs proved to be a significant improvement over traditional GAN architectures,
providing stability in training and enabling the synthesis of intricate features in images.
The deep convolutional layers not only captured spatial hierarchies more effectively
but also facilitated the generation of more complex and detailed visual content. As
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3.2 GANs in point clouds 3 LITERATURE REVIEW

GANs gained widespread success in various image generation tasks, their application
to point clouds, which represent three-dimensional data, has presented unique challe-
nges. Unlike regular images, point clouds lack a grid-like structure, requiring adaptati-
ons to leverage the strengths of GANs in capturing intricate patterns and structures in
this non-grid data format. Researchers have explored novel approaches and modificat-
ions to extend the capabilities of GANs to point cloud generation, marking an exciting
frontier in the application of adversarial networks to diverse data modalities.

Furthermore, the Wasserstein distance is presented in the "Wasserstein GAN" paper
by Martin Arjovsky, Soumith Chintala [24], and Leon Bottou as a critical parameter
for improving the training stability of Generative Adversarial Networks (GANs). In
order to assure computational feasibility and stability, the research suggests a Lipschitz
restriction on the critic network, addressing the drawbacks of conventional divergence
metrics. The authors hope to address problems with conventional GANs, like mode
collapse and training instability, by using Wasserstein distance. The research presents
empirical findings that illustrate the effectiveness of Wasserstein GAN (WGAN) in
producing superior quality samples and attaining enhanced convergence in contrast
to its predecessors. By providing a more dependable framework for GAN training and
demonstrating the potential of Wasserstein distance in tackling important issues in
generative model optimization, this study represents a substantial contribution to the
field.

3.2 GANs in point clouds

In the realm of 3D data generation, the work presented by Chun-Liang Li et al. [22]
presents a significant advancement by applying Generative Adversarial Networks to
the synthesis of point cloud data. Chun-Liang Li et al. address the unique challenges
associated with generating realistic and coherent point cloud representations, offering
a pioneering solution in the domain of 3D data synthesis. By extending the principles
of GANs to the intricacies of point cloud structures, the proposed framework holds
promise for capturing and replicating the complexities inherent in three-dimensional
data. This work expands the application of GANs into the realm of point clouds,
showcasing their potential impact on diverse applications such as 3D object generation
and scene reconstruction. The contributions of Point Cloud GAN provide valuable
insights into the synthesis of realistic point cloud data, contributing to the ongoing
advancements in generative modelling and 3D data representation.

In the dynamic landscape of 3D data generation, the pioneering paper "Point Cloud
GAN" by Chun-Liang Li et al. [22] not only represents a significant stride but also
unfolds a rich tapestry of advancements. This innovative work harnesses the power of
Generative Adversarial Networks (GANs) in the synthesis of point cloud data, pushing
the boundaries of what is achievable in the realm of 3D data representation.

Addressing Specific Challenges, Chun-Liang Li et al meticulously tackle the unique
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3.2 GANs in point clouds 3 LITERATURE REVIEW

challenges associated with generating realistic and coherent point cloud representatio-
ns. Unlike traditional 2D images, point clouds demand a nuanced approach to capture
spatial intricacies and maintain structural integrity. The paper delves into the intricaci-
es of adapting GANs to address these challenges, demonstrating a deep understanding
of the complexities involved in synthesizing three-dimensional data. The implications
of Point Cloud GAN extend far beyond the confines of its inception.

The paper highlights the potential impact of this novel framework on diverse applicati-
ons, including 3D object generation and scene reconstruction. This versatility positions
Point Cloud GAN as a valuable tool with applications spanning virtual reality, robotics,
and computer-aided design. The work of Chun-Liang Li et al contributes significantly
to the ongoing advancements in generative modelling. By successfully applying GANs
to point clouds, the paper enriches the toolkit available for researchers and practitione-
rs working on generative models, expanding the horizons of what can be achieved in
the synthesis of complex and realistic 3D data.

The paper ’Point Cloud GAN’ not only addresses challenges specific to point cloud
synthesis but also pioneers solutions with far-reaching implications across diverse
applications, making it a cornerstone in the evolution of 3D data representation and
generative modelling.

Additional, variation of GANs called tree-GANs was introduced in the paper ’3D Point
Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions’
[36], the authors introduce a novel generative adversarial network (GAN) called tree-
GAN for generating 3D point clouds. To achieve state-of-the-art performance, they
propose a tree-structured graph convolution network (TreeGCN) as a generator for
tree-GAN. This network performs graph convolutions within a tree, enabling it to
utilize ancestor information to enhance the representation power for features. Moreo-
ver, they introduce a new evaluation metric called Fréchet Point Cloud Distance (FPD)
specifically designed for accurately assessing GANs for 3D point clouds. This metric
considers both the local and global structure of the point clouds. Experimental results
demonstrate that the proposed tree-GAN outperforms existing GANs in terms of both
conventional metrics and FPD. Moreover, the method can produce point clouds for
various semantic parts without the need for prior knowledge. To summarize, the paper
presents a novel GAN architecture and an effective evaluation metric, achieving state-
of-the-art performance in 3D point cloud generation while maintaining flexibility and
versatility.

CPCGAN proposed by Ximing Yang1 ,Yuan Wu, Kaiyi Zhang1 and Cheng Jin in the
paper ’CPCGAN: A Controllable 3D Point Cloud Generative Adversarial Network with
Semantic Label Generating’ [42] is a revolutionary approach to 3D point cloud genera-
tion that utilizes a two-stage GAN framework to produce realistic, controllable, and
semantically labelled point clouds from random latent codes. The first stage, the
structure point cloud generator, creates a sparse representation with semantic labels,
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3.3 Point Cloud Representation and Processing 3 LITERATURE REVIEW

capturing the essential structural information of the target shape. The second stage,
the dense point cloud generator, takes this processed structure point cloud and genera-
tes a denser point cloud with semantic labels, incorporating the detailed structures and
semantic information from the structure point cloud.

This two-stage approach allows CPCGAN to achieve higher fidelity and more accurate
semantic segmentation compared to existing point cloud GANs. The latent code-based
control mechanism enables users to adjust the generated point cloud’s appearance
and attributes by modifying the latent code, providing a powerful tool for shaping
and customizing 3D models. Additionally, the semantic segmentation branch ensures
that the generated point clouds preserve the semantic relationships between points,
making them more meaningful and interpretable for applications in 3D reconstruction,
shape generation, and 3D object modelling. The CPCGAN’s versatility is further demo-
nstrated by its ability to generate point clouds from a wide range of datasets thanks
to a pre-trained encoder network that extracts features from the training data. This
adaptability makes CPCGAN a versatile tool for generating realistic 3D point clouds for
diverse object categories. The CPCGAN’s innovations have the potential to revolutioni-
ze the field of 3D point cloud generation, paving the way for a new era of generative
models that can effectively capture and manipulate complex 3D structures.

3.3 Point Cloud Representation and Processing

An important element of synthetic image generation is the representation and process-
ing of point clouds. With PointNet, Qi et al. (2017) [5] proposed a groundbreaking
approach to directly processing point clouds, without relying on predefined structures
like voxel grids. PointNet directly operates on individual data points, eliminating
the need for structured representations. This innovative approach allows for the
effective examination of unordered point clouds, addressing the challenges posed by
their irregular nature. PointNet’s neural network architecture enables direct assimilat-
ion of raw point cloud data, making it well-suited for capturing complex 3D structures
without the constraints of predefined grids. This paradigm shift has significantly
influenced point cloud processing, providing a foundation for more versatile and effici-
ent applications, including its integration into the context of synthetic image generati-
on.

This novel approach has aided in the more effective examination of unordered point
clouds. With PointNet++, Qi et al. (2017) extended this work by integrating hierarchi-
cal processing for enhanced feature extraction from point clouds, tolerating the chang-
ing densities and complicated structures that are common in real-world 3D data.

Few of the applications of synthetic data generated from point clouds are:

1. Robotics: Synthetic image generation has profound implications for robotics, partic-
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3.3 Point Cloud Representation and Processing 3 LITERATURE REVIEW

ularly in the development and testing of perception systems. Realistic synthetic images
derived from point clouds can facilitate the training of robotic vision models, enabling
more robust object recognition and scene understanding. This notion aligns with
the work of Wang et al. (2020) [39] in employing GANs for realistic synthetic data
generation in robotics applications.

2. Computer-Aided Design (CAD): In the realm of CAD, the ability to generate high-
fidelity synthetic images from point clouds holds significant promise. Designers and
engineers can benefit from realistic visualizations that aid in the conceptualization
and refinement of 3D models. Synthetic images contribute to the validation of design
choices and accelerate the prototyping process, by leveraging synthetic data for CAD
applications [27].

3. Augmented Reality (AR): Synthetic images derived from point clouds are instrume-
ntal in enhancing the visual quality and realism of augmented reality applications.
Whether overlaying virtual objects onto real-world scenes or providing immersive
experiences in architectural visualization, realistic synthetic images play a crucial role
in elevating the visual fidelity of AR environments. This aligns with the findings of Le,
Robert and Nguyen, Minh and Yan, Weiqi [21] who explored the integration of GANs
in improving visual quality for AR applications.
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4 THEORETICAL CONCEPTS

4 Theoretical Concepts

In this chapter of the thesis, we will discuss the theoretical background for generating
synthetic data using deep learning. The chapter is split into three sections, in the first
section, we will explore Point Cloud and its positive and negative aspects, next will
focus on a well-known image generative approach Generative Adversarial Networks
(GAN); lastly will look into a variation of GAN called Wasserstein Generative Adversar-
ial Networks (WGAN) which tackles the challenges of traditional GANs.

4.1 Point Cloud

Point cloud data is a collection of spatial points that are represented as X, Y, and Z
coordinates. This data can be used to create a 3D surface that can be used to map
terrain, buildings, roads, and objects [1]. These may include further attributes like
surface normals and RGB values [3]. Each point on the object’s surface represents
a single spatial measurement. A point cloud depicts an object’s full exterior surface
when all of its points are added together. An example of a point cloud is shown in
Figure 1. Color information may be added to the point cloud if the RGB value of each
point is captured. A 3D scanner, lidar, or photogrammetry software is used to generate
a point cloud. Surface reconstruction allows it to be translated into the common forms
of mesh models, CAD models, or NURBS surface models [15].

Point cloud data represent a convenient format for representing the 3D world. Point
clouds are commonly used as a data format in several disciplines such as geomatics
/surveying (mobile mapping); architecture, engineering, and construction; and Build-
ing Information Modelling (BIM) [35] [37] [38]. Point clouds have a range of applicat-
ions in different areas such as robotics [28], autonomous driving [6], augmented and
virtual reality [26], manufacturing and building rendering [13], etc.

4.1.1 Benefits and Drawbacks of point clouds

We need to first establish a fundamental understanding of the dynamic nature of point
clouds before we dive into the nuanced exploration of deep learning. We will explore
the inherent strengths that render point clouds valuable for 3D data representation,
along with the challenges that need to be considered carefully in the theoretical landsc-
ape of deep learning.

As previously stated, a point cloud is a collection of data points in a three-dimensional
coordinate system. These points indicate the surfaces or characteristics of a space-
bound entity. Each point in the cloud can be connected with extra information, such
as color or intensity. They are often produced using techniques such as LiDAR (Light
Detection and Ranging), structured light scanning, or stereo vision. For example,
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4.1 Point Cloud 4 THEORETICAL CONCEPTS

Figure 1: Point cloud [14]

LiDAR sends laser beams and measures the time it takes for the laser to return, resulti-
ng in a three-dimensional picture of the surroundings. They are classified as sparse
or dense. Sparse point clouds have fewer data points and may depict large-scale
landscapes, whereas dense point clouds have a high point density and can capture
minute features.

Some of the advantages of point clouds include:

1. 3D Spatial Representation: Point clouds are a natural representation of three-
dimensional (3D) spatial data that accurately depicts real-world surroundings [30].

2. Realistic Data Capture: Point clouds succeed at capturing complicated geometry,
which makes them ideal for applications that need exact depictions of actual things.

3. Spatial Relationship Understanding: Point clouds inherently maintain spatial conn-
ections, allowing deep learning models to grasp and use data’s 3D structure [9].

Moving on to weaknesses:

1. Data Sparsity: Point clouds may be sparse, especially in locations with fewer data
points, which can put deep learning models to the test [2].

2. Limited Standardization: Models cannot be universally applicable due to a lack of
standardized formats for point cloud data.

3. Computational Complexity: Processing large-scale point cloud data can be comput-
ationally intensive, requiring substantial resources for training deep learning models.
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4.1.2 Challenges of Deep Learning with Point Clouds

There are numerous challenges to applying deep learning to 3D point cloud data.
These issues include occlusion, which arises when certain parts of the scene or objects
are hidden from the sensor, leading to incomplete point cloud data; noise/outliers,
which are unintentional and incorrect points introduced during the data collecting
process is referred to as noise. Data points that substantially deviate from the predic-
ted trends are called outliers and point misalignment; the absence of connection or
inconsistency in the spatial arrangement of points between several scans or frames
are a few of the challenges [18] [25]. However, the most significant issues concerning
are:

1. Irregularity: Points are not equally sampled over various parts of an object/sc-
ene, resulting in dense points in some places and sparse points in others [31]. Figure
2(a) shows examples of them. It can be addressed by using sub-sampling techniques
[10].

2. Unstructured: Point cloud data is not organized into a regular grid [23]. Each point
is scanned separately, and the distance between them is not always constant. Pixels in
photographs, on the other hand, are represented on a two-dimensional grid, and the
distance between two neighbouring pixels is always set. Is it depicted in the Figure
2(b).

3. Unorderdness: A point cloud of a scene is the set of points (represented as XYZ)
obtained around the objects in the scene, and these are generally stored as a list in
a file. As a set, the order in which the points are stored does not change the scene
represented; therefore, it is invariant to permutation [5]. For illustration purposes,
the unordered nature of point sets is shown in Figure 2(c).

Figure 2: Challenges of point cloud data [20]
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4.2 Generative Adversarial Networks (GANs)

GANs, or Generative Adversarial Networks, are a generative modelling approach that
uses techniques from deep learning such as convolutional neural networks. It involves
discovering and learning regularities or patterns in input data so that the model can
then be used to generate or output new examples that are plausible to have been
drawn from the original data. It is an unsupervised learning task in machine learning.
Generative adversarial networks are based on a game, in the sense of game theory,
between two machine learning models, typically implemented using neural networks
[8]. The two neural networks that make up a GAN are called the generator and
discriminator. The discriminator is a deconvolutional neural network, and the genera-
tor is a convolutional neural network. The generator is designed to produce outputs
that are easily mistaken for real data. A discriminator identifies artificial outputs by
determining which were generated artificially.

The GAN’s working is based on three principles, firstly to make the generative mode-
l learn, so that the data can be generated employing probabilistic representation.
Secondly, the training of the model unfolds in an adversarial setting, characterized
by continual competition between the generator and discriminator. Lastly, by using
the deep learning neural networks and using the artificial intelligence algorithms for
training the complete system [17] to make the generator better at creating realistic
data.

4.2.1 Architecture of GAN

As mentioned before, a Generative Adversarial Network (GAN) is made up of two
major components: the Generator and the Discriminator. A detailed overview of the
architecture is depicted in Figure 3.

4.2.2 Generator Model

The generator model is an essential part of a Generative Adversarial Network (GAN),
which is in charge of producing precise data. Using random noise as input, the generat-
or creates complex data samples, such as text or images. Through training, its architec-
ture’s layers of learnable parameters capture the training data’s underlying distributi-
on. The generator uses backpropagation to fine-tune its parameters as it is trained to
produce samples that closely resemble real data, and it modifies its output accordingly.
What makes the generator successful is its capacity to produce varied, high-quality
samples that can trick the discriminator.
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4.2.3 Generator Loss

The generator reduces the log-likelihood that the discriminator is accurate for samples
that are generated. The generator is motivated to produce samples that the discrimina-
tor is likely to classify as real as a result of this loss. The generator gathers random
noise samples during training and produces an output from that noise. After that,
the output is run through the discriminator, which classifies it as "Real" or "Fake"
depending on how well it can distinguish between the two. The generator loss is then
calculated based on the discriminator’s categorization; if it is successful in tricking the
discriminator, it is rewarded; if not, it is penalized [12].

To train the generator, the following equation is minimized:

∇θg

1
m

m
∑

i=1

log(1− D(G(z(i))))

where G is the generator, D is discriminator and z is a sample from the latent space,
G(z), D(G(z)) denote the generator’s output when it receives as input noise z, and
the discriminator’s probability that a synthetic sample G(z) of data is real and θg is
a hyperparameter of a multilayer perception that represents a differentiable function
G(z;θg) which maps input noise z to data space.

4.2.4 Discriminator Model

A discriminator model, a type of artificial neural network, is used in Generative Adve-
rsarial Networks (GANs) to differentiate between generated and real input. The discri-
minator evaluates incoming samples and assigns a probability of authenticity, thereby
functioning as a binary classifier. With time, the discriminator gains the ability to
discriminate between real data from the dataset and fake samples produced by the
generator. This enables it to progressively adjust its settings and raise its level of
expertise. Convolutional layers or pertinent structures for other modalities are usually
used in its architecture when handling image data. The goal of the adversarial training
method is to increase the discriminator’s capacity to correctly classify real samples as
authentic and generated samples as fraudulent. The discriminator becomes extremely
discriminating as a result of the generator and discriminator’s interaction, which enab
les the GAN to generate synthetic data that overall looks incredibly realistic.

4.2.5 Discriminator Loss

The discriminator reduces the negative log chance of correctly identifying both synthe-
tic and real samples, much like the generator does. The discriminator loss, as opposed
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Figure 3: Architecture of GAN [4]

to the generator loss, causes the discriminator to correctly classify generated samples
as fake. The discriminator classifies generated and real data while it is being trained.

By maximizing the below function, it penalizes itself for misclassifying a genuine
instance as fake or a fake instance (made by the generator) as real [12].

∇θg

1
m

m
∑

i=1

[log D(x (i)) + log(1− D(G(z(i))))]

where G is the generator, D is discriminator and z is a sample from the latent space,
log(D(x)) refers to the probability that the generator is rightly classifying the real
image, maximizing log(1-D(G(z))) would help it to correctly label the fake image that
comes from the generator.

4.2.6 GAN Loss - Minmax Loss

The standardised GAN loss is the min-max loss [17]. Whereas the discriminator seeks
to maximize this function, the generator seeks to minimize it. When viewed as a min-
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max game, this way of expressing the loss seemed reasonable. In actuality, it saturates
for the generator, which means that if it cannot keep up with the discriminator, the
generator frequently stops training [12].

min
G

max
D

V (D, G) = Ex[log D(x)] +Ez[log(1− D(G(z)))]

where G is the generator, D is discriminator and z is a sample from the latent space,
G(z), D(x), D(G(z)) denote the generator’s output when it receives as input noise z,
the discriminator’s probability that the original data x is real, and the discrimi-
nator’s probability that a synthetic sample G(z) of data is real, and Ex , Ez denote the
mean likelihood over all original data and synthetic data respectively.

4.2.7 Challenges in Training GANs

In recent years, generative adversarial networks have emerged as powerful tools for
generating realistic data, with applications ranging from image synthesis to data aug-
mentation. The training process of GANs, however, is rife with challenges that need
to be faced carefully.

1. Mode Collapse: This occurs when the generator is not capable of capturing the
entire complexity of the training data distribution, causing mode collapse. A challenge
such as this hampers the ability of the GAN to generate a diverse and representative
sample of information [7].

2. Vanishing/Exploding Gradients: When trained, GANs are prone to vanishing or
exploding gradients, which can lead to slow convergence [7].

3. Training Instability: As hyper-parameter choices impact training, GANs can exhibit
oscillations or divergence during training [11].

4. Evaluation Metrics: The quality and diversity of generated samples may not be
adequately captured by traditional evaluation metrics, making it difficult to assess the
performance of GAN objectively [11].

4.3 Wasserstein Generative Adversarial Networks

The goal of the Wasserstein Generative Adversarial Network (WGAN) is to improve
training stability and the calibre of generated samples by introducing notable innovati-
ons to address issues with conventional GANs. The main distinction from conventional
GANs is the Wasserstein distance, which is used as a metric to measure how different
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two probability distributions are from one another. In contrast to traditional GAN, the
wasserstein distance offers a more continuous and significant measure of distribution
dissimilarity. In contrast to traditional GAN algorithms, the WGAN algorithm delivers
significant practical benefits. Figure 4 provides a comprehensive depiction of the
architectural details of WGAN. The real image represents the input to the discriminator,
a neural network tasked with distinguishing between real and fake data. The discrimi-
nator aims to output a high score for real data and a low score for fake data. The
critic, a type of discriminator specifically employed in WGANs, functions as a single-
output neural network. The critic’s output, a single real number, corresponds to the
Wasserstein distance between the input data and the real data distribution. The
generator, another neural network, strives to produce fake data that resembles real
data. The generator is trained by minimizing the generator loss function.

Figure 4: Architecture of WGAN [19]

The novel loss function that forms the basis of WGAN is commonly known as the
Wasserstein loss, or W-loss. The goal of the generator is to reduce the negative wasser-
stein distance between the generated data distribution and the distribution of real
data. Conversely, this wasserstein distance is maximized by training the discriminator.
The training dynamics are significantly affected by this switch from binary classificati-
on to distance optimization, which provides a more reliable and instructive signal
for the discriminator and generator. Weight clipping is a mechanism introduced by
WGAN to guarantee the existence of the Wasserstein distance and to enforce Lipschitz
continuity which is often introduced to ensure the stability of the training process. The
Lipschitz continuity constraint helps in controlling the gradients of the neural network,
which can be crucial for the convergence of the optimization algorithms used during
training.

In WGANs, enforcing Lipschitz continuity is one approach to overcome some of the
challenges associated with traditional GAN training. More specifically, during training,
the discriminator’s weights are limited to a range. By encouraging the discriminator to
be Lipschitz continuous, this regularization method helps to overcome certain difficult-
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ies gradient control, convergence issues, mode collapse which arise from the existence
of the wasserstein distance. The discriminator and generator are updated iteratively as
part of the WGAN training process. The wasserstein distance is maximized by updating
the discriminator’s parameters, and the negative wasserstein distance is minimized by
updating the generator’s parameters. By combining this dual optimizat-
ion strategy with weight clipping to enforce Lipschitz continuity, the likelihood of mode
collapse and other training instabilities is decreased and convergence becomes more
stable. Compared to conventional GANs, Wasserstein GAN has shown to have several
advantages like it have improved training stability, which reduces its sensitivity to
hyperparameter selections and results in more stable learning dynamics.

By addressing mode collapse-related concerns [24] and encouraging a wider diversity
in the generated outputs, the wasserstein distance also motivates the generator to
produce higher-quality samples. It is also called as Earth Mover’s distance, or EM
distance, because it can be interpreted as a minimum energy cost of moving dirt in
one probability distribution into another probability distribution. Dirt movement and
moving distance are used to quantify the cost [40].
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5 Implementation

This section delves into the implementation details of approaches to generate synthetic
3D point cloud data, employing traditional Generative Adversarial Network (GAN)
and Wasserstein Generative Adversarial Network (WGAN). While these two approac-
hes have demonstrated remarkable success in this domain, the pursuit of methodologi-
cal diversity remains imperative to ensure robustness and applicability across various
domains. In this section, we shall also explore other techniques to generate synthetic
data besides GAN-based approaches which is PointNet which was not successful in
producing synthetic point clouds. A comprehensive exploration of these three approa-
ches is conducted throughout our implementation for the generation of synthetic
3D point clouds. This includes architectural choices, training strategies, and hyper-
parameter tuning tailored to each model. Here, we will examine our methodologies
in-depth, detailing how the generative models were trained and fine-tuned.

5.1 Groundtruth Data

The White Light Interferometer is used to scan the combustion chambers during aircra-
ft maintenance. The 3D data captured during the scan is then projected onto a 2D
space for the purpose of crack detection, and conventional image processing is then
used to identify the cracks. The point cloud of the real cracks captured from the surface
of an aircraft combustion chamber is shown in the Figure 5.

Figure 5: Groundtruth Point Cloud

There are 164 point clouds of cracks and the aim is to generate multiple point clouds of
cracks. Each point cloud has four primary properties: X, Y, Z coordinates and a scalar
value. These coordinates define the position of each point in a three-dimensional
space. The X coordinate represents the horizontal position, the Y coordinate represents
the vertical position, and the Z coordinate represents the depth position. The scalar
value specifies the column in the input file that contains the scalar field values for the
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points. Scalar fields are additional properties that can be associated with points, such
as intensity, color, or temperature.

5.2 Generative Adversarial Network (GAN) Approach

5.2.1 Architecture Design

Generator Architecture:

A sequential model for the Generative Adversarial Network (GAN) is defined in the
generator architecture clearly illustrated in Figure 6. The generator network, responsi-
ble for creating new point clouds, is designed with a series of layers that process and
transform the input noise into a realistic-looking point cloud. The network comprises
of ten layers. The input layer receives the input data, which is a 100-dimensional
vector. The dense layer 3 then applies a linear transformation to the input data and
outputs 256 latent vectors. The leaky ReLU 2 activation function is then applied to the
outputs of the dense layer 3. This activation function allows for a small amount of non-
zero output even when the input is negative, which can help to prevent the network
from dying during training. The batch normalization layer then normalizes the outputs
of the leaky ReLU 2 activation function. This helps to improve the performance of the
network by making it less sensitive to the initialization of the weights.

The dense layer 4 then applies a linear transformation to the outputs of the batch
normalization layer and outputs 512 latent vectors. The leaky ReLU 3 activation
function is then applied to the outputs of the dense layer 4. The batch normalization
layer 1 then normalizes the outputs of the leaky ReLU 3 activation function. The dense
layer 5 then applies a linear transformation to the outputs of the batch normalization
layer 1 and outputs 2000 latent vectors. The reshape layer then reshapes the outputs
of the dense layer 5 into a 500x4 matrix. The output layer then applies a linear
transformation to the outputs of the reshape layer and outputs 500 latent vectors.

By opting for a 10-layer architecture, the generator demonstrated the capability to
learn rich and abstract features while facilitating a smooth convergence during traini-
ng. It was observed that a 10-layer architecture struck a harmonious balance between
model capacity and training efficiency.

Discriminator Architecture:

The discriminator network comprises six primary layers that effectively distinguish
between real and generated images. The initial Flatten layer transforms the input
data, a 2D matrix representing the image, into a 1D vector. This flattens the data
into a more manageable format for subsequent processing. Next, a dense layer with
512 neurons applies linear transformations to the flattened data, generating a 512-
dimensional vector. LeakyReLU activation is employed, allowing for a small positive
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output even for negative inputs, contributing to better training stability.

To further refine the representation, a second dense layer with 256 neurons applies
linear transformations and utilizes LeakyReLU activation. This process enhances the
network’s ability to capture subtle image characteristics. A dense layer with 1 neuron
concludes the network, employing a sigmoid activation function. This single output
represents the probability that the input image is real or fake. The sigmoid function
ensures that the output lies between 0 and 1, reflecting the confidence of the discrimi-
nator.

5.2.2 Phases of GAN model

Moving on, three separate phases make up the organization of the GAN model. First,
during the data preprocessing phase, the input data for the GAN model is prepared.
Reading 3D point cloud data from files, processing each file’s contents to create a list of
3D point coordinates, and normalizing the data are all necessary steps in the process.
Next is model training, which involves using the prepared dataset to teach the GAN
model the underlying structures and patterns of the 3D point clouds. The final step is
data generation, which entails creating new, artificial 3D point cloud data using the
trained generator.

5.2.3 Data Preprocessing

The content of each 3D point cloud file is processed in the first step of the data
preparation process to produce a list of 3D point coordinates and a list of lists with
floating-point values, which ensure that the raw data is correctly formatted and parsed
for further processing.

The maximum values for the x, y, and z coordinates across all of the dataset’s data
points are computed after data extraction. It determines the maximum values for
each dimension by going through each data point iteratively. The entire dataset is
then normalized using these maximum values. By guaranteeing that every data point
is scaled appropriately, normalization makes it easier to provide the GAN model with
a consistent input during training. Next, NumPy arrays containing the normalized
dataset and the normalization vector are saved.

5.2.4 Training Procedure

Training Loop:

The training loop iterates through 1000 epochs. The discriminator and generator are
trained alternately within each epoch. Real and generated data batches are processed
during each iteration.
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Discriminator Training:

Real data batches are chosen at random from the normalized dataset in order to train
the discriminator. These real data batches have a value of 1 with a label "real". To
accurately classify these real data batches, the discriminator is trained on them. The
generator generates synthetic data batches and noise vectors simultaneously. These
artificial data batches have a value of 0 with a label "fake". These artificial data batches
are then used to train the discriminator. The average of the losses on batches of real
and fake data is used to calculate the discriminator’s overall loss.

Generator Training:

The generator is taught to generate fake data in order to trick the discriminator. The
GAN model receives generated random noise vectors as input. For these produced
data batches, the target labels have a value of 1 and are set to "real". The weights of
the generator are adjusted in accordance with the discriminator’s calculated loss. The
goal is to maximize the discriminator’s error, encouraging the generator to generate
point clouds that are more difficult for the discriminator to distinguish from real ones.

Adversarial Training:

The fundamental idea here is that the generator is regularly trying to enhance its
capacity to build realistic point clouds that can mislead the discriminator. Although
the discriminator is not yet trainable during the generator training step, it has already
learned to be a skilled judge of realism through previous training. This dynamic
interaction is iterative. The generator improves its capacity to make realistic samples,
and the discriminator adapts to better discriminate between real and generated sampl-
es. Finally, the generator model is saved into a H5 file for further process,

5.2.5 Data Generation

Following the training phase, the pre-trained generator model is loaded and 20 synthe-
tic point clouds are generated with random noise vectors are produced as input. Rand-
om noise is fed into the pre-trained generator to stimulate diversity and creativity in
the generated samples. This input acts as a point in the latent space, allowing the
generator to map it to a variety of outputs. The introduction of random noise helps to
avoid problems like mode collapse, enhances generalization to previously undiscover-
ed patterns, and facilitates adversarial learning by pushing the discriminator to differe-
ntiate between actual and produced samples. Next, using the previously established
normalization vector, the generated data is normalized to maintain the consistency
and same data distribution as the training data. The artificial 3D point clouds are
stored in files with a predetermined format so they can be examined and used later.

23



5.2 Generative Adversarial Network (GAN) Approach 5 IMPLEMENTATION

5.2.6 Hyper-parameter Tuning

Hyperparameter tweaking is critical in enhancing the performance of both the generat-
or and discriminator networks in the context of the GAN model developed for point
cloud data creation. The latent dimension, a defining factor set at 100, determines
the size of the input noise vectors injected into the generator. This dimensionality
is critical in determining the variety and complexity of the generated point clouds.
Furthermore, the Adam optimizer’s learning rate of 0.0002 and beta value of 0.5 act
as fundamental parameters in guiding the optimization process. Another important
hyper-parameter, the batch size, is 32. This parameter affects both training dynamics
and computational efficiency because it specifies how many samples are processed in
each iteration. Finally, the 1000 number of training iterations across the whole dataset
is set by the epochs hyper-parameter. It takes 1000 epochs for the model to learn and
converge.

Figure 6: Generator Network Architecture of traditional GAN
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5.3 Wasserstein GAN (WGAN) Approach

5.3.1 Architecture Design

Generator Network:

In the WGAN approach, the generator encompasses eleven layers, each serving a
specific purpose in the image classification process. The flattened data is received as a
100-dimensional vector by the input layer, which represents the image as a sequence of
pixel values. Dense layer 2 transforms this vector into a higher-dimensional represent-
ation using 256 neurons, enabling the network to extract more abstract features from
the raw data. Dense layer 3 improves the representation even more by increasing the
number of neurons and employing a ReLU activation function, preserving the crucial
features while reducing the dimensionality. Convolutional layer 1D 2 extracts features
from the image using 64 filters, sliding across the image to generate a set of feature
maps that capture various patterns and textures. Leaky ReLU layer 2 applies a non-
linear transformation to the output, introducing a slight positive slope for negative
inputs, preventing gradient vanishing during training and improving the network’s
ability to learn. Convolutional layer 1D 3 further refines the feature maps generated
by the previous layer with 32 filters to extract finer-grained details. This process helps
to identify more complex patterns and enhances the network’s ability to distinguish
between different classes. Leaky ReLU layer 3 applies another non-linear activation
function to maintain the network’s ability to capture complex patterns and prevent
gradient vanishing issues.

Convolutional layer 1D 4 reduces the number of feature maps to a more manageable
size by using only 3 filters, enabling the network to focus on the most relevant features.
This step helps to reduce the dimensionality of the representation and prepare it for
the final classification step. The output layer receives the reduced representation
and applies a softmax activation function, normalizing the output to represent the
probability of each class. This allows the network to make a final prediction about the
object or scene depicted in the image.

In the design of the Wasserstein Generative Adversarial Network (WGAN), the decision
to employ an 11-layer architecture for the generator was driven by a combination of
task complexity, dataset characteristics, and architectural considerations. Empirical
investigations were conducted to explore different layer configurations, revealing that
an 11-layer generator architecture provided the necessary expressive power to model
the intricate relationships within the data. The increased depth allowed for the extract-
ion of hierarchical features, enabling the generator to produce high-quality and diverse
synthetic samples.

Discriminator Network:

This discriminator network comprises eight layers, each serving a distinct purpose in
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Figure 7: Generator Network architecture of WGAN

the classification process. The input layer receives the data as a three-dimensional
tensor with dimensions (None, MAX POINTS, 3), representing the data sample as a
collection of XYZ coordinates. The first convolutional layer (Conv1D(64, 5)) engages
64 filters with a kernel size of 5, sliding across the input tensor to extract local features.
The ’same’ padding ensures that the output tensor retains the spatial dimensions of
the input tensor. A LeakyReLU(0.2) activation function transforms the output of the
convolutional layer. This non-linear activation introduces a small positive slope for
negative inputs, preventing gradient vanishing and enhancing the network’s learning
capacity.

The second convolutional layer (Conv1D(128, 5)) utilizes 128 filters with the same
kernel size, maintaining the spatial dimensions of the representation. The filters
extract more intricate features from the data. Another LeakyReLU(0.2) activation
function follows the second convolutional layer, preserving the non-linearity and prev-
enting gradient vanishing issues. The flatten layer flattens the output tensor into a
one-dimensional vector, facilitating the connection between convolutional and fully
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connected layers.

The first fully connected layer introduces 256 neurons and applies a ReLU activation
function to the flattened vector, transforming it into a higher-dimensional representati-
on. The final fully connected layer comprises a single neuron, applying a sigmoid
activation function. This outputs a value between 0 and 1, indicating the probability
that the input data is genuine. This value serves as the foundation for determining
whether the data is real or synthetic.

5.3.2 Phases of WGAN model

The Wasserstein Generative Adversarial Network (WGAN) model, similar to the tradit-
ional GAN, is divided into three main phases: data preprocessing, model training, and
data generation.

5.3.3 Data Preprocessing

This process involves the systematic extraction and organization of information from
multiple files within a specified directory. The mean values are calculated for each 3D
point cloud in the dataset. The mean values are calculated independently along each
dimension (x, y, z) of the 3D points. The mean values of the data are subtracted from
each dimension to centre the data around the origin. This process is often employed
to remove biases or to standardize the data for improved model training. The mean
values calculated represent the central tendencies of the point cloud data in terms
of its spatial distribution and these mean values are stored in an array to use in the
further process.

5.3.4 Training Procedure

Training loop:

Unlike traditional GAN approach, the WGAN approach iterates through 5000 epochs.
The decision to train the Wasserstein Generative Adversarial Network (WGAN) for
5000 epochs was based on empirical observations like the generator and training loss,
stability, convergence and the quality of the generated point clouds.

Discriminator Training:

The discriminator, in the context of this Wasserstein Generative Adversarial Network
(WGAN), plays the role of a critic. Its objective is to assess the authenticity of both
real and generated 3D point clouds. The discriminator training is conducted through
multiple iterations within each epoch. Real point clouds are randomly sampled from
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the dataset and padded to a consistent size. The discriminator is then optimized to
distinguish between real and generated point clouds by computing the wasserstein
loss, using real labels of -1 for actual data. Simultaneously, synthetic point clouds
produced by the generator are used to compute the wasserstein loss with labels set to
1. The discriminator’s weights are then adjusted to maximise this loss. Importantly,
a lipschitz constraint is enforced by clipping the weights of the discriminator within a
specified range (-0.01 to 0.01). This iterative training process enhances the discrimin-
ator’s ability to discern between real and generated point clouds.

Generator Training:

The generator, a crucial component of the WGAN, is trained to produce synthetic 3D
point clouds that can convincingly deceive the discriminator. During the training
loop, random noise vectors are input into the generator, and the wasserstein loss
is computed using the output of the discriminator as the measure of how well the
generated point clouds fool the discriminator. The generator aims to minimize this
loss, effectively learning to create realistic 3D point clouds. The generator is updated
using the wasserstein loss, and this process is iterated over multiple epochs. The
periodic training of the generator ensures its continuous improvement in generating
synthetic point clouds that exhibit characteristics similar to those in the real dataset.
The final trained generator can subsequently be employed to generate new, realistic
3D point clouds with diverse spatial features.

Adversarial Training:

Adversarial training within the framework of Wasserstein Generative Adversarial Net-
works (WGAN) unfolds as a sophisticated switch between the generator and the critic,
each playing a distinct yet interconnected role. Unlike traditional GAN, WGAN levera-
ge the wasserstein distance to quantify the dissimilarity between the distributions of
real and generated data. The discriminator, functioning as a discriminator in this
context, undergoes training to assign low scores (negative values) to real data and
high scores (positive values) to generated data. This training process is distinctive,
employing the wasserstein loss with labels set to -1 for real data and 1 for generated
data, steering the critic toward approximating the wasserstein distance accurately.
Concurrently, the generator’s task transcends the conventional objective of deceiving
the discriminator with binary classifications. Instead, it strives to minimize the wasser-
stein loss, generating synthetic data so realistic that the discriminator perceives it
similar to real data. The wasserstein loss encapsulates the wasserstein distance, foster-
ing the convergence of the two data distributions. Critical to the stability of WGAN is
the lipschtiz continuity of the discriminator, often enforced by weight clipping. This
constraint ensures a well-defined wasserstein distance and contributes to training
stability. The iterative nature of training involves multiple critic updates for each
generator update, a process regulated by the ’n critic’ parameter, which mitigates issues
such as mode collapse and promotes a robust learning trajectory. Adversarial training
in WGAN, propelled by the wasserstein distance, orchestrates a nuanced interplay
between the generator and the critic, leading to the synthesis of diverse, high-fidelity
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data representations across diverse domains.

5.3.5 Data Generation

Similar to the GAN approach, the 20 synthetic point clouds are generated with a
random noise vector and the pre-trained generator model.

5.3.6 Hyper-parameter Tuning

In the endeavour to train a Wasserstein Generative Adversarial Network (WGAN) for
the synthesis of realistic 3D point clouds, the meticulous tuning of hyperparameters
assumes a pivotal role in optimizing model performance and stability. The MAX POINT
parameter, determining the size of 3D point clouds, is fine-tuned to a value of 500,
ensuring uniformity in the input size for the discriminator. The latent dim hyperpara-
meter, specifying the dimensionality of random noise vectors, is set to 100, influencing
the diversity and complexity of the generated point clouds. The number of training
epochs is established at 5000, with a batch size of 32, striking a balance between
computational efficiency and model convergence. The clip value parameter, vital
for enforcing lipschtiz continuity in the discriminator, is carefully adjusted to 0.01,
stabilizing training and mitigating gradient-related challenges. The determination of
the optimal n critic value, representing the number of discriminator iterations per
generator iteration, is critical and set to 5 for achieving a well-trained and stable
model. The RMSprop learning rate parameter, governing the learning rate in the
optimizer, is set to 0.00005 to facilitate smooth convergence. Additionally, the archite-
cture of the generator, featuring Conv1D layers, introduces complexity, and the numb-
er and size of these layers are tuned to enhance the model’s capacity to capture
intricate patterns in the data. This comprehensive and tuned suite of hyperparameters
collectively orchestrates the training dynamics of the WGAN, ensuring the synthesis
of high-quality 3D point clouds.

5.4 PointNet Approach

At first, the PointNet architecture which is well-known for its efficiency in segmentation
and classification tasks seemed well-suited for the challenge of creating artificial point
clouds. PointNet seems to be well-suited to manage the intrinsic difficulties associated
with point cloud data because of its special permutation invariance, which was created
to handle unordered point sets.

Even while the PointNet technique worked well for classification and segmentation,
there were significant issues when trying to use it to create artificial point clouds. The
permutation invariance of the architecture proved to be a drawback when attempting
to represent the complex spatial linkages and global structures present in point cloud
data, although being advantageous for handling unordered point sets. PointNet faced
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challenges since point clouds have no intrinsic order; it ignores any predetermined
order or permutation in the input point cloud.

Furthermore, PointNet’s architectural design may not be naturally suited for generative
tasks that require the modeling of structured latent spaces in order to capture and
recreate underlying data distributions. The selection of an appropriate loss function
is critical for effective training in generative tasks, and the distinct properties of point
clouds frequently need specialized distance measurements, such as Chamfer distance
or Earth Mover’s Distance (EMD). Mismatched loss functions may impair the model’s
capacity to learn and recreate desired point cloud distributions.

Given these considerations, while PointNet performs well in some domains, its subtle
limits highlight the need for alternate designs or hybrid techniques. PointNet faces
obstacles like as the unstructured nature of point clouds, complex spatial interactions,
and the need for specialized loss functions. This acknowledgement emphasizes the
importance of investigating alternate approaches adapted to the particular qualities
of point cloud data, paving the way for more effective and successful synthetic point
cloud generation in future attempts.
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6 Results

The results section unfolds the outcomes of point cloud generation achieved through
both traditional GAN and Wasserstein GAN methodologies. This chapter meticulously
explores the synthetic point clouds, employing a dual perspective of conventional GAN
and the Wasserstein GAN (WGAN) approaches. By training both models using 164
point clouds, Overall, 20-point clouds are generated. To assess the generated results, a
quantitative analysis is carried out where Earth Mover’s Distance, Mahalanobis Distan-
ce and Fréchet Point Cloud Distance evaluation metrics are applied. These metrics act
as quantitative benchmarks, providing an evaluation of the authenticity and overall
quality of the synthetic point clouds. By contrasting the results of traditional GAN and
WGAN and subjecting them to thorough metric analysis and discussion on generator
and discriminator loss plots, this section aims to offer a nuanced comprehension of
each approach’s effectiveness and distinct attributes in the domain of point cloud
synthesis.

6.1 Quantitative Analysis

Figures 8 and 9 depict images of synthetic point cloud created through a conventional
GAN methodology, while Figures 10 and 11 showcase synthetic point cloud generated
employing a WGAN approach.

Figure 8: Synthetic crack generated by traditional GAN approach-1

6.1.1 Earth Mover’s Distance

Earth Mover’s Distance is used as one of the evaluation metrics to measure the reconst-
ruction quality of the point clouds. The Earth Mover’s Distance (EMD) is a measure of
the dissimilarity between two probability distributions. It is often used to assess the
similarity between the distribution of generated samples and the distribution of real
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Figure 9: Synthetic crack generated by traditional GAN approach-2

Figure 10: Synthetic crack generated by WGAN approach-1

samples. The basic idea is to imagine that each point in the distributions has a certain
"mass" or "weight", and the goal is to find the most efficient way to move the mass
from one distribution to the other. The distance metric is determined by the amount
of mass moved and the distance it travels.

In the context of evaluating the efficacy of the traditional Generative Adversarial
Network (GAN) in generating realistic 3D point clouds, an Earth Mover’s Distance
(EMD) comparison is conducted between the ground truth and generated dataset.
This quantitative assessment involved measuring the dissimilarity between the two
distributions, considering both spatial arrangement and overall distribution character-
istics. The EMD computation was performed on normalized point clouds to ensure
consistency in scaling. The minimum EMD value, signifying the closest match between
generated and ground truth distributions, was recorded, along with the corresponding
pair of normalized point clouds. This analysis not only quantifies the model’s ability
to replicate the underlying data distribution but also provides valuable insights into
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Figure 11: Synthetic crack generated by WGAN approach-2

the spatial coherence of the generated point clouds. Figure 12 and 13 are the ground
truth and generated point clouds with minimum EMD value obtained using traditional
GAN approach.

The Earth Mover’s Distance (EMD) can be mathematically expressed as:

Given two probability distributions P and Q defined over a metric space X with distance
function d(x,y), the Earth Mover’s Distance between P and Q is defined as the minimum
cost of transporting the mass P and Q, where the cost is proportional to the distance
travelled.

Mathematically, it can be expressed as an optimization problem:

EM D(P,Q) =min
γ

m
∑

i=1

n
∑

j=1

ci j · γi j

Subject to the constraints:

1.
∑n

j=1 γi j = pi for all i = 1,2, . . . , m (Mass conservation for P).

2.
∑m

i=1 γi j = q j for all j = 1,2, . . . , n (Mass conservation for Q).

3. γi j ≥ 0 for all i = 1,2, . . . , m and j = 1, 2, . . . , n (Non-negativity).

where,

P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qn) are the probability distributions.

x i j represents the amount of mass to be transported from i in P to j in Q.

ci j = d(x i, y j) is the cost (distance) of transporting one unit of mass from i to j, where
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d(x i, y j) is the distance metric between points x i and y j

Likewise, the Earth Mover’s Distance (EMD) is computed for point clouds generated
through the WGAN approach, and Figures 14 and 15 depict the point clouds associated
with the lowest EMD values. For the traditional GAN approach, the minimum EMD
value is 75.605089, while for the WGAN approach, the minimum EMD value is 147.05
9859.

Figure 12: Ground truth point cloud with minimum EMD value for GAN approach

Figure 13: Generated point cloud with minimum EMD value for GAN approach
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Figure 14: Ground truth point cloud with minimum EMD value for WGAN approach

6.1.2 Fréchet Point Cloud Distance

Fréchet Point Cloud Distance (FPD) metric is taken into consideration as for the evalua-
tion of the point clouds as it enhances the quantitative assessment of the models
performance in generating realistic 3D point clouds. The FPD metric captures both the
spatial distribution and the structural characteristics of the generated point clouds by
considering the mean vector and covariance matrix. The calculation involves processi-
ng pairs of ground truth and generated point clouds, extracting their mean vectors
and covariance matrices, and subsequently computing the Fréchet Distance using a
specific formula that quantifies the dissimilarity between the two distributions. The
resulting Fréchet Distance values provide a comprehensive measure of how closely the
generated point clouds resemble the ground truth.

For instance, the formula used for FPD incorporates the Euclidean norm of the differen-
ce between mean vectors and the trace of matrices involving covariance matrices,
reflecting both location and spread differences. This metric, being sensitive to both
central tendency and shape, offers a nuanced understanding of the quality of synthetic
point clouds generated by the GAN model. Fréchet Point Cloud Distance is mathemati-
cally expressed as:

F PD(P,Q) = ∥mP −mQ∥22 + Tr(ΣP +ΣQ − 2(ΣPΣQ)
1
2 )
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Figure 15: Generated point cloud with minimum EMD value for WGAN approach

where,

F PD(P,Q) is the Fréchet Point Cloud Distance between point clouds P and Q.

∥mP −mQ∥22is the squared Euclidean distance between mean vectors mP and mQ.

Tr(ΣP +ΣQ − 2(ΣPΣQ)
1
2 ) represents the trace of the covariance matrices.

mP is the mean vector of point cloud P.
mQ is the mean vector of point cloud Q.

ΣP is the covariance matrix of point cloud P.
ΣQ is the covariance matrix of point cloud Q.

Figure 16 displays point cloud characterized by the minimum Fréchet Point Cloud
Distance (FPD) value achieved through the traditional GAN approach, while Figure
17 exhibits point cloud with the minimum FPD value attained through the WGAN
approach, with values of 117030.799274 and 462.595765, respectively.

6.1.3 Mahalanobis Distance

To identify discrepancies between generated and ground truth point clouds, Mahalan-
obis Distance (MD) is employed. This metric is utilized to detect points in the generat-
ed cloud that deviate from the corresponding ground truth by quantifying their dissim-
ilarity. By calculating MD, we assess the extent of each point’s deviation from the
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Figure 16: Minimum FPD value for GAN approach

Figure 17: Minimum FPD value for WGAN approach

mean of the distribution, considering the covariance structure. This allows for the
identification of anomalous points in the generated cloud that significantly differ from
the expected distribution present in the ground truth point cloud. This metric relies
on a robust model trained through the Minimum Covariance Determinant (MCD)
estimation, which captures the covariance structure of the ground truth point clouds.
The MD is computed individually for each point within the generated point clouds.
Anomalies, indicative of deviations from the learned distribution, are identified by
comparing the calculated Mahalanobis Distance against a predefined threshold.

In this implementation, the threshold value is set at 2.5 for both the approaches. This
threshold plays a crucial role in determining what is considered an anomaly. Points
with Mahalanobis Distance values exceeding this threshold are flagged as anomalies.
The choice of the threshold is a crucial aspect and can be fine-tuned based on the
specific characteristics of the dataset and the desired level of sensitivity to anomalies.
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A higher threshold may result in fewer anomalies being detected, emphasizing more
stringent similarity criteria, while a lower threshold may lead to the identification of
a broader range of anomalies. The selection of the threshold value, established at 2.5
for Mahalanobis Distance-based anomaly detection, is the outcome of a comprehensive
decision-making process. Grounded in statistical considerations, the threshold denotes
a significant departure from the mean, aligning with a 99 percent confidence interval
within a normal distribution. This strategic threshold selection significantly identifies
the point clouds which are deviated from the ground truth point cloud distribution.
Figure 18 and 19 shows the number of anomalies identified with each point cloud
generated.

The Mahalanobis Distance (MD) is given by:

DM(x) =
Æ

(x −µ)TΣ−1(x −µ)

Where,

DM(x) is the Mahalanobis Distance for a point x .
µ is the mean vector.
Σ is the covariance matrix.
(x −µ) is the difference vector between the point x and the mean µ.
Σ−1 is the inverse of the covariance matrix.

Figure 18: Anomalies detected in each point clouds generated using traditional GAN
approach
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Figure 19: Anomalies detected in each point clouds generated using WGAN approach

Mahalanobis Distance and Fréchet Point Cloud Distance are distinct metrics used in
different fields with varying applications. Mahalanobis Distance, rooted in statistics
and machine learning, quantifies the dissimilarity of a data point from the mean of
a distribution, accounting for correlations between variables through the covariance
matrix. Commonly used for outlier detection, it offers insights into how far a point
deviates from the center of a distribution. On the other hand, Fréchet Point Cloud
Distance, a concept in computational geometry, is employed for shape analysis and
trajectory comparison. It assesses the similarity between two point clouds by identifyi-
ng the closest continuous paths in each cloud, emphasizing synchronized movement.
This distance is pivotal in applications involving shape matching and similarity analysis
of patterns represented as point clouds. Ultimately, the choice between the two distan-
ces depends on the specific analytical context and the nature of the data under conside-
ration.

6.2 Discriminator and Generator Loss

The exploration of point cloud generation involves a meticulous analysis of the generator
and discriminator loss plots, prominently featured in Figures 20 and 21. These graphical
depictions encapsulate the intricate evolution of both traditional Generative Adversarial
Network (GAN) and Wasserstein GAN (WGAN) approaches.

Delving into Figure 20, we gain a comprehensive understanding of the nuanced dynamics
between the generator and discriminator losses throughout the training process of the
conventional GAN. In the early phases of training, both the generator and discriminator
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losses exhibit a relatively higher magnitude, highlighting the initial learning challenges
faced by the model. However, a notable convergence occured around the 400-epoch
mark, suggesting a stabilization in the training dynamics. Despite this convergence,
the generated point clouds at this stage have not meet the desired quality standards.
Recognizing this, the model undergoes continued training beyond the convergence
point until satisfactory results in point cloud generation are achieved.

It is imperative to note that the decision to extend training beyond the initial convergence
is driven by the aim to enhance the quality of the generated point clouds. Nevertheless,
a crucial consideration arises in the form of potential overfitting and mode collapse.
To address this, a prudent decision is made to conclude the training at 1000 epochs,
mitigating the risk of compromising the model’s generalization capabilities.

Figure 20: Loss graph of GAN approach

The loss plot of the Wasserstein GAN (WGAN) model, illustrated in Figure 21, reveals
a distinctive trend where the discriminator loss displays more pronounced oscillations
compared to the generator loss. Similar to the conventional GAN model, the WGAN
model undergoes training until it consistently produces high-quality synthetic crack
point clouds, precisely up to 5000 epochs. Going beyond this epoch limit leads to
overfitting, resulting in a diminishing ability of the model to generate effective point
clouds. This emphasizes the significance of determining an optimal training duration
to achieve peak performance in point cloud generation.

This finding implies that the generator has successfully generated high-quality point
clouds, even though the discriminator is still sharping its ability to distinguish between
genuine and synthetic point clouds. In conclusion, the loss plot serves as a valuable

40



6.2 Discriminator and Generator Loss 6 RESULTS

tool for assessing the performance of a WGAN model. By incorporating this plot
into your results section, you can provide readers with a clearer understanding of
the model’s training process and its overall performance

Figure 21: Loss graph of WGAN approach
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7 Discussion

This section thoroughly explores the interpretation and detailed analysis of the acquir-
ed results, delving into the implications of the findings, comparing both approaches,
addressing limitations, and suggesting avenues for future research.

The results of the point cloud generation using both the traditional Generative Advers-
arial Network (GAN) approach and the Wasserstein Generative Adversarial Network
(WGAN) approach provide valuable insights into the feasibility of employing deep
learning methodologies for crack detection within aviation maintenance.

7.1 Analysis of the findings

The point clouds produced through the conventional GAN method exhibit a pattern
where a notable concentration of points is observed in specific areas, such as the centre
or sides of the structure. This starkly deviates from the characteristic structure of
genuine crack point clouds. The traditional GAN generated point clouds appear to
have a more linear structure when viewed in 2D, and they significantly differ from the
intricate structure of actual crack point clouds. On the contrary, the Wasserstein GAN
(WGAN) approach demonstrates a substantial enhancement in capturing intricate
details from real point clouds, including the spread, structure, and orientation of the
points. The point clouds generated by the WGAN approach portray a more authentic
representation of crack structures, surpassing the point clouds generated by the traditi-
onal GAN method. The results from WGAN are highly promising, closely mirroring
the characteristics of genuine crack point clouds.

Analysis of quantitative metrics, the structure of the generated point clouds obtained
for Minimum Earth Mover’s Distance (EMD) for the GAN approach as mentioned,
the points are more gathered towards left as seen in the Figure 13, where as in
the ground truth point are well oriented in structure. In case of WGAN, the point
form a structural shape can be seen in Figure 15. The EMD analysis reveals that
the distributions of the two point clouds ground truth and synthetic point clouds of
the WGAN approach exhibit significant similarity in their distributions compared to
traditional GAN. Coming to Fréchet Point Cloud Distance, a similar observation to
that of the Earth Mover’s Distan-
ce can me made from Figures 16 and 17. The point clouds generated from WGAN
are more structural and oriented compared to GAN approach. This inference is based
on the significantly lower values observed in WGAN, contrasting with the notably
higher values in traditional GAN. Additionally, it is noteworthy that the traditional
GAN approach exhibits a higher number of outliers compared to the WGAN approach.

The Mahalanobis Distance analysis within the traditional GAN approach reveals a
substantial deviation of most points in the generated point clouds from the actual
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distribution observed in the ground truth point cloud. This discrepancy is vividly
illustrated in Figure 18, where the number of anomalies aligns closely with the total
number of points, indicating that the structural perspective of the generated point
clouds is significantly distant from that of the authentic point clouds.

In contrast, when scrutinizing the anomalies in the point clouds generated by the
WGAN model, distinct patterns emerge. The anomalies are either at a count of 0 or in
close proximity to 500. This nuanced observation implies that points generated with
anomalies detected at 0 closely resemble the distribution of the actual points, whereas
point clouds with anomalies closer to 500 are noticeably distant from the structural
characteristics exhibited by the authentic point clouds.

In the GAN model’s loss plot, illustrated in Figure 20, the initial phase exhibits a
higher generator loss, gradually decreasing as training progresses. This trend indicates
that the generator is learning to generate more realistic samples over time. Small
oscillations in the loss, while common, contribute to the dynamic nature of adversarial
training. The WGAN model’s loss plot, shown in Figure 21, displays generator loss
values closer to 0, signifying effective synthesis of data challenging for the discriminat-
or to differentiate from real data.

In the WGAN context, the generator loss represents the Wasserstein distance, a metric
quantifying the difference between the distributions of generated and real data. A
generator loss near 0 implies minimized Wasserstein distance, indicating a high-quality
generator. Conversely, the discriminator loss in WGAN oscillates throughout training,
consistently remaining higher than the generator loss. A higher discriminator loss
suggests the generator is adept at producing samples challenging for the discriminator
to distinguish as real.

The rhythmic oscillation in the discriminator loss implies stable training, with the
generator and discriminator adjusting strategies responsively. This balanced state,
where neither component holds a distinct advantage, is desired in GAN training.
It signifies effective learning, reaching an equilibrium where both components are
optimized.

As a result, the synthetic point clouds generated by WGAN exhibit a higher fidelity in
replicating the intricate features of real-world combustion chambers. These findings
align with the evolving literature on the application of GANs in addressing data challe-
nges in industries with limited datasets. The utilization of GANs, particularly WGANs,
for generating synthetic data has proven effective in mitigating the data deficit prevale-
nt in aviation maintenance. The WGAN approach’s success in capturing the complexity
of point cloud data is a promising advancement in the realm of crack detection.
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7.2 Implications and Challenges

The successful generation of synthetic point clouds using Generative Adversarial Netw-
orks (GANs) for crack detection in aviation maintenance carries several promising
implications. The ability to create realistic synthetic data capable of mimicking intrica-
te surface features has immediate applications in training and validating crack detecti-
on models. This synthetic dataset can act as a valuable supplement to the limited real-
world data, facilitating the development and evaluation of robust models for identifyi-
ng submillimeter cracks within combustion chambers.

Moreover, the utilization of synthetic data addresses the perennial challenge of data
scarcity in the aviation industry. The generated point clouds serve as a bridge to
overcome the data deficit, providing a diverse set of scenarios for training models.
This, in turn, enhances the adaptability and effectiveness of crack detection systems
across varying combustion chamber conditions.

Despite the optimistic implications, challenges persist in optimizing the synthetic data
generation process. Fine-tuning GAN architectures to precisely capture the subtle
distinctions between surface roughness and genuine cracks remains a nuanced task.
Striking a balance between sensitivity and specificity is crucial, and further research
is needed to enhance the fidelity of synthetic point clouds, ensuring they accurately
reflect the complexities of real-world combustion chambers. Interpreting the generat-
ed synthetic data also presents challenges in understanding the intricacies of the unde-
rlying patterns. Establishing a clear link between synthetic point clouds and real-
world crack characteristics is essential for the successful deployment of these models
in aviation maintenance practices.
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8 Conclusion

In conclusion, implementation of both the traditional Generative Adversarial Network
(GAN) approach and the Wasserstein Generative Adversarial Network (WGAN) appro-
ach for generating synthetic point clouds has yielded valuable insights in the realm
of aviation maintenance like the challenge of detecting submillimeter cracks within
combustion chambers, complicated by sensor data intricacies involving fine surface
features and roughness, prompted the exploration of advanced neural network archit-
ectures and deep learning methodologies.

The primary aim of implementation was to address the prevalent data deficit in aircraft
maintenance. Utilizing Generative Adversarial Network (GAN), successfully establish-
ed a robust pipeline dedicated to generating synthetic training samples. This process
included the creation of artificial cracks, where a GAN trained with authentic crack
data produced synthetic cracks with diverse patterns. Specifically, the outcomes of
implementation highlighted the superior effectiveness of the WGAN approach in close-
ly replicating real-world point clouds compared to the traditional GAN approach.
WGAN demonstrated advanced capabilities in efficiently capturing the intricate featu-
res of combustion chambers, showcasing its potential to bridge the gap created by
data scarcity. The success of WGAN in generating synthetic data that closely mirrors
real-world scenarios marks a significant advancement can be correlated to its capacity
to offer more stable training dynamics, avoiding typical problems like mode collapse
that standard GANs encounter. The architecture of WGAN is one of the reason for the
model to successfully generate point clouds with high quality.

In practical terms, implementation contributes to the refinement of data-driven metho-
dologies in safety-critical industries, particularly aviation maintenance. The impleme-
ntation of both approaches provides a comparative understanding of their efficacy
in generating synthetic data for crack detection models. This research outcome holds
promise for future applications, offering innovative solutions to enhance aviation mai-
ntenance practices through the utilization of generative models and advanced training
techniques.
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9 Future Research Directions

The trajectory of future research directions in the domain of synthetic point cloud
generation for aviation maintenance seeks to propel the field beyond current boundari-
es. Building upon the advancements achieved, this forward-looking exploration is
poised to refine and expand the capabilities of generative models, particularly Generat-
ive Adversarial Networks (GANs). The optimization of GAN architectures, specifically
tailored for point cloud data, stands as a pivotal objective. By delving into modificatio-
ns or novel approaches within the GAN framework, the goal is to enhance the generat-
ion of intricate surface features, ultimately contributing to the realism and accuracy
of synthetic point clouds.

Optimization of GAN Architectures for Point Clouds: Future research should delve
into the optimization of GAN architectures specifically tailored for point cloud data.
Exploring modifications or novel approaches within the GAN framework to improve
the generation of intricate surface features will contribute to the realism and accuracy
of synthetic point clouds.

Enrichment of Synthetic Data Variability: Expanding the synthetic dataset to encom-
pass a broader range of combustion chamber configurations and surface conditions is
crucial. Future research can focus on enriching the variability within the synthetic
data, ensuring that models are trained on a representative set of scenarios to enhance
generalization to real-world situations.

Integration with Real-world Data: Further investigations should explore methodolo-
gies for effectively integrating synthetic point clouds with existing real-world datasets.
This fusion of synthetic and real data can enhance the robustness of crack detection
models, enabling them to adapt to diverse conditions and anomalies encountered
during aviation maintenance inspections.

In conclusion, future research directions should be centered on refining the synthesis
of point cloud data, expanding dataset variability, and validating the efficacy of models
in practical scenarios. The ultimate goal is to ensure that synthetic point clouds play
a pivotal role in enhancing the capabilities of crack detection models within aviation
maintenance, addressing the unique challenges posed by limited real-world data.
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